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CONTROL DESIGN FOR A CLASS OF
GENERAL NONLINEAR REACTION

DIFFUSION EQUATIONS

Fushan Li1,† and Wen Chen1

Abstract We consider a class of nonlinear parabolic equation with gen-
eral source function f(u), conduction function g(u) and conduction coefficient
ρ(|∇u|2) in multi-dimensional space. We establish new control conditions to
guarantee that the positive solution exists globally. At the same time, un-
der suitable control conditions, by means of the Sobolev inequality in multi-
dimensional space, we obtain upper and lower bounds of the blow-up time
t∗ in Rn (n ⩾ 2). Our work generalize the models, improve the method and
remove the constraint of spatial dimension in many literatures.

Keywords Control design, reaction diffusion equation, global existence, blow
up, multi-dimensional space.

MSC(2010) 35B35, 35G05, 35G16, 35L30.

1. Introduction
In this paper, we deal with the initial-boundary value problem

ut − div
(
ρ(|∇u|2)∇u

)
= f(u), (xxx, t) ∈ Ω× (0, t∗),

ρ(|∇u|2)∂u
∂ννν

= g(u), (xxx, t) ∈ ∂Ω× (0, t∗),

u(xxx, 0) = u0(xxx) ⩾ 0, xxx ∈ Ω,

(1.1)

where Ω is a bounded star-shaped domain in Rn (n ⩾ 2) with smooth boundary
∂Ω, xxx = (x1, x2, · · · , xn) ∈ Ω, ∇u denotes the gradient of u, ∂u

∂ννν is the outward
normal derivative on the boundary ∂Ω. f(u), g(u) and ρ(|∇u|2) are source function,
conduction function and conduction coefficient respectively, u0(xxx) ⩾ 0 and u0 ̸≡ 0,
t∗ is the blow-up time if blow-up occurs.

The dynamical property of reaction diffusion equations have received consid-
erable attentions in the past decades. Payne et al. [15, 16] studied the following
nonlinear reaction diffusion problems

ut − div (ρ(u)∇u) = f(u), (xxx, t) ∈ Ω× (0, t∗),

and

ut − div
(
ρ(|∇u|2)∇u

)
= f(u), (xxx, t) ∈ Ω× (0, t∗),
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with homogeneous Dirichlet boundary condition and nonnegative initial conditions.
They obtained the lower and upper bounds of blow-up time t∗ in three-dimensional
bounded domain Ω ⊂ R3. Payne et al. [18] and Li [6] studied semilinear reaction
diffusion equations, respectively

ut − div
(
|∇u|2p∇u

)
= 0, (xxx, t) ∈ Ω× (0, t∗),

and

ut = div(|∇u|p−2∇u)− f(u), (xxx, t) ∈ Ω× (0, t∗),

with inhomogeneous Neumann boundary conditions. They established respectively
the conditions on the nonlinearities to guarantee that the solution u(xxx, t) exists
globally or blows up at some finite time. And obtained the upper and lower bounds
of the blow-up time if blow-up occurs in a three-dimensional bounded star-shaped
domain Ω ⊂ R3. For more literatures on reaction diffusion equation, we refer readers
to [1–5,9, 13,14,17,19–22] and the references cited therein.

Motivated by the above works and on the basis of our researches [5–12,21,22], we
intend to study the global existence and the blow-up phenomena for the nonlinear
parabolic problem (1.1) in multi-dimensional space. It’s known that the behaviour
of the solution depends on the functions ρ, f , g, the domain Ω, and the initial data
u0. From the physical standpoint, ρ is the conduction coefficient, f is the source
function and g is the conduction function transmitting into interior of Ω from the
boundary of Ω. To our knowledge, this is the first work to study problem (1.1) and
to estimate the lower bound of blow-up time in Ω ⊂ Rn (n ⩾ 2).

The main contributions of this paper are: (a) we establish some conditions to
ensure that the positive solution exists globally, which are weaker than the condi-
tions given in [4–6]; (b) we naturally derive blow-up conditions by calculations; (c)
under the conditions that ensure the occurrence of blow-up phenomena, we give the
upper and lower bounds estimate of blow-up time; (d) the lower bound of blow-up
time is estimated by using general Sobolev inequality in multi-dimensional space.

