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Abstract This present paper is dedicated to investigate the existence, unique-
ness and minimization properties of weak solutions for a fractional differential
equation in the sense of the ψ-Hilfer fractional operator, with p-Laplacian in
the ψ-fractional space Hν,η;ψp . To obtain such results, we use a variational
structure for the main operator of the problem and the Harnack inequality.
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1. Introduction
In this present paper, we are interested in the existence, uniqueness and minimiza-
tion properties of weak solutions for the following fractional differential equation
with p-Laplacian given by

HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)

)
=

f(x)

uθ(x)
,

I
η(η−1);ψ
0+ u(0) = I

η(η−1);ψ
T u(T ) = 0

(1.1)

where HDν,η;ψ
T (·), HDν,η;ψ

0+ (·) are the ψ-Hilfer fractional derivatives of order ν ( 1p <

ν ≤ 1) and type η (0 ≤ η ≤ 1) and where Ω = [0, T ] is a bounded domain in R,
1 < p <∞, 0 < θ ≤ 1, f ∈ L

1
θ (Ω) , f ≥ 0 and f ̸= 0.

We recall that the ψ-Riemann–Liouville fractional integrals and ψ-Hilfer frac-
tional derivatives.

Let I = (0, T ) be a finite or infinite interval of the real line R and α > 0. Also let
ψ(x) be an increasing and positive monotone function on (0, T ], having a continuous
derivative ψ′(x) on I. The left-sided and right-sided ψ-Riemann-Liouville fractional
integrals of a function f with respect to another function ψ on J = [0, T ] are defined
by [35–38]

Iα;ψ0+ f (x) =
1

Γ (α)

∫ x

0

ψ′ (t) (ψ (x)− ψ (t))
α−1

f (t) dt (1.2)
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and

Iα;ψT f (x) =
1

Γ (α)

∫ T

x

ψ′ (t) (ψ (t)− ψ (x))
α−1

f (t) dt. (1.3)

On the other hand, let n−1 < α < n, with n ∈ N, J = [0, T ] and f, ψ ∈ Cn(J,R)
are two functions such that ψ is increasing and ψ(x) ̸= 0, for all x ∈ J . The ψ-
Hilfer fractional derivative left-sided and right-sided, denoted by HDα,β;ψ

a+ (·) and
HDα,β;ψ

b− (·) of a function f of order α and type 0 ≤ β ≤ 1, is defined by [35–38]

HDα,β;ψ
a+ f(x) = I

β(n−α);ψ
a+

(
1

ψ′(x)

d

dx

)n
I
(1−β)(n−α);ψ
a+ f(x) (1.4)

and
HDα,β;ψ

b− f(x) = I
β(n−α);ψ
b−

(
− 1

ψ′(x)

d

dx

)n
I
(1−β)(n−α);ψ
b− f(x) (1.5)

where Iα;ψa+ (·) and Iα;ψb− (·) by defined in Eq. (1.2) and Eq. (1.3) respectively.
Optimization problems appear extensively throughout the history of Mathemat-

ics, especially the Brachistochrone problem, solved by Newton and Leibniz. Such
problems gained rigor from the 17th century on wards, on the study of differential
equations. A common operator for such equations is the Laplacian, denoted by ∆,
which appears naturally in the mathematical modeling of many physical phenom-
ena, such as the wave equation, heat flux equation, vibrating membrane equation,
etc. Its uses in math problems are numerous. In particular, in Differential Geome-
try, we are interested in the possible relationships of the ∆ spectrum between two
manifolds, considering some hypotheses as conditions of curvature of these mani-
folds. A natural extension of Laplacian is p-Laplacian, which in turn is generalized
by fractional p-Laplacian. Problems involving fractional p-Laplacian, throughout
the decade, have been gaining prominence, both theoretically and in the context of
applications [4, 7, 8, 12,14,15,21,26].

Problems about the existence, non-existence, regularity and multiplicity of weak
solutions for the fractional p-Laplacian, have been the subject of increasing research
over the years. Once the theory of differential equations, in particular, involving
p-Laplacian problems, started to consider the fractional aspect, new results with a
great impact on mathematics were emerging, and started to attract the attention
of many researchers. Some results can be checked on [1, 5, 17,27,45].

In 2018, Li and Wei [22] investigated the existence and multiplicity of nontrivial
solutions of fractional p-Laplacian equations of the form (−∆)spu = λf(x, u), x ∈ Ω,

u(0) = 0, x ∈ Rn/Ω

λ ∈ (0,∞), 0 < s < λ < p < ∞ and Ω ⊂ Rn, n ≥ 2, is a bounded domain with
smooth boundary.

Giacomoni et al. [16], elaborate an interesting work on positive solutions to the
following singular and non local elliptic problem with Ω ⊂ RN (smooth boundary)
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N > 2s (0 < s < 1) given by
(−∆)spu = λ[k(x)u−δ + f(u)], x ∈ Ω,

u = 0, x ∈ Rn/Ω,

u > 0, ∈ Ω

where δ > 0, λ > 0, f : R+ → R+ is a positive C2 function and K : Ω → R+ is
Holder continuous function in Ω which behave as dis(x, ∂Ω)−β near the boundary
with 0 ≤ β < 2s.

In 2021, Arora et al. [3], investigated the existence, uniqueness, non-existence
and regularity of weak solutions of the nonlinear fractional elliptic problem given 2(−∆)spu =

Kδu

uγ
, u > 0, x ∈ Ω,

u(0) = 0, in Rn/Ω,

where Ω ⊂ RN is a bounded domain with C1,1 boundary s ∈ (0, 1), p ∈ (1,+∞),
γ > 0 and Kδ satisfies the asymptotic boundary behavior, for any x ∈ Ω

c1
dδ(x)

≤ Kδ(x) ≤
c2

dδ(x)

for some δ ∈ [0, sp], where for any x ∈ Ω, d(x) = dist(x, ∂Ω) = infy∈∂Ω|x− y|. The
operator (−∆)sp is known as fractional p-Laplacian.

Fractional derivatives and integrals are proved to be more useful in the modeling
of different physical and natural phenomena. The p-Laplacian fractional boundary
value problems related to nonlocal conditions have many applications in various
fields: non-Newtonian mechanics, nonlinear elasticity, combustion theory, popula-
tion biology, and other [2, 9, 20, 24, 25, 28, 29]. Fractional differential systems with
p-Laplacian operators have also tremendous attention. Once it made discussions
about fractional differential equations with p-Laplacian interesting and important,
there was an exponential growth of works published in the literature. What is
noticeable is that, over the years, the fractional calculus has consolidated itself in
several areas, and has proved to be very important to explore problems in other
areas [6, 18, 19, 39–44]. There are many papers concerning fractional differential
equations with the p-Laplacian operator that address the existence, uniqueness,
multiplicity of weak solutions. Here we will highlight a new theory that has been
built using the ψ-Hilfer fractional derivative to attack variational problems [31–34].

In 2021 Sousa et al. [33], investigated the existence and non-existence of weak
solutions to the nonlinear problem with a fractional p-Laplacian given by

HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+ ξ(x)

∣∣∣p−2
HDν,η;ψ

0+ ξ(x)

)
=λ|ξ(x)|p−2ξ(x)+b(x)|ξ(x)|q−1ξ(x),

I
η(η−1);ψ
0+ ξ(0) = I

η(η−1);ψ
T ξ(T ) = 0

(1.6)
where HDν,η;ψ

T (·), HDν,η;ψ
0+ (·) are the ψ-Hilfer fractional derivatives left-sided and

right-sided of order 1
p < ν < 1 and type η (0 ≤ η ≤ 1), 1 < q < p − 1 < ∞,

b ∈ L∞(Ω) and I
η(η−1);ψ
0+ (·), Iη(η−1);ψ

T (·) are ψ-Riemann-Liouville fractional integrals
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of order η(η − 1) (0 ≤ η ≤ 1), for all x ∈ Ω := [0, T ]. In the same year, Sousa
[32] discussed necessary and sufficient conditions for Eq. (1.6) and investigated the
bifurcation of solutions through the technique of the variety of Nehari and Fibering
maps.

Before stating precisely our main results, let’s introduce the energy functional
and the definition of weak solutions.

Let ψ(·) be an increasing and positive monotone function on [0, T ], having a
continuous derivative ψ′(·) ̸= 0 on (0, T ). If 0 < ν ≤ 1 and 0 ≤ η ⩽ 1, then∫ T

0

(
HDν,η;ψ

0+ ξ(t)
)
θ(t)dt =

∫ T

0

ξ(t)ψ′(t)HDν,η;ψ
T

(
θ(t)

ψ′(t)

)
dt (1.7)

for any ξ ∈ AC1 and θ ∈ C1 satisfying the boundary conditions ξ(0) = ξ(T ) = 0.
From Eq. (1.1), yields∫ T

0

HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)

)
dx =

∫ T

0

f (x)

uθ(x)
dx.

From φ ∈ C∞
0 ([0, T ],R), yields∫ T

0

HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)

)
φ(x)dx =

∫ T

0

f (x)

uθ(x)
φ(x)dx.

(1.8)
Using Eq. (1.7), we get∫ T

0

HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)

)
φ(x)dx

=

∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)ψ′(x) HDν,η;ψ
0+

(
φ(x)

ψ′(x)

)
dx. (1.9)

If HDν,η;ψ
T

(
φ(x)

ψ′(x)

)
=

1

ψ′(x)
HDν,η;ψ

T φ(x), for all x ∈ [0, T ], then Eq. (1.8), can
be rewritten as∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ φ(x)dx =

∫ T

0

f (x)

uθ(x)
φ(x)dx.

Consider φ = u, yields∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p dx =

∫ T

0

u1−θ(x)f (x) dx. (1.10)

So, from Eq. (1.10), we have the functional associated to Eq. (1.1), Eθν,η : Hν,η;ψp →
R, given by

Eθν,η(u) :=
1

p

∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p dx− 1

1− θ

∫ T

0

u1−θ(x)f (x) dx.

Definition 1.1. A function u ∈ Hν,η;ψp it is called weak problem solving Eq. (1.1)
if u > 0 in [0, T ] and the following identity is valid∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ ϕ(x)dx =

∫ T

0

f (x)

uθ(x)
dx (1.11)

∀ϕ ∈ Hν,η;ψp .
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Although highlighted above some papers on fractional differential equations with
p-Laplacian, there are still open questions. In particular, it is worth noting that
fractional differential equation problems involving p-Laplacian, discussed over a
variational structure with the ψ-Hilfer fractional derivative, is very restricted. In
this sense, one of the reasons for the elaboration of this paper is to expand and
contribute to the growth of the area, in particular, to the theory of fractional dif-
ferential equations and variational problems.

Inspired by the above papers and open questions, we will now highlight the
main contributions to be discussed in this paper. The contributions obtained in
this paper are divided into two stages.

In the first step, we investigate the existence and uniqueness of weak solutions for
the fractional differential equation with p-Laplacian (see Eq. (1.1)), in other words,
we will investigate the following results:

Lemma 1.1. Let u ∈ Hν,η;ψp ([0, T ] ,R) non-negative, satisfying∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ ϕ (x) dx =

∫ T

0

f(x)

u1(x)ν̃
ϕ (x) dx

∀ϕ (x) ∈ C∞
0 ([0, T ] ,R). So u is a weak solution to Eq. (1.1).

Theorem 1.1. Suppose f is a non-negative function on L 1
ν ([0, T ] ,R) and 0 < ν̃ ≤

1. Then, the Eq. (1.1) has a unique solution u ∈ Hν,η;ψp .

In the second step of this paper, we investigate that the energy functional asso-
ciated with Eq. (1.1) has a unique minimizer and that this minimizer is the weak
solution u of Eq. (1.1) in other words, let’s investigate the following results, namely:

Lemma 1.2. Let 0 < θ ≤ 1. The functional Eθν,η : Hν,η;ψp → R has a unique
minimizer, which is nonnegative.

Lemma 1.3. The solution un found in Lemma 3.1 is the only positive minimizer
of the functional

Hn(v) =
1

p

∥∥∥HDν,η;ψ
0+ v

∥∥∥p
p
−
∫ T

0

Un(v(x))fn(x)dx

on what

Un(t) =

∫ t

0

(
s+ +

1

n

)−θ

ds

=


1

1− θ

(
t+

1

n

)1−θ

− 1

1− θ

(
1

n

)1−θ

, if t ≥ 0,(
1

n

)−θ

t if t < 0.

Theorem 1.2. The u solution found in Theorem 3.1 minimize Eθν,η with 0 < θ ≤ 1.

Theorem 1.3. Let 0 < ν ≤ 1 and 0 ≤ η ≤ 1. We have∥∥∥HDν,η;ψ
0+ uθ

∥∥∥p
p
= min

{∥∥∥HDν,η;ψ
0+ v

∥∥∥p
p
: v ∈ M

}
with 0 < θ ≤ 1.
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A natural and important consequence of the results investigated here is that
they are valid for a wide class of particular cases, that is, from the choice of ψ(·)
and the limits β → 1 and β → 0, we have a wide class of particular cases. A special
case is for ν = 1 and ψ(t) = t (integer case), that is, the following problem given by

(
|u′(x)|p−2

u′(x)
)′

=
f(x)

uθ(x)
,

u(0) = u(T ) = 0,

where u′ is the classical derivative.
In the rest, the paper is organized as follows: In section 2, we present some

variational results that are of paramount importance to obtain the main results of
this paper. In section 3, we investigate our first main result, that is, the existence
and uniqueness of weak solutions for the fractional differential equation with p-
Laplacian. In this sense, we investigate minimization properties for the functional
energy Eν,η,θ referring to Eq. (1.1), closes section 4.

2. Preliminaries framework
In this section, we present definitions and results involving fractional operators and
variational structure, essential to investigate the main results of this paper.

Definition 2.1 ( [32, 33]). Let 0 < ν ≤ 1, 0 ≤ η ≤ 1 and 1 < p < ∞. The
ψ-fractional derivative space Hν,η;ψp := Hν,η;ψp ([0, T ] ,R) is defined by the closure of
C∞

0 ([0, T ] ,R) , and is given by

Hν,η;ψp

=
{
u ∈ Lp ([0, T ] ,R) ; HDν,η;ψ

0+ u ∈ Lp ([0, T ] ,R) , Iη(η−1)
0+ u (0) = I

η(η−1)
T u (T ) = 0

}
= C∞

0 ([0, T ] ,R) (2.1)

with the following norm

∥u∥Hν,η;ψp
=
(
∥u∥pLp +

∥∥∥HDν,η;ψ
0+ u

∥∥∥p
Lp

)1/p
, (2.2)

where HDν,η;ψ
0+ (·) is the ψ-Hilfer fractional derivative with 0 < ν ≤ 1 and 0 ≤ η ≤ 1.

Choosing p = 2, in definition Eq. (2.1), we have the ψ-fractional derivative space
Hν,η;ψ2 is defined on C∞

0 ([0, T ] ,R) with respect to the norm [32,33]

∥u∥Hν,η;ψ2
=

(∫ T

0

|u (x)|2 dx+

∫ T

0

∣∣∣HDν,η;ψ
0+ u (x)

∣∣∣2 dx)1/2

.

The space Hν,t;ψ2 is a Hilbert space with the norm [32,33]

∥u∥Hν,η;ψ2
=

(∫ T

0

∣∣∣HDν,η;ψ
0+ u (t)

∣∣∣2 dt)1/2

with 0 < ν ≤ 1 and 0 ≤ η ≤ 1.
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Proposition 2.1 ( [32, 33]). Let 0 < ν ≤ 1, 0 ≤ η ≤ 1 and 1 < p < ∞. Assume
that ν > 1/p and the sequence {uk} converges weakly to u in Hν,η;ψp i.e., uk ⇀ u.
Then uk → u in C ([0, T ] ,R), i.e., ∥u− uk∥∞ → 0 as k → ∞.

Proposition 2.2 ( [32,33]). The space Hν,η;ψp is compactly embedded in C ([0, T ] ,R).