The present work is organized as follows. In Sec. 2, we establish some new
sufficient conditions on f , ρ and g to ensure that u(xxx, t) exists globally. In Sec. 3,
we give sufficient conditions to ensure that the solution blows up at finite time and
derive an explicit upper bound for t∗. In Sec. 4, under the conditions on ρ, f and
g that ensure the occurrence of blow-up phenomena, we give the lower bound of
t∗ by means of general Sobolev inequality and differential inequality technique in
multi-dimensional space.

2. Global existence conditions of positive solution
In this section, we give new sufficient conditions on f , ρ and g to ensure that u(xxx, t)
exists globally. The global existence result is as follows.

Theorem 2.1. Let Ω ⊂ Rn(n ⩾ 2) be a bounded star-shaped domain assumed to be
convex in n − 1 orthogonal directions and with smooth boundary ∂Ω. Assume that
u0(xxx) ⩾ 0, u0(xxx) ̸≡ 0 and the functions ρ, f , and g satisfy

ρ(s) ⩾ βsq, f(s)

⩽ −αsp, s > 0,

= 0, s ⩽ 0,
g(s)

⩽ γsq, s > 0,

⩾ 0, s ⩽ 0,
(2.1)
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where α, β, γ > 0 and p > q. Then the solution u(xxx, t) of problem (1.1) is positive
and u(xxx, t) cannot blow up in the measure Φ(t) = 1

2

∫
Ω
u2dx at finite time.

In order to prove Theorem 2.1, we give the following general lemma.

Lemma 2.1. Let Ω ⊂ Rn (n ⩾ 2) be a bounded star-shaped domain assumed to
be convex in n − 1 orthogonal directions. Then for any nonnegative increasing C1

function h(w), we have∫
∂Ω

h(w)dS ≤ n

ρ0

∫
Ω

h(w)dxxx+
d

ρ0

∫
Ω

h′(w)|∇w|dxxx,

where

ρ0 := min
xxx∈∂Ω

(xxx · ννν), d := max
xxx∈Ω

|xxx|.

Proof. The proof can be found in [21].
The proof of Theorem 2.1. From the background of the model and assumptions,
it is easy to know that the solution u(xxx, t) is positive. Next, we intend to show that
the positive solution of problem (1.1) does not blow up.

Multiplying the equation of (1.1) by u and making use of the divergence theorem,
we have

0 =

∫
Ω

uutdxxx−
∫
Ω

u[div(ρ(|∇u|2)∇u) + f(u)]dxxx

=
1

2

d

dt

∫
Ω

u2dxxx+

∫
Ω

ρ(|∇u|2)|∇u|2dxxx−
∫
∂Ω

uρ(|∇u|2)∂u
∂ννν

dS −
∫
Ω

uf(u)dxxx

=
1

2

d

dt

∫
Ω

u2dxxx+

∫
Ω

ρ(|∇u|2)|∇u|2dxxx−
∫
∂Ω

ug(u)dS −
∫
Ω

uf(u)dxxx. (2.2)

The above calculations inspire us to define the following functional

Φ(t) :=
1

2

∫
Ω

u2dxxx. (2.3)

By (2.1)-(2.3), we have

Φ′(t) = −
∫
Ω

ρ(|∇u|2)|∇u|2dxxx+

∫
∂Ω

ug(u)dS +

∫
Ω

uf(u)dxxx

⩽ −β

∫
Ω

|∇u|2(q+1)dxxx+ γ

∫
∂Ω

uq+1dS − α

∫
Ω

up+1dxxx. (2.4)

Using Lemma 2.1, we have∫
∂Ω

uq+1dS ⩽ n

ρ0

∫
Ω

uq+1dxxx+
d(q + 1)

ρ0

∫
Ω

uq|∇u|dxxx. (2.5)

Substituting (2.5) into (2.4), we obtain

Φ′(t)⩽−β

∫
Ω

|∇u|2(q+1)dxxx+
nγ

ρ0

∫
Ω

uq+1dxxx+
dγ(q + 1)

ρ0

∫
Ω

uq|∇u|dxxx−α

∫
Ω

up+1dxxx.