Proposition 2.3 ( [32, 33]). Let 0 < ν ≤ 1, 0 ≤ η ≤ 1 and 1 < p < ∞. The
fractional derivative space Hν,η;ψp is a reflexive and separable Banach space.

Theorem 2.1. The space
(
Hν,η,ψp , ∥·∥Hν,η,ψp

)
is uniformly convex.

Proof. Indeed, let p ∈ [2,∞). Then for each z, w ∈ R, it holds∣∣∣∣z + w

2

∣∣∣∣p + ∣∣∣∣z − w

2

∣∣∣∣p ⩽ 1

2
(|z|p + |w|p).

Let ξ, ζ ∈ Hν,η,ψp satisfy ∥ξ∥Hν,η,ψp
= ∥ζ∥Hν,η,ψp

= 1, and ∥ξ − ζ∥Hν,η,ψp
⩾ ε ∈ (0, 2].

Then, we have∥∥∥∥ξ + ζ

2

∥∥∥∥p
Hν,η,ψp

+

∥∥∥∥ξ − ζ

2

∥∥∥∥p
Hν,η,ψp

=

∫ T

0

(∣∣∣∣∣HDν,η,ψ
0+ ξ(x) +H Dν,η,ψ

0+ ζ(x)p

2

∣∣∣∣∣
)
dx

+

∫ T

0

(∣∣∣∣∣HDν,η,ψ
0+ ξ(x) +H Dν,η,ψ

0+ ζ(x)p

2

∣∣∣∣∣
)
dx

⩽
∫ T

0

1

2

(
|HDν,η,ψ

0+ ξ(x)|p + |HDν,η,ψ
0+ ζ(x)|p

)
dx

=
1

2

(
∥ξ∥Hν,η,ψp

+ ∥ζ∥Hν,η,ψp

)
= 1

which yields ∥∥∥∥ξ + ζ

2

∥∥∥∥p
Hν,η,ψp

⩽ 1−
(ε
2

)p
. (2.3)

On the other hand, if p ∈ (1, 2) then for each z, w ∈ R it holds∣∣∣∣z + w

2

∣∣∣∣p
′

+

∣∣∣∣z − w

2

∣∣∣∣p
′

⩽
(
1

2
(|z|p + |w|p)

) 1
p−1

. (2.4)

A straight forward computation proves that if v ∈ Hν,η,ψp then
∥∥∥|HDν,η,ψ

0+ ζ|p
∥∥∥
Hν,η,ψp−1

=

∥ζ∥p
′

Hν,η,ψp
.

Let ζ1, ζ2 ∈ Hν,η,ψp then
∣∣∣HDν,η,ψ

0+ ζ1

∣∣∣p′ , ∣∣∣HDν,η,ψ
0+ ζ2

∣∣∣p′ ∈ Lp−1([0, T ]) with 0 <

p− 1 < 1 and according to∥∥∥|HDν,η,ψ
0+ ζ1|p

′

+|HDν,η,ψ
0+ ζ2|p

′∥∥∥
Hν,η,ψp−1

⩾
∥∥∥|HDν,η,ψ

0+ ζ1|p
′∥∥∥

Hν,η,ψp−1

+
∥∥∥|HDν,η,ψ

0+ ζ2|p
′∥∥∥

Hν,η,ψp−1

(2.5)
consequently∥∥∥∥ζ1 + ζ2

2

∥∥∥∥p
Hν,η,ψp

+

∥∥∥∥ζ1 − ζ2
2

∥∥∥∥p
Hν,η,ψp
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=

∥∥∥∥∥∥
∣∣∣∣HDν,η,ψ

0+

(
ζ1 + ζ2

2

)∣∣∣∣p
′
∥∥∥∥∥∥
Hν,η,ψp−1

+

∥∥∥∥∥∥
∣∣∣∣HDν,η,ψ

0+

(
ζ1 − ζ2

2

)∣∣∣∣p
′
∥∥∥∥∥∥
Hν,η,ψp−1

(2.6)

⩽

∥∥∥∥∥∥
∣∣∣∣HDν,η,ψ

0+

(
ζ1 + ζ2

2

)∣∣∣∣p
′

+

∣∣∣∣HDν,η,ψ
0+

(
ζ1 − ζ2

2

)∣∣∣∣p
′
∥∥∥∥∥∥
Hν,η,ψp−1

(2.7)

=

∫ T

0

∣∣∣∣∣HDν,η,ψ
0+ ζ1 +

H Dν,η,ψ
0+ ζ2

2

∣∣∣∣∣
p′

+

∣∣∣∣∣HDν,η,ψ
0+ ζ1 −H Dν,η,ψ

0+ ζ2

2

∣∣∣∣∣
p′
p−1

dx


1
p−1

(2.8)

⩽
[
1

2

∫ T

0

(∣∣∣HDν,η,ψ
0+ ζ1

∣∣∣p + ∣∣∣HDν,η,ψ
0+ ζ2

∣∣∣p) dx] 1
p−1

(2.9)

=

(
1

2
∥ζ1∥pHν,η,ψp

+
1

2
∥ζ2∥pHν,η,ψp

) 1
p−1

. (2.10)

For ξ, ζ ∈ Hν,η,ψp with ∥ξ∥Hν,η,ψp
= ∥ζ∥Hν,η,ψp

= 1 and ∥ξ − ζ∥Hν,η,ψp
⩾ ε ∈ (0, 2],

we have ∥∥∥∥ξ + ζ

2

∥∥∥∥p′ ⩽ 1−
(ε
2

)p′
. (2.11)

From (2.3) and (2.11) in either case there exists δ(ε) > 0 such that ∥ξ + ζ∥Hν,η,ψp
⩽

2(1− δ(ε)).
Next we present the Harnack’s inequality in the fractional sense with respect to

another function.

Theorem 2.2 ( [30]). Let t∗ ≥ 0, 0 < σ1 < σ2 < σ3 and ρ > 0. Let further ν ∈
(0, 1), 0 ≤ η ≤ 1, ψ(0) = 0 and u0 ≥ 0. Then for any function u ∈ Z (t∗, t∗ + σ3ρ)
and that satisfies

∂ν,η;ψt (u− u0)(t) = 0, a.a. t ∈ (t∗, t∗ + σ3ρ) (2.12)

there holds the inequality
sup
W−

u ≤ σ3σ1 inf
W+

u (2.13)

where W− = (t∗ + σ1ρ, t∗ + σ2ρ) e W+ = (t∗ + σ2ρ, t∗ + σ3ρ).

Theorem 2.3 ( [13], Schaefer’s Theorem). Let X a real Banach space and Λ : X →
X a continuous and compact application. Suppose the set

{u ∈ X,u = λA(u), for some 0 ≤ λ ≤ 1} (2.14)

be bounded. So A has a fixed point.

Proposition 2.4 ( [11]). Suppose that f : Ω × R → R is a Caratheodory function
and satisfies the following growth condition:

|f(x, s)| ≤ C|s|q−1 + b(x), x ∈ Ω, s ∈ R

wherein C ≥ 0 is a constant, q > 1, b ∈ Lq
′
(Ω). Let F : Ω× R → R defined by

F(x, s) =

∫ s

0

f(x, τ)dτ.
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Then:
1) F is a Caratheodory function and there are c1 ≥ 0 and c ∈ Lq

′
(Ω) such that

|F(x, s)| ≤ c1|s|q + c(x), x ∈ Ω, s ∈ R.

2) The functional Φ : Lq(Ω) → R defined by

Φ(u) =

∫
Ω

F(x, u(x))dx

is of class C1 and the Frechet derivative of Φ in u is the functional defined by

⟨Φ′(u), v⟩ =
∫ T

0

f(x, u(x)v(x))dx, u ∈ Lq(Ω), v ∈ Lq
′
(Ω).

Lemma 2.1 ( [10]). Let x, y vectors in Rn. So there are positive constants cp and
c̃p that only depend on p, such that

∣∣∣Ψ̃p(x)− Ψ̃p(y)
∣∣∣ ≤ cp

 |x− y|p−1
, if 1 < p ≤ 2,

(|x|+ |y|)p−2 |x− y| , if p ≥ 2
(2.15)

and

(
Ψ̃p(x)− Ψ̃p(y)

)
(x− y) ≥ c̃p


|x− y|2

(|x|+ |y|)p−2 , if 1 < p ≤ 2,

|x− y|p , if p ≥ 2

(2.16)

for all x, y ∈ Rn − {0}.

Theorem 2.4. Let u1, u2 ∈ Hα,β;ψp such that∫ T

0

∣∣∣HDν,η;ψ
0+ u1(x)

∣∣∣p−2
HDν,η;ψ

0+ u1(x)
HDν,η;ψ

0+ ϕ(x)dx

≤
∫ T

0

∣∣∣HDν,η;ψ
0+ u2(x)

∣∣∣p−2
HDν,η;ψ

0+ u2(x)
HDν,η;ψ

0+ ϕ(x)dx (2.17)

for all ϕ ∈ Hα,β;ψp , ϕ ≤ 0. Hence, u1 ≤ u2 a.e in [0, T ].

Proof. Consider (u1−u2)+ = max {u1 − u2, 0}. So (u1−u2)+ ∈ Hα,β;ψp , because
u1, u2 ∈ Hα,β;ψp . We also have,

HDν,η;ψ
0+ (u1 − u2)

+ =

HDν,η;ψ
0+ (u1 − u2)

+, ifu1 > u2,

0, if u1 ≤ u2.
(2.18)

Using the hypothesis for ϕ = (u1 − u2)
+ and u1 > u2, yields

0 ≥
∫ T

0

(∣∣∣HDν,η;ψ
0+ u1(x)

∣∣∣p−2

u1(x)−
∣∣∣HDν,η;ψ

0+ u2(x)
∣∣∣p−2

u2(x)

)
×H Dν,η;ψ

0+ (u1(x)− u2(x))
+dx
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=

∫ T

0

(∣∣∣HDν,η;ψ
0+ u1(x)

∣∣∣p−2

u1(x)−
∣∣∣HDν,η;ψ

0+ u2(x)
∣∣∣p−2

u2(x)

)
×H Dν,η;ψ

0+ (u1(x)− u2(x))dx.

But by Eq. (2.16), we obtain(∣∣∣HDν,η;ψ
0+ u1(x)

∣∣∣p−2

u1(x)−
∣∣∣HDν,η;ψ

0+ u2(x)
∣∣∣p−2

u2(x)

)
HDν,η;ψ

0+ (u1(x)−u2(x))≥0.

Therefore, Ω0 := {x ∈ [0, T ], u1(x) > u2(x)} has null measure or(∣∣∣HDν,η;ψ
0+ u1(x)

∣∣∣p−2

u1(x)−
∣∣∣HDν,η;ψ

0+ u2(x)
∣∣∣p−2

u2(x)

)
HDν,η;ψ

0+ (u1(x)−u2(x))=0.

a.e in ω0.
The last condition cannot occur. In fact, otherwise we would have from Eq. (2.16)

that u1 − u2 = 0 a.e in ω0. Therefore, Ω0 has null measure.

Corollary 2.1. Suppose that u ∈ Hα,β;ψp is such that∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)HDν,η;ψ
0+ ϕ(x)dx ≥ 0 (2.19)

for all ϕ ∈ Hα,β;ψp , ϕ ≥ 0 and u ≥ 0. Hence, u ≥ 0 in [0, T ].

Theorem 2.5. Let u1, u2 ∈ Hα,β;ψp (Ω) ∩ C0(Ω) such that∫ T

0

∣∣∣HDν,η;ψ
0+ u1(x)

∣∣∣p−2
HDν,η;ψ

0+ u1(x)
HDν,η;ψ

0+ ϕ(x)dx

≤
∫ T

0

∣∣∣HDν,η;ψ
0+ u2(x)

∣∣∣p−2
HDν,η;ψ

0+ u2(x)
HDν,η;ψ

0+ ϕ(x)dx (2.20)

for all ϕ ∈ Hα,β;ψp , ϕ ≥ 0 and u1 ≤ u2 in [0, T ]. So, exactly one of the following
possibilities occurs: u1 = u2 in [0, T ] or u1 < u2 in [0, T ].

Proof. Suppose the existence of a certain x0 ∈ Ω such that u(x0) = 0, define the
following set

A = {x ∈ Ω;u(x) = 0} .

We have A ̸= 0 and since u is a continuous function it follows that A is a closed
interval in Ω. If Ω is open, there exist δ > 0 such that (x0 − 5δ, x0 + 5δ ⊂ Ω). By
the Harnack’s inequality (Theorem 2.2) with respect to ψ, there are c, s > 0 such
that

||v|| ≤ cs inf
(x0−δ,x0+δ)

u.

As u ≥ 0 in Ω and u(x0) = 0, follow that inf(x0−δ,x0+δ) u = 0, so∫
(x0−δ,x0+δ)

|u(s)|2ds = 0.

With u ≥ 0 and continuous it follows that u = 0 in (x0 − δ, x0 + δ). Therefore,
A is an open interval. Since Ω is connected, we must have A = Ω. Therefore, u = 0
in Ω or u > 0 in Ω.
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Corollary 2.2. Suppose that Ω in open domain. If u ∈ Hα,β;ψp (Ω) such that∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)HDν,η;ψ
0+ ϕ(x)dx ≥ 0 (2.21)

for all ϕ ∈ Hα,β;ψp (Ω), ϕ ≥ 0 and u ≥ 0 in Ω. So, exactly one of the following
possibilities occurs: u = 0 in Ω or u > 0 in Ω.

Before attacking the main results of this paper, consider the following problem−∆pu = f (x) , inΩ,

u(0) = 0, ∂Ω,
(2.22)

where Ω is the ball of radius R centered on the origin and f ∈ L∞(Ω) is radial, that
is, f(x) = f(r) where r = |x|.

Theorem 2.6 ( [8]). Suppose that in Eq. (2.22) have Ω = BR(0) and f(x) = f(r)
where r = |x|. So the only solution of Eq. (2.22) is given by

u(r) =

∫ R

r

ψp′

(∫ θ

0

(s
θ

)N−1

f(s)ds

)
dθ

where ψp′ is the inverse of ψp(t) = |t|p−2t.

Consider the following fractional problem given by
HDν,η;ψ

T

(∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)

)
= g (x) ,

I
η(η−1);ψ
0+ u(0) = I

η(η−1);ψ
T u(T ) = 0

(2.23)

g ∈ Lp
′
([0, T ] ,R), 0 < p < 1 and p′ =

p

p− 1
. The condition of bounded will be

extended with u ∈ Hν,η;ψp .

Definition 2.2. Let 0 < ν ≤ 1 and 0 ≤ η ≤ 1. A function u ∈ Hν,η;ψp is called
weak solution of the Eq. (2.23) if the following identity holds∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ ϕ(x)dx =

∫ T

0

g (x) dx (2.24)

∀ϕ ∈ Hν,η;ψp and ∀x ∈ [0, T ].

Lemma 2.2. The functional Eν,η : Hν,η;ψp → R given by

Eθν,η(u) =

∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p − ∫ T

0

g(x)u (x) dx (2.25)

u ∈ Hν,η;ψp is of class C1 and

〈
E′
ν,η(u), φ

〉
=

∫ T

0

( ∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ φ(x)−g(x)u(x)

)
dx

(2.26)
∀x ∈ Hν,η;ψp .
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Proposition 2.5. Let u be a weak solution to the Eq. (2.23) with f ∈ L∞([0, T ],R).
Then, u ∈ L∞([0, T ],R) and

|u| ≤ ||f ||
1
p−1
∞ φ

on what φ is a torsion p-function of [0, T ].

Proof. Let φ a torsion p-function of Ω, that is, the solution of
HDν,η;ψ

T

(∣∣∣HDν,η;ψ
0+ φ(x)

∣∣∣p−2
HDν,η;ψ

0+ φ(x)

)
= 1, in Ω,

φ = 0.

(2.27)

Since Ω is bounded, there exists a interval B = [0, R] such that Ω ⊂ B. Let φ
be the torsion p-function of B. As the function 1 is radial it follows from Theorem
2.6 that Φ is radial and using the functions ξp(t) = |t|p−2t and ξp′(t) = |t|p′−2t, we
have

Φ(t) =

∫ R

r

ξp′

(∫ θ

0

s

θ

)N−1

dθ =

∫ R

r

(
θ

N

)p′−1

dθ =
N1−p′

p′

(
Rp

′
− rp

′
)

that is,

Φ(x) =
N1−p′

p′
(Rp

′
− |x|p

′
), x ∈ B.