(2.6)
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Applying Hölder inequality and Young inequality yields∫
Ω

uq|∇u|dxxx ⩽
(
δ

1
2q+1

∫
Ω

uq
2(q+1)
2q+1 dxxx

) 2q+1
2(q+1)

(
δ−1

∫
Ω

|∇u|2(q+1)dxxx

) 1
2(q+1)

⩽ 2q + 1

2(q + 1)
δ

1
2q+1

∫
Ω

uq
2(q+1)
2q+1 dxxx+

1

2(q + 1)δ

∫
Ω

|∇u|2(q+1)dxxx, ∀δ > 0.

(2.7)

Inserting (2.7) into (2.6), we have

Φ′(t) ⩽
(

dγ

2ρ0δ
− β

)∫
Ω

|∇u|2(q+1)dxxx+
nγ

ρ0

∫
Ω

uq+1dxxx

+
dγ(2q + 1)

2ρ0
δ

1
2q+1

∫
Ω

uq
2(q+1)
2q+1 dxxx− α

∫
Ω

up+1dxxx. (2.8)

Choosing δ = dγ
2ρ0β

in (2.8), we deduce

Φ′(t) ⩽nγ

ρ0

∫
Ω

uq+1dxxx+ (2q + 1)β

(
dγ

2ρ0β

)1+ 1
2q+1

∫
Ω

uq
2(q+1)
2q+1 dxxx− α

∫
Ω

up+1dxxx

=

∫
Ω

(
nγ

ρ0

uq

up
− α

2

)
up+1dxxx

+

∫
Ω

(
(2q + 1)β− 1

2q+1

(
dγ

2ρ0

)1+ 1
2q+1 uq

2(q+1)
2q+1

up+1
− α

2

)
up+1dxxx. (2.9)

Since p > q which implies that q 2(q+1)
2q+1 = q + q

2q+1 < p+ 1 and α > 0, we conclude
that Φ(t) remains bounded for all t > 0.

In fact, if u(xxx, t) blows up at finite time t∗, then

lim
t→t∗

Φ(t) = +∞. (2.10)

From (2.10), we know that there exists some t0 > 0 such that

Φ′(t) ⩽ 0, t ∈ [t0, t
∗). (2.11)

Then we can deduce that

Φ(t) ⩽ Φ(t0), t ∈ [t0, t
∗), (2.12)

which shows that Φ(t) is bounded in [t0, t
∗), this is contradict with (2.10).

The proof of Theorem 2.1 is completed.

Remark 2.1. In fact, from the above inequality (2.4), we know that if there is no
source term and the boundary is adiabatic, that is, f(u) ≡ 0 and g(u) ≡ 0, then
the solution of the problem (1.1) exists globally. The condition q > 1 in [4–6] is not
required in our result.

3. An upper bound estimate of blow-up t∗

In this section, we give sufficient conditions on f(u), g(u), ρ(|∇u|2) and u0(xxx) in
problem (1.1) to guarantee that the solution u(xxx, t) blows up at some finite time t∗,
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and under these conditions we show an explicit upper bound estimate of blow-up
t∗.

Multiplying the equation of (1.1) by u and integrating on Ω, we obtain∫
Ω

uutdxxx =

∫
Ω

u
[
div(ρ(|∇u|2)∇u) + f(u)

]
dxxx

= −
∫
Ω

ρ(|∇u|2)|∇u|2dxxx+

∫
∂Ω

uρ(|∇u|2)∂u
∂ννν

dS +

∫
Ω

uf(u)dxxx

= −
∫
Ω

ρ(|∇u|2)|∇u|2dxxx+

∫
∂Ω

ug(u)dS +

∫
Ω

uf(u)dxxx,

that is
1

2

d

dt

∫
Ω

u2dxxx = −
∫
Ω

ρ(|∇u|2)|∇u|2dxxx+

∫
∂Ω

ug(u)dS +

∫
Ω

uf(u)dxxx. (3.1)

The above calculations inspire us to define the functional

Φ(t) :=
1

2

∫
Ω

u2dxxx. (3.2)

We assume that the nonnegative integrable functions f , g satisfy

sg(s) ⩾ (λ+ 1)G(s), sf(s) ⩾ (λ+ 1)F (s), s ⩾ 0, (3.3)

with

G(ξ) =

∫ ξ

0

g(s)ds, F (ξ) =

∫ ξ

0

f(s)ds, λ > 1,

and ρ(·) is a positive C1 function that satisfies

(2α− 1)ρ(s) + 2αsρ′(s) = 0, s ⩾ 0, α(λ+ 1) ⩾ 1. (3.4)

By (3.1)-(3.4), using the divergence theorem and the equation of (1.1), we obtain

Φ′(t) =

∫
Ω

uutdxxx

= −
∫
Ω

ρ(|∇u|2)|∇u|2dxxx+

∫
∂Ω

ug(u)dS +

∫
Ω

uf(u)dxxx

⩾ −
∫
Ω

ρ(|∇u|2)|∇u|2dxxx+ (λ+ 1)

∫
∂Ω

G(u)dS + (λ+ 1)

∫
Ω

F (u)dxxx

⩾ (λ+ 1)

(
−α

∫
Ω

ρ(|∇u|2)|∇u|2dxxx+

∫
∂Ω

G(u)dS +

∫
Ω

F (u)dxxx

)
:= Ψ(t),

that is

Φ′(t) ⩾ Ψ(t). (3.5)

Differentiating Ψ(t) with respect to t, we have

1

λ+ 1
Ψ′(t) =− α

∫
Ω

2|∇u|2ρ′(|∇u|2)∇u · ∇utdxxx− α

∫
Ω

2ρ(|∇u|2)∇u · ∇utdxxx
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+

∫
∂Ω

g(u)utdS +

∫
Ω

f(u)utdxxx

=−
∫
Ω

[
2α|∇u|2ρ′(|∇u|2)+(2α− 1)ρ(|∇u|2)

]
∇u·∇utdxxx

−
∫
Ω

ρ(|∇u|2)∇u·∇utdxxx+

∫
∂Ω

g(u)utdS +

∫
Ω

f(u)utdxxx

=−
∫
Ω

ρ(|∇u|2)∇u · ∇utdxxx+

∫
∂Ω

g(u)utdS +

∫
Ω

f(u)utdxxx

=−
∫
Ω

ρ(|∇u|2)∇u · ∇utdxxx+

∫
∂Ω

ρ(|∇u|2)∂u
∂ννν

utdS +

∫
Ω

f(u)utdxxx

=

∫
Ω

utdiv
(
ρ(|∇u|2)∇u

)
dxxx+

∫
Ω

f(u)utdxxx

=

∫
Ω

[
div
(
ρ(|∇u|2)∇u

)
+ f(u)

]
utdxxx =

∫
Ω

u2
tdxxx ⩾ 0, (3.6)

where we use (3.1), (3.4), the divergence theorem and the equation of (1.1). If
Ψ(0) > 0 and (3.6), we have Ψ(t) > 0 for arbitrary t ∈ (0, t∗). According to (3.2),
(3.5), (3.6) and making use of Schwartz inequality, we get

Φ′(t)Ψ(t) ⩽ [Φ′(t)]
2
=

(∫
Ω

uutdxxx

)2

⩽
∫
Ω

u2dxxx ·
∫
Ω

u2
tdxxx ⩽ 2

λ+ 1
Φ(t)Ψ′(t),

which is equivalent to the inequality[
Ψ(t)Φ−λ+1

2 (t)
]′

⩾ 0.

Refering to corresponding calculation procedure in [5, 21], we obtain

lim
t→t∗

Φ(t) = +∞,

where

t∗ ⩽ T =
2Φ(0)

(λ− 1)Ψ(0)
.

Synthesizing the above calculation process, we can formulate the following result.

Theorem 3.1. Let Ω ⊂ Rn(n ⩾ 2) be a bounded star-shaped domain assumed
to be convex in n-1 orthogonal directions. We assume u0(xxx) ⩾ 0, u0(xxx) ̸≡ 0, the
nonnegative integrable functions f , g satisfy (3.3) for p > 1, ρ is a positive C1

function and satisfies (3.4). Moreover, we assume Ψ(0) > 0 with

Ψ(0) = (λ+ 1)

(
−
∫
Ω

ρ(|∇u0|2)|∇u0|2dxxx+

∫
∂Ω

G(u0)dS +

∫
Ω

F (u0)dxxx

)
.