Extending φ as zero out of Ω and noticing that Φ ≥ 0 into B, yields

ξ := (φ− Φ)+ ∈ Hα,β,ψp (Ω) ∩Hα,β,ψp (B).

Thus, ∫
Ω

∣∣∣HDν,η;ψ
0+ φ(x)

∣∣∣p−2
HDν,η;ψ

0+ φ(x) HDν,η;ψ
0+ ξ(x)dx

=

∫
Ω

ξ(x)dx

=

∫
B

∣∣∣HDν,η;ψ
0+ Φ(x)

∣∣∣p−2
HDν,η;ψ

0+ Φ(x) HDν,η;ψ
0+ ξ(x)dx

=

∫
Ω

∣∣∣HDν,η;ψ
0+ Φ(x)

∣∣∣p−2
HDν,η;ψ

0+ Φ(x) HDν,η;ψ
0+ ξ(x)dx,

that is,∫
Ω

(∣∣∣HDν,η;ψ
0+ φ(x)

∣∣∣p−2
HDν,η;ψ

0+ φ(x)−
∣∣∣HDν,η;ψ

0+ Φ(x)
∣∣∣p−2

HDν,η;ψ
0+ Φ(x)

)
× HDν,η;ψ

0+ ξ(x)dx = 0.

Soon,∫
Ω

(∣∣∣HDν,η;ψ
0+ φ(x)

∣∣∣p−2
HDν,η;ψ

0+ φ(x)−
∣∣∣HDν,η;ψ

0+ Φ(x)
∣∣∣p−2

HDν,η;ψ
0+ Φ(x)

)
× HDν,η;ψ

0+ (φ− Φ)+(x)dx = 0
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implies that∫
ϕ≥Φ

(∣∣∣HDν,η;ψ
0+ φ(x)

∣∣∣p−2
HDν,η;ψ

0+ φ(x)−
∣∣∣HDν,η;ψ

0+ Φ(x)
∣∣∣p−2

HDν,η;ψ
0+ Φ(x)

)
× HDν,η;ψ

0+ (φ− Φ)(x)dx = 0.

So, follow from Eq. (2.16),

HDν,η;ψ
0+ φ− HDν,η;ψ

0+ Φ = 0, q.t.p

in {x ∈ Ω;φ(x) ≥ Φ(x)}. So, HDν,η;ψ
0+ (φ−Φ)+ = 0, q.t.p in Ω and then (φ−Φ)+ = 0

in Hα,β;ψp (Ω). Therefore, φ ≤ Φ q.t.p in Ω. Furthermore, it follows from the
Corollary 2.1 that φ ≥ 0. Thus, 0 ≤ φ ≤ Φ and, as Φ is bounded, we have
φ ∈ L∞(Ω). In Ω we also have

HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)

)
= f ≤ ||f ||∞

= HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+

(
||f ||1/p

′−1
∞ φ(x)

)∣∣∣p−2
HDν,η;ψ

0+

(
||f ||1/p

′−1
∞ φ(x)

))
,

in the weak sense. Similarly,

HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+ (−u(x))

∣∣∣p−2
HDν,η;ψ

0+ (−u(x))
)

= | − 1|p−2(−1)HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)

)
≤ −f

= HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+

(
||f ||1/p

′−1
∞ φ(x)

)∣∣∣p−2
HDν,η;ψ

0+

(
||f ||1/p

′−1
∞ φ(x)

))
in the weak sense. Thus, by Theorem 2.4, yields

|u| ≤ ||f ||1/p−1
∞ φ

and as, f, φ ∈ L∞(Ω), we concluded that u ∈ L∞(Ω).

Theorem 2.7. Suppose Ω = [0, T ] is a bounded domain and g ∈ Lp
′
([0, T ] ,R).

So, the Eq. (2.23) has a unique solution u ∈ Hν,η;ψp in the weakly sense.

Proof. The proof of this result will be discussed in two steps.
Step 1: Existence.
Note that the functional

Eν,η(u) :=
1

p

∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p − ∫ T

0

g(x)u (x) dx

with u ∈ Hν,η;ψp is well defined, because by the inequalities of Holder and Poincare,
we obtain

|Eν,η(u)| ≤
1

p

∥∥∥HDν,η;ψ
0+ u

∥∥∥p
p
+ ∥g∥p′ ∥u∥p
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≤ 1

p
∥u∥Hν,η;ψp ([0,T ],R) + c ∥g∥p′ ∥u∥Hν,η;ψp

.

Thus, it follows from the Holder and Poincare inequalities that

Eν,η(u) ≥
1

p
∥u∥Hν,η;ψp ([0,T ],R) − ∥g∥p′ ∥u∥p

≥ 1

p
∥u∥Hν,η;ψp ([0,T ],R) − c ∥g∥p′ ∥u∥Hν,η;ψp

. (2.28)

So, like the function p(t) =
1

p
tp − c ∥g∥p′ t is lower bound, it follows that

µ := inf
u∈Hν,η;ψp

Eν,η(u) > −∞. (2.29)

We have that there exists a sequence {uk} ∈ Hν,η;ψp such that

lim
k→∞

Eν,η(uk) = µ. (2.30)

Thus, the sequence (Eν,η(uk)k∈N) is bounded in R and then it follows from
Eq. (2.28) that there exists is M > 0 such that

1

p
∥uk∥pHν,η;ψp

− c ∥f∥p′ ∥uk∥Hν,η;ψp
≤M, ∀k ∈ N. (2.31)

Therefore, {uk} is a bounded sequence in Hν,η;ψp , because

lim
t→+∞

p(t) = +∞.

As Hν,η;ψp is reflexive, without loss of generality taking a convergent subsequence
{uk}k∈N, there exists u ∈ Hν,η;ψp such that uk ⇀ u weakly in Hν,η;ψp . Consider the
function

F(w) =

∫ T

0

g(x)w(x)dx, w ∈ Hν,η;ψp

follows from the Holder inequality, follows that

|F(w)| ≤ ∥g∥p′ ∥w∥p

and then F ∈ Hν,η;ψ−p′ . So, F (uk) → F(u), that is,

lim
k→+∞

∫ T

0

g(x)uk(x)dx =

∫ T

0

f(x)u(x)dx. (2.32)

Observe that

Eν,η(u) =
1

p
∥u∥pHν,η;ψp

−
∫ T

0

g(x)u(x)dx

≤ 1

p

(
lim

k→+∞
inf ∥uk∥Hν,η;ψp

)p
−
∫ T

0

g(x)u(x)dx

= lim
k→∞

inf

(
1

p
∥uk∥Hν,η;ψp

−
∫ T

0

g(x)uk(x)dx

)p
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+ lim
k→∞

(∫ T

0

g(x)uk(x)dx−
∫ T

0

g(x)u(x)dx

)

= lim
k→∞

inf Eν,η(uk)+ lim
k→∞

(∫ T

0

g(x)uk(x)dx−
∫ T

0

g(x)u(x)dx

)
.(2.33)

Taking k → ∞ on both sides of inequality (2.33), follows from Eq. (2.30) and
Eq. (2.32) that Eν,η (u) ≤ µ.

On the other hand,
µ = inf

w∈Hν,η;ψp

≤ Eν,η(u).

So Eν,η(u) = µ then u minimizes Eν,η,n. Therefore, it follows from Lemma 2.2
that u is a weak solution to the Eq. (2.23).