Then we conclude that u(xxx, t) of problem (1.1) blows up at some finite time t∗ ⩽ T ,
with

T =
2Φ(0)

(λ− 1)Ψ(0)
.
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Remark 3.1. If we choose f(u) = uα or f(u) ≡ 0, g(u) = uβ , (α, β > 1), u0(x) =
constant > 0, then all the conditions in the Theorem 3.1 are satisfied.

If we choose ρ(s) = s
p−2
2 , (p > 2), then our model is the equation in [6].

If we choose λ = 2p − 3, (p > 2), from our upper bound of blow-up time, one
can get the corresponding result in [6].

If we choose ρ(s) = sp, (p > 0) and f(u) ≡ 0, then our model is the equation
in [18].

4. A lower bound estimate of blow-up t∗

In this section, in multi-dimensional space, we establish certain conditions on the
data of problem (1.1) to guarantee that the solution blows up at finite time t∗, then
we derive a lower bound for blow-up time t∗.

Assuming that the nonnegative integrable functions ρ, f , g and u0(xxx) satisfy
the assumptions in Theorem 3.1. Moreover

0 ⩽ f(s) ⩽ a1s
1+ σ

2n−3 , 0 < g(s) ⩽ a2s
1+ σ

2n−2 , s > 0, (4.1)

and ρ is a positive function that satisfies

ρ(s) ⩾ b1 + b2s
q, s > 0, (4.2)

where σ ⩾ 1 will be defined later, q ⩾ 0, b1 ⩾ 0, a1, a2, b2 are positive constants.
Multiplying the equation of (1.1) by u2σ−1 and integrating on Ω, we obtain∫

Ω

u2σ−1utdxxx =

∫
Ω

u2σ−1[div(ρ(|∇u|2)∇u) + f(u)]dxxx,

that is
d

dt

∫
Ω

u2σdxxx =2σ

∫
∂Ω

u2σ−1utdxxx

=2σ

∫
Ω

u2σ−1[div(ρ(|∇u|2)∇u) + f(u)]dxxx

=2σ

∫
∂Ω

u2σ−1ρ(|∇u|2)∂u
∂ννν

dS−2σ(2σ − 1)

∫
Ω

u2(σ−1)ρ(|∇u|2)|∇u|2dxxx

+ 2σ

∫
Ω

u2σ−1f(u)dxxx, (4.3)

where we use the divergence theorem and the equation of (1.1).
The above calculations inspire us to define the auxiliary functional

φ(t) :=

∫
Ω

u2σdxxx, with σ = (µ− 1)(q + 1) + 1, (4.4)

for some constant µ ⩾ 1 to be choosed. From (1.1) and (4.1)- (4.4), we have

φ′(t) = 2σ

∫
∂Ω

u2σ−1g(u)dS − 2σ(2σ − 1)

∫
Ω

u2(σ−1)ρ(|∇u|2)|∇u|2dxxx

+ 2σ

∫
Ω

u2σ−1f(u)dxxx
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⩽ 2σa2

∫
∂Ω

uσ(2+ 1

2n−2 )dS − 2σ(2σ − 1)b2

∫
Ω

u2(σ−1)|∇u|2(q+1)dxxx

+ 2σa1

∫
Ω

uσ(2+ 1

2n−3 )dxxx. (4.5)

Using Lemma 2.2 in [21] and Cauchy inequality, we have∫
∂Ω

uσ(2+ 1

2n−2 )dS ⩽ n

ρ0

∫
Ω

uσ(2+ 1

2n−2 )dxxx+
σ(2 + 1

2n−2 )d

ρ0

∫
Ω

uσ(2+ 1

2n−2 )−1|∇u|dxxx,∫
Ω

uσ(2+ 1

2n−2 )dxxx =

∫
Ω

uσ(1+ 1

2n−2 )uσdxxx ⩽ 1

2

∫
Ω

uσ(2+ 1

2n−3 )dxxx+
1

2
φ(t).