Step 2: Uniqueness.
Let u1, u2 ∈ Hν,η;ψp weak solutions of the Eq. (2.23) for g = g1 and g = g2,

respectively. Thus

〈 HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+ u1(x)

∣∣∣p−2
HDν,η;ψ

0+ u1(x)

)
− HDν,η;ψ

T

(∣∣∣HDν,η;ψ
0+ u2(x)

∣∣∣p−2
HDν,η;ψ

0+ u2(x)

) , u1 − u2

〉

= ⟨g1 − g2, u1 − u2⟩

and then follows from the inequality (2.16) that

〈 HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+ u1(x)

∣∣∣p−2
HDν,η;ψ

0+ u1(x)

)
− HDν,η;ψ

T

(∣∣∣HDν,η;ψ
0+ u2(x)

∣∣∣p−2
HDν,η;ψ

0+ u2(x)

) , u1 − u2

〉

=

∫ T

0

〈∣∣∣HDν,η;ψ
0+ u1(x)

∣∣∣p−2
HDν,η;ψ

0+ u1(x)

−
∣∣∣HDν,η;ψ

0+ u2(x)
∣∣∣p−2

HDν,η;ψ
0+ u2(x),

H Dν,η;ψ
0+ (u1 − u2)

〉
dx

≥ cp



∫ T

0

∣∣∣HDν,η;ψ
0+ (u1 − u2) (x)

∣∣∣p−2

dx, if p > 2,

∫ T

0

∣∣∣HDν,η;ψ
0+ (u1 − u2) (x)

∣∣∣2(∣∣∣HDν,η;ψ
0+ u1(x)

∣∣∣+ ∣∣∣HDν,η;ψ
0+ u2(x)

∣∣∣)2−p dx, if 1 < p ≤ 2.

(2.34)

So for p > 2, yields∫ T

0

∣∣∣HDν,η;ψ
0+ (u1 − u2) (x)

∣∣∣p dx ≤ 1

cp
⟨g1 − g2, u1 − u2⟩

≤ 1

cp
∥g1 − g2∥p′ ∥u1 − u2∥p

≤ Sp
cp

∥g1 − g2∥p′ ∥u1 − u2∥Hν,η;ψp
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that implies

∥u1 − u2∥Hν,η;ψp
≤
(
Sp
cp

) 1
p−1

∥g1 − g2∥
1
p−1

p′ . (2.35)

For 1 < p < 2, we get

∫ T

0

∣∣∣HDν,η;ψ
0+ (u1 − u2) (x)

∣∣∣2(∣∣∣HDν,η;ψ
0+ u1(x)

∣∣∣+ ∣∣∣HDν,η;ψ
0+ u2(x)

∣∣∣)2−p dx
≤ 1

cp
⟨g1 − g2, u1 − u2⟩ ≤

1

cp
∥g1 − g2∥p′ ∥u1 − u2∥p

≤Sp
cp

∥g1 − g2∥p′ ∥u1 − u2∥Hν,η;ψp
.

By the Holder inequality, we have∫ T

0

∣∣∣HDν,η;ψ
0+ (u1 − u2) (x)

∣∣∣p dx
≤

∥∥∥∥∥∥∥∥
∣∣∣HDν,η;ψ

0+ (u1 − u2) (x)
∣∣∣p(∣∣∣HDν,η;ψ

0+ u1(x)
∣∣∣+ ∣∣∣HDν,η;ψ

0+ u2(x)
∣∣∣) p(2−p)2

∥∥∥∥∥∥∥∥
2
p

×

∥∥∥∥∥(∣∣∣HDν,η;ψ
0+ u1(x)

∣∣∣+ ∣∣∣HDν,η;ψ
0+ u2(x)

∣∣∣) p(2−p)2

∥∥∥∥∥
2

2−p

≤Sp
cp

∥g1 − g2∥p′ ∥u1 − u2∥Hν,η;ψp ([0,T ],R) .

Combining these last two inequalities, we obtain∫ T

0

∣∣∣HDν,η;ψ
0+ (u1 − u2) (x)

∣∣∣p dx
≤
(
Sp
cp

∥g1 − g2∥p′ ∥u1 − u2∥Hν,η;ψp ([0,T ],R)

) p
2

(∫ T

0

(∣∣∣HDν,η;ψ
0+ u1(x)

∣∣∣p + ∣∣∣HDν,η;ψ
0+ u2(x)

∣∣∣)p dx)
2−p
2

≤
(
Sp
cp

∥g1 − g2∥p′ ∥u1 − u2∥Hν,η;ψp ([0,T ],R)

) p
2

(∥∥∥HDν,η;ψ
0+ u1

∥∥∥
p
+
∥∥∥HDν,η;ψ

0+ u2

∥∥∥
p

) p(2−p)
2

and then
∥u1 − u2∥

p
2

Hν,η;ψp(
∥u1∥Hν,η;ψp

+ ∥u2∥Hν,η;ψp

) p(p−2)
2

≤
(
Sp
cp

∥g1 − g2∥p′
) p

2

. (2.36)

From Eq. (2.35) and Eq. (2.36), follows that g1 = g2 then u1 ̸= u2.
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Remark 2.1. For each u ∈ Hν,η;ψp , we get∣∣∣∣〈HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)

)
, φ

〉∣∣∣∣
=

∣∣∣∣∣
∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ φ(x)dx

∣∣∣∣∣
≤
∥∥∥HDν,η;ψ

0+ u
∥∥∥p−1

p

∥∥∥HDν,η;ψ
0+ φ

∥∥∥
p

and then HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)

)
u ∈ Hν,η;ψp . So we have

HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)

)
: Hν,η;ψp → Hν,η;ψp′ . Note that for g ∈

Hν,η;ψp′ ,
|g(u)| ≤ ∥g∥Hν,η;ψ

p′
∥u∥Hν,η;ψp

∀u ∈ Hν,η;ψp and, we conclude that the Theorem 2.7 remains valid. Therefore, the

operator HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)

)
: Hν,η;ψp → Hν,η;ψp′ is bijective.

Theorem 2.8. Let Ω = [0, T ] ⊂ R a bounded domain. Then:

(1) HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)

)
: Hν,η;ψp → Hν,η;ψp′ is uniformly

continuous in bounded sets for 0 < ν ≤ 1 and 0 ≤ η ≤ 1.

(2)
(

HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)

))−1

: Hν,η;ψp → Hν,η;ψp′ is con-
tinuous for 0 < ν ≤ 1 and 0 ≤ η ≤ 1.

(3) The operator
(

HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)

))−1

: Hν,η;ψp →

Hν,η;ψp′ ↪→ Lq ([0, T ] ,R) is compact if 1 ≤ q ≤ p∗, 0 < ν ≤ 1 and 0 ≤ η ≤ 1, in

p∗ =


p

1− νp
, if p < 1,

∞, if p ≥ 1.
(2.37)

Proof. (1) Consider C ⊂ Hν,η;ψp ([0, T ] ,R) a bounded set, that is, there exists
∃M > 0 such that

∥u∥Hν,η;ψp
≤M, ∀u ∈ C.

We prove that ∆ν,η;ψ
p u(x) := HDν,η;ψ

T

(∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)

)
is uni-

formly continuous in C.
Indeed, let u, v ∈ C. Thus,∥∥∆ν,η;ψ

p u(x)−∆ν,η;ψ
p u(x)

∥∥
Hν,η;ψp

= sup
∥ϕ∥

Hν,η;ψp

∫ T

0

〈
∆ν,η;ψ
p u−∆ν,η;ψ

p v,H Dν,η;ψ
0+ φ

〉
dx
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≤ sup
∥ϕ∥

Hν,η;ψp
=1

∫ T

0

∣∣∣∣∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) −

×
∣∣∣HDν,η;ψ

0+ v(x)
∣∣∣p−2

HDν,η;ψ
0+ v(x)

∣∣∣∣ ∣∣∣HDν,η;ψ
0+ φ(x)

∣∣∣ dx.
So if 1 < p ≤ 2 then, we obtain∥∥∆ν,η;ψ

p u−∆ν,η;ψ
p u

∥∥
Hν,η;ψ
p′

≤ cp sup
∥ϕ∥

Hν,η;ψp
=1

∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)− HDν,η;ψ

0+ v(x)
∣∣∣p−2 ∣∣∣HDν,η;ψ

0+ φ(x)
∣∣∣ dx

≤ cp sup
∥ϕ∥

Hν,η;ψp
=1

∥∥∥∥∣∣∣HDν,η;ψ
0+ u− HDν,η;ψ

0+ v
∣∣∣p−1

∥∥∥∥
p′

∥∥∥HDν,η;ψ
0+ φ

∥∥∥
p

= cp

∥∥∥HDν,η;ψ
0+ u− HDν,η;ψ

0+ v
∥∥∥p−1

p
. (2.38)

Also, for p > 2, yields

∥∥∆ν,η;ψ
p u−∆ν,η;ψ

p u
∥∥
Hν,η;ψ
p′

≤ cp sup
∥ϕ∥

Hν,η;ψp
=1

(
∥u∥

Hν,η;ψp

+ ∥v∥
Hν,η;ψp

)p−2

∥u− v∥
Hν,η;ψp

∥φ∥Hν,η;ψp

= cp

(
∥u∥

Hν,η;ψp

+ ∥v∥
Hν,η;ψp

)p−2

∥u− v∥
Hν,η;ψp

≤ cp (2M)
p−2 ∥u− v∥

1
p

Hν,η;ψp

. (2.39)

Therefore, ∆ν,η;ψ
p is uniformly continuous in C.

(2) From Eq. (2.35) and Eq. (2.36) follows that
(
∆ν,η;ψ
p u

)−1 is continuous.
(3) As Hν,η;ψp ↪→ Lq ([0, T ] ,R) is compact and the composition of a continuous

operator with a compact operator is compact, follows as an immediate consequence
of (2).

3. Existence and uniqueness
In this section, we investigate the main results of this paper, that is, through the
results presented in the preliminary section, we investigate the existence and unique-
ness of solutions for the Eq. (1.1).

Proposition 3.1. If un → u in Hν,η;ψp ([0, T ] ,R) then

lim
n→∞

∫ T

0

∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ un(x)
HDν,η;ψ

0+ ϕ(x)dx

=

∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ ϕ(x)dx (3.1)

∀ϕ ∈ Hν,η;ψp .
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Proof. Using Holder inequality, we have∣∣∣∣∣
∫ T

0

∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ un(x)
HDν,η;ψ

0+ ϕ(x)dx

−
∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ ϕ(x)dx

∣∣∣∣∣
≤
∥∥∥∥∣∣∣HDν,η;ψ

0+ un(x)
∣∣∣p−2

HDν,η;ψ
0+ un(x)−

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)

∥∥∥∥
p′∥∥∥Dν,η;ψ

0+ ϕ(x)
∥∥∥
p
.

Thus, if 1 < p ≤ 2 then it follows from the inequality (2.15),∥∥∥∥∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ un(x)−
∣∣∣HDν,η;ψ

0+ u(x)
∣∣∣p−2

HDν,η;ψ
0+ u(x)

∥∥∥∥
p′

≤ cp

∥∥∥HDν,η;ψ
0+ un(x)− HDν,η;ψ

0+ u(x)
∥∥∥p−1

implies that∣∣∣∣∣
∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ ϕ(x)dx

−
∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ ϕ(x)dx

∣∣∣∣∣
≤ cp

(∫ T

0

∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) dx

) 1
p′ ∥∥∥HDν,η;ψ

0+ ϕ
∥∥∥
p

= cp

∥∥∥HDν,η;ψ
0+ (un − u)

∥∥∥p−1

p

∥∥∥HDν,η;ψ
0+ ϕ

∥∥∥
p

= cp

∥∥∥HDν,η;ψ
0+ (un − u)

∥∥∥p−1

Hν,η;ψp

. (3.2)

Therefore,

lim
n→∞

∣∣∣∣∣∣∣∣
∫ T

0

∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ un(x)
HDν,η;ψ

0+ ϕ(x)dx∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ ϕ(x)dx

∣∣∣∣∣∣∣∣ = 0.

On the other hand, for p > 2, using the inequalities (2.15) and the Holder
inequality, follows that∣∣∣∣∣

∫ T

0

∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ un(x)
HDν,η;ψ

0+ ϕ(x)dx

−
∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ ϕ(x)dx

∣∣∣∣∣
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≤ cp

(∫ T

0

(∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣+ ∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣ )p′(p−2)

∣∣∣HDν,η;ψ
0+ un(x)− HDν,η;ψ

0+ u(x)
∣∣∣p′ dx) 1

p′ ∥∥∥HDν,η;ψ
0+ ϕ

∥∥∥
p

≤ cp

∥∥∥∥(∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣+ ∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣ )p′(p−2)
∥∥∥∥ 1
p′

p−1
p−2∥∥∥∥∣∣∣HDν,η;ψ

0+ un(x)− HDν,η;ψ
0+ u(x)

∣∣∣ 1
p′
∥∥∥∥
p−1

∥∥∥HDν,η;ψ
0+ ϕ

∥∥∥
p

≤ cp

(∫ T

0

(∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣+ ∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣ )p dx)
p−2
p

∥∥∥HDν,η;ψ
0+ un − HDν,η;ψ

0+ u
∥∥∥
p

∥∥∥HDν,η;ψ
0+ ϕ

∥∥∥
p

≤ cp

(∥∥∥HDν,η;ψ
0+ un

∥∥∥
p
+
∥∥∥HDν,η;ψ

0+ u
∥∥∥
p

)p−2

∥∥∥HDν,η;ψ
0+ un − HDν,η;ψ

0+ u
∥∥∥
p

∥∥∥HDν,η;ψ
0+ ϕ

∥∥∥
p

that is, ∣∣∣∣∣
∫ T

0

∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ un(x)
HDν,η;ψ

0+ ϕ(x)dx

−
∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ ϕ(x)dx

∣∣∣∣∣
≤ cp

(
∥un∥Hν,η;ψp

+ ∥u∥Hν,η;ψp

)p−2

∥un − u∥Hν,η;ψp
∥ϕ∥Hν,η;ψp

(3.3)

for all x ∈ [0, T ].
Therefore, we concluded that

lim
n→∞

∫ T

0

∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ un(x)
HDν,η;ψ

0+ ϕ(x)dx

=

∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ ϕ(x)dx.

Consider the following auxiliary fractional problem given by
HDν,η;ψ

T

(∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ un(x)

)
=

fn(x)(
un(x) +

1
n

)ν ,
I
η(η−1);ψ
0+ un(0) = I

η(η−1);ψ
T un(T ) = 0,

(3.4)

on what fn (x) = min {f, n}.

Lemma 3.1. Let f ∈ L1 ([0, T ]) and ν ≥ 0. So, for each n ∈ N∗, the Eq. (3.4) has
only one weak non-negative solution un ∈ Hν,η;ψp ∩ L∞ ([0, T ] ,R), that is,∫ T

0

∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ un(x)
HDν,η;ψ

0+ ϕ(x)dx
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=

∫ T

0

fn(x)(
un(x) +

1
n

)ν ϕ (x) dx, ∀ϕ ∈ Hν,η;ψp .

Proof. The proof of this result will be investigated in two steps.
Step 1: Existence.
For each w ∈ Lp ([0, T ] ,R), we get∣∣∣∣∣ fn(x)(

|w|+ 1
n

)ν
∣∣∣∣∣ ≤ n(

1
n

)ν = nν+1

and so,
fn(x)(

|w|+ 1
n

)ν ∈ L∞ ([0, T ] ,R) ⊂ Lp
′
([0, T ] ,R) .

Hence, by Theorem 2.7, the following problem has only one weak solution v ∈
Hν,η;ψp ([0, T ] ,R)

HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+ v(x)

∣∣∣p−2
HDν,η;ψ

0+ v(x)

)
=

fn(x)(
|w|+ 1

n

)ν ,
I
η(η−1);ψ
0+ v(0) = I

η(η−1);ψ
T v(T ).

(3.5)

So we can define the map Γ : Lp ([0, T ] ,R) → Lp ([0, T ] ,R) with Γ (w) = v.
Therefore,∫ T

0

∣∣∣HDν,η;ψ
0+ v(x)

∣∣∣p−2
HDν,η;ψ

0+ v(x) HDν,η;ψ
0+ ϕ(x)dx =

∫ T

0

fn(x)(
|w|+ 1

n

)ν ϕ (x) dx,

(3.6)
∀ϕ ∈ Hν,η;ψp .