Therefore, ∫
∂Ω

uσ(2+ 1

2n−2 )dS ⩽ n

2ρ0

∫
Ω

uσ(2+ 1

2n−3 )dxxx+
n

2ρ0
φ(t)

+
σ(2 + 1

2n−2 )d

ρ0

∫
Ω

uσ(2+ 1

2n−2 )−1|∇u|dxxx. (4.6)

Combining (4.5) and (4.6), we obtain

φ′(t) ⩽
(
σa2n

ρ0
+2σa1

)∫
Ω

uσ(2+ 1

2n−3 )dxxx+
2σ2a2(2+

1
2n−2 )d

ρ0

∫
Ω

uσ(2+ 1

2n−2 )−1|∇u|dxxx

− 2σ(2σ − 1)b2

∫
Ω

u2(σ−1)|∇u|2(q+1)dxxx+
σa2n

ρ0
φ(t). (4.7)

Then by means of Hölder inequality, Young inequality and (4.4), we have∫
Ω

uσ(2+ 1

2n−2 )−1|∇u|dxxx

=

∫
Ω

uσ(1+ 1

2n−2 )+q(µ−1)uµ−1|∇u|dxxx

⩽
(∫

Ω

u[σ(1+ 1

2n−2 )+q(µ−1)]
2(q+1)
2q+1 dxxx

) 2q+1
2(q+1)

(∫
Ω

u2(σ−1)|∇u|2(q+1)dxxx

) 1
2(q+1)

=

(
θ−

1
2q+1

∫
Ω

uσ(2+ 1

2n−3 ) q+1
2q+1+2(σ−1)

q
2q+1 dxxx

) 2q+1
2(q+1)

(
θ

∫
Ω

u2(σ−1)|∇u|2(q+1)dxxx

) 1
2(q+1)

⩽ 2q + 1

2(q + 1)
θ−

1
2q+1

∫
Ω

uσ(2+ 1

2n−3 ) q+1
2q+1+2(σ−1) q

2q+1 dxxx

+
1

2(q + 1)
θ

∫
Ω

u2(σ−1)|∇u|2(q+1)dxxx, ∀θ > 0. (4.8)

Using Hölder inequality and Young inequality again, we obtain∫
Ω

uσ(2+ 1

2n−3 ) q+1
2q+1+2(σ−1) q

2q+1 dxxx

⩽
(∫

Ω

uσ(2+ 1

2n−3 )dxxx

) q+1
2q+1

(∫
Ω

u2(σ−1)dxxx

) q
2q+1

⩽ q + 1

2q + 1

∫
Ω

uσ(2+ 1

2n−3 )dxxx+
q

2q + 1

∫
Ω

u2(σ−1)dxxx
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⩽ q + 1

2q + 1

∫
Ω

uσ(2+ 1

2n−3 )dxxx+
q

2q + 1
|Ω| 1

σ (φ(t))
σ−1
σ , (4.9)

where |Ω| is the volume of the domain Ω. Combining (4.8) and (4.9), we have∫
Ω

uσ(2+ 1

2n−2 )−1|∇u|dxxx ⩽1

2
θ−

1
2q+1

∫
Ω

uσ(2+ 1

2n−3 )dxxx+
q

2(q + 1)
θ−

1
2q+1 |Ω| 1

σ (φ(t))
σ−1
σ

+
1

2(q + 1)
θ

∫
Ω

u2(σ−1)|∇u|2(q+1)dxxx. (4.10)

Substituting (4.10) into (4.7), we get

φ′(t) ⩽ c̃1

∫
Ω

uσ(2+ 1

2n−3 )dxxx+ c̃2

∫
Ω

u2(σ−1)|∇u|2(q+1)dxxx+ c̃3(φ(t))
σ−1
σ + c̃4φ(t),

(4.11)

where

c̃1 =
σa2n

ρ0
+ 2σa1 +

σ2a2(2 +
1

2n−2 )d

ρ0
θ−

1
2q+1 ,

c̃2 =
σ2a2(2 +

1
2n−2 )d

ρ0(q + 1)
θ − 2σ(2σ − 1)b2,

c̃3 =
σ2a2(2 +

1
2n−2 )dq

ρ0(q + 1)
θ−

1
2q+1 |Ω| 1

σ ,

c̃4 =
σa2n

ρ0
.

Next, we estimate the first term on the right side of (4.11). By Lemma 4.1 in [21],
we have∫

Ω

uσ(2+ 1

2n−3 )dxxx =

∫
Ω

u2σ(1+ 1

2n−2 )dxxx

⩽ (1+2d)n−3

(
n

2ρ0
φ(t)+σ

(
1+

d

ρ0

)∫
Ω

u2σ−1|∇u|dxxx
)1+ 1

2n−2

.

(4.12)

Using Hölder inequality and (4.4), we have∫
Ω

u2σ−1|∇u|dxxx

=

∫
Ω

uσuσ−1|∇u|dxxx

=

∫
Ω

uσ+q(µ−1)uµ−1|∇u|dxxx

⩽
(∫

Ω

u[σ+q(µ−1)]
2(q+1)
2q+1 dxxx

) 2q+1
2(q+1)

(∫
Ω

u2(µ−1)(q+1)|∇u|2(q+1)dxxx

) 1
2(q+1)

=

[(∫
Ω

u2σ q+1
2q+1+2(σ−1) q

2q+1 dxxx

)2q+1 ∫
Ω

u2(σ−1)|∇u|2(q+1)dxxx

] 1
2(q+1)

, (4.13)
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and∫
Ω

u2σ q+1
2q+1+2(σ−1) q

2q+1 dxxx =

∫
Ω

u2σ− 2q
2q+1 dxxx ⩽ |Ω|

q
σ(2q+1) (φ(t))

σ(2q+1)−q
σ(2q+1) . (4.14)

Inserting (4.14) into (4.13), we have∫
Ω

u2σ−1|∇u|dxxx ⩽
(
|Ω|

q
σ (φ(t))

σ(2q+1)−q
σ

∫
Ω

u2(σ−1)|∇u|2(q+1)dxxx

) 1
2(q+1)

. (4.15)

Substituting (4.15) into (4.12) and using Lemma 4.2 in [21] yields∫
Ω

uσ(2+ 1

2n−3 )dxxx

⩽ (1 + 2d)n−3

[
n

2ρ0
φ(t) + σ

(
1 +

d

ρ0

)

×

((
|Ω|

q
σ φ(t)

)σ(2q+1)−q
σ

∫
Ω

u2(σ−1)|∇u|2(q+1)dxxx

) 1
2(q+1)

]1+ 1

2n−2

⩽ (1 + 2d)n−32
1

2n−2

(
n

2ρ0

)1+ 1

2n−2

(φ(t))1+
1

2n−2

+ (1 + 2d)n−32
1

2n−2

[
σ

(
1 +

d

ρ0

)]1+ 1

2n−2

× |Ω|
q
σ

2n−2+1

(q+1)2n−1 (φ(t))
σ(2q+1)−q

σ
2n−2+1

(q+1)2n−1

(∫
Ω

u2(σ−1)|∇u|2(q+1)dxxx

) 2n−2+1

(q+1)2n−1

.

(4.16)

Then using Young inequality with ε to estimate the second term on right side of
(4.16), we have

(φ(t))
σ(2q+1)−q

σ
2n−2+1

(q+1)2n−1

(∫
Ω

u2(σ−1)|∇u|2(q+1)dxxx

) 2n−2+1

(q+1)2n−1

=

(
ε
− 2n−2+1

(2q+1)2n−2−1 (φ(t))
σ(2q+1)−q

σ
2n−2+1

(2q+1)2n−2−1

) (2q+1)2n−2−1

(q+1)2n−1

×
(
ε

∫
Ω

u2(σ−1)|∇u|2(q+1)dxxx

) 2n−2+1

(q+1)2n−1

⩽ (2q + 1)2n−2 − 1

(q + 1)2n−1
ε
− 2n−2+1

(2q+1)2n−2−1 (φ(t))
σ(2q+1)−q

σ
2n−2+1

(2q+1)2n−2−1

+
2n−2 + 1

(q + 1)2n−1
ε

∫
Ω

u2(σ−1)|∇u|2(q+1)dxxx, ∀ε > 0. (4.17)

Inserting (4.17) into (4.16) and recalling (4.11), we get

φ′(t)⩽c1(φ(t))
β1+c2(φ(t))

β2+c3(φ(t))
β3+c4φ(t)+c5

∫
Ω

u2(σ−1)|∇u|2(q+1)dxxx,

(4.18)
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where

c1 = c̃1(1 + 2d)n−32
1

2n−2

(
n

2ρ0

)1+ 1

2n−2

,

c2 = c̃1(1 + 2d)n−32
1

2n−2

[
σ

(
1 +

d

ρ0

)]1+ 1

2n−2

|Ω|
q
σ

2n−2+1

(q+1)2n−1

× (2q + 1)2n−2 − 1

(q + 1)2n−1
ε
− 2n−2+1

(2q+1)2n−2−1 ,

c3 = c̃3,

c4 = c̃4,

c5 = c̃1(1 + 2d)n−32
1

2n−2

[
σ

(
1 +

d

ρ0

)]1+ 1

2n−2

|Ω|
q
σ

2n−2+1

(q+1)2n−1
2n−2 + 1

(q + 1)2n−1
ε+ c̃2,

(4.19)

and 

β1 = 1 +
1

2n−2
> 1,

β2 =
σ(2q + 1)− q

σ

2n−2 + 1

(2q + 1)2n−2 − 1
> 0,

β3 =
σ − 1

σ
⩾ 0.

(4.20)

We now select θ, ε such that c5 = 0. For instance

θ =
σ(2σ − 1)b2ρ0(q + 1)

σ2a2(2 +
1

2n−2 )d
, ε =

σ(2σ − 1)b2
c̃1k

,

where

k = (1 + 2d)n−32
1

2n−2

[
σ

(
1 +

d

ρ0

)]1+ 1

2n−2

|Ω|
q
σ

2n−2+1

(q+1)2n−1
2n−2 + 1

(q + 1)2n−1
.

From (4.18), we obtain the differential inequality

φ′(t) ⩽ c1(φ(t))
β1 + c2(φ(t))

β2 + c3(φ(t))
β3 + c4φ(t). (4.21)

Inequality (4.21) can be rewritten as

dφ

c1(φ(t))β1 + c2(φ(t))β2 + c3(φ(t))β3 + c4φ(t)
⩽ dt. (4.22)

Integrating (4.22) over [0, t] and taking the limit as t → t∗ we obtain∫ +∞

φ(0)

dη

c1ηβ1 + c2ηβ2 + c3ηβ3 + c4η
⩽ t∗. (4.23)

Remark 4.1. Since β1 > 1, the infinite integral on the left hand side of (4.23)
converges.
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From the above analysis and Theorem 3.1, we can summarize the following
theorem on lower bound estimate of blow-up time t∗.

Theorem 4.1. Let Ω ⊂ Rn(n ⩾ 3) be a bounded star-shaped domain assumed to be
convex in n− 1 orthogonal directions, the nonnegative functions f , g, ρ, and u0(xxx)
satisfy the assumptions in Theorem 3.1 and (4.1), (4.2). Then the nonnegative
solution u(xxx, t) to (1.1) blows up at finite time in the measure φ defined in (4.4),
and the blow-up time t∗ is bounded from below by (4.23).

Remark 4.2. (1) Fixing σ, we find that β3 remains stationary, β1 and β2 are
deceasing functions with respect to n, so the blow-up phenomena occurs later with
n increasing.

(2) Fixing the space dimension n, β1 remains stationary, β2, β3 are increas-
ing functions with respect to σ, so the blow-up phenomena occurs earlier with σ
increasing.

From the above, we can know that lower bound of blow-up time t∗ depends
closely on σ, q and the space dimension n.

Remark 4.3. From Theorem 4.1, we can derive the lower bound of blow-up time
with only heat source or only heat conduction, and derive that the solution will not
blow up (the energy functional φ(t) is decreasing) if f(u) ≡ 0 and g(u) ≡ 0.

Remark 4.4. In the past work such as [4–6,15,17,18], the lower bound of the blow-
up time t∗ have been indicated in three-dimensional bounded star-shaped domain.
We obtain the lower bound of the blow-up time in n-dimensional (n ⩾ 3) bounded
star-shaped domain.
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