So, ∫ T

0

∣∣∣HDν,η;ψ
0+ v(x)

∣∣∣p dx =

∫ T

0

fn(x)(
|w|+ 1

n

)ν v(x)dx
≤ n(

1
n

)ν ∫ T

0

|v(x)|dx

= nν+1

∫ T

0

|v(x)|dx.

As immersion Hν,η;ψp ↪→ L1 ([0, T ] ,R) is continuous, yields

∥v∥Hν,η;ψp
≤ nν+1 ∥v∥L1([0,T ],R)

≤ Cnν+1 ∥v∥Hν,η;ψp
(3.7)

that implies
∥v∥Hν,η;ψp

≤
(
Cnν+1

) 1
p−1 (3.8)

that is,
∥Γ (w)∥Hν,η;ψp

≤
(
Cnν+1

) 1
p−1 . (3.9)
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As immersion Hν,η;ψp ↪→ Lp ([0, T ] ,R) is compact, follows from the previous
inequality that (wn) ⊂ Lp(Ω) it is a bounded sequence so (Γ (wn)) has a convergent
subsequence in Lp ([0, T ] ,R). Therefore, Γ : Lp ([0, T ] ,R) → Lp ([0, T ] ,R) is a
compact operator. Also, if u = Γ (u)λ for some 0 ≤ λ ≤ 1, then follows that

∥u∥p = ∥Γ (u)λ∥p
≤ c1 ∥Γ (u)λ∥Hν,η;ψp

≤ c1 |λ| (Cnν+1)
1
p−1 .

Thus, the set {u ∈ Lp (Ω) : u = λΓ (u) for some 0 ≤ λ ≤ 1} is bounded. There-
fore, by Scharefer’s fixed point theorem (see Theorem 2.3), there exists un ∈ Hν,η;ψp

such that un = Γ (un). Note that to prove un is a weak solution to Eq. (3.4), it is
enough to prove that un ≥ 0. Observe from Eq. (3.6), with v = un and w = un∫ T

0

∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ un(x)
HDν,η;ψ

0+ φ(x)dx

=

∫ T

0

fn(x)(
|un|+ 1

n

)ν φ (x) dx, ∀φ ∈ Hν,η;ψp . (3.10)

So, using Corollary 2.1, we have un ≥ 0. Therefore, un is a weak solution to
the Eq. (3.4). Also, as fn(x)(

|un|+ 1
n

)ν ∈ L∞ (Ω), from the Proposition 2.5, we have

un ∈ Hν,η;ψp ∩ L∞ ([0, T ] ,R).
Step 2: Uniqueness.
Let un, vn ∈ Hν,η;ψp weak solutions of the Eq. (3.4). Choosing ϕ = un − vn as a

test function we have∫ T

0

{∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ un(x)−
∣∣∣HDν,η;ψ

0+ vn(x)
∣∣∣p−2

HDν,η;ψ
0+ vn(x)

}
×HDν,η;ψ

0+ (un(x)− vn(x)) dx

=

∫ T

0

fn(x)

(
1(

|un|+ 1
n

)ν − 1(
|vn|+ 1

n

)ν
)
(un(x)− vn(x)) dx ≤ 0

∀φ ∈ Hν,η;ψp .
On the other hand, from inequality (2.16), yields(∣∣∣HDν,η;ψ

0+ un(x)
∣∣∣p−2

HDν,η;ψ
0+ un(x)−

∣∣∣HDν,η;ψ
0+ vn(x)

∣∣∣p−2
HDν,η;ψ

0+ vn(x)

)
× HDν,η;ψ

0+ (un(x)− vn(x)) ≥ 0.

(3.11)

Therefore,∫ T

0

(∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ un(x)−
∣∣∣HDν,η;ψ

0+ vn(x)
∣∣∣p−2

HDν,η;ψ
0+ vn(x)

)
× HDν,η;ψ

0+ (un(x)− vn(x)) dx = 0.
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Then, using Eq. (3.11) again, we obtain(∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ un(x)−
∣∣∣HDν,η;ψ

0+ vn(x)
∣∣∣p−2

HDν,η;ψ
0+ vn(x)

)
× HDν,η;ψ

0+ (un(x)− vn(x)) = 0

a.e in [0, T ].

Lemma 3.2. Let f ∈ L1 ([0, T ] ,R) and ν̃ > 0.
(1) A sequence {un} is increasing in relation to n.
(2) If [0, T ]′ ⊂⊂ [0, T ] then un > 0 in [0, T ]′ and there exists a positive constant

C[0,T ]′ (independent n) such that for all n ∈ N∗

un ≥ C[0,T ]′ > 0, ∀x ∈ [0, T ]′. (3.12)

Proof. (1) Note that, if un(x)− un+1(x) ≥ 0 then

un+1(x) +
1

n+ 1
≤ un(x) +

1

n

and so, (
un+1(x) +

1

n+ 1

)ν
−
(
un(x) +

1

n

)ν
≤ 0.

We also have

0 ≤ fn = min {f, n} ≤ min {f, n+ 1} = fn+1.

Therefore, choosing (un − un+1)
+

= max {un − un+1, 0} as a test function,
yields∫ T

0

(∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ un(x)−
∣∣∣HDν,η;ψ

0+ un+1(x)
∣∣∣p−2

HDν,η;ψ
0+ un+1(x)

)
HDν,η;ψ

0+ (un(x)− un+1(x))
+
dx

≤
∫ T

0

fn+1(x)

 1(
un + 1

n

)ν − 1(
un+1 +

1
n+1

)ν
 (un(x)− un+1(x)) dx ≤ 0.

On the other hand, from the inequality (2.16), it follows that(∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ un(x)−
∣∣∣HDν,η;ψ

0+ un+1(x)
∣∣∣p−2

HDν,η;ψ
0+ un+1(x)

)
× HDν,η;ψ

0+ (un(x)− un+1(x))
+ ≥ 0.

(3.13)
Therefore,∫ T

0

(∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ un(x)−
∣∣∣HDν,η;ψ

0+ un+1(x)
∣∣∣p−2

HDν,η;ψ
0+ un+1(x)

)
× HDν,η;ψ

0+ (un(x)− un+1(x))
+
dx = 0.



Fractional differential equations with p-Laplacian in Hν,η;ψp 645

Then using Eq. (3.13) again, yields(∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ un(x)−
∣∣∣HDν,η;ψ

0+ un+1(x)
∣∣∣p−2

HDν,η;ψ
0+ un+1(x)

)
× HDν,η;ψ

0+ (un(x)− un+1(x))
+
= 0

a.e in [0, T ], that implies from inequality (2.16), that HDν,η;ψ
0+ (un(x)− un+1(x))

+
=

0, a.e in Ω, ∀x ∈ [0, T ], i.e,∥∥∥(un(x)− un+1(x))
+
∥∥∥
Hν,η;ψp

= 0.

So, (un(x)− un+1(x))
+
= 0 in Hν,η;ψp , that implies un(x) − un+1(x) ≤ 0 a.e in

[0, T ], i.e, un(x) ≤ un+1(x) a.e in [0, T ].

(2) Since the sequence un is increasing with respect to n, we only need to prove
that u1 satisfies Eq. (3.12).

From Proposition 2.5, there exists c1 (dependent only on [0, T ], N, p) such that

∥u∥L∞([0,T ],R) ≤ c1 ∥f1∥
1
p−1
∞ = C. (3.14)

Thus, for all ϕ ∈ Hν,η;ψp with ϕ ≥ 0, yields∫ T

0

∣∣∣HDν,η;ψ
0+ u1(x)

∣∣∣p−2
HDν,η;ψ

0+ u1(x)
HDν,η;ψ

0+ ϕ (x) dx =

∫ T

0

f1

(u1 + 1)
ν̃
ϕ (x) dx

≥
∫ T

0

f1

(C + 1)
ν̃
ϕ (x) dx

because u1 ≤ C, that implies (u1 + 1)ν̃ ≤ (C + 1)ν̃ and then, as f1 ≥ 0, we obtain
f1

(u1 + 1)ν̃
≥ f1

(C + 1)ν̃

we assume, by hypothesis, f1 ̸= 0. Thus, f1
(u1 + 1)ν̃

̸= 0 and then u1 ̸= 0. As

u1 ∈ L∞ (Ω), we have by [23] that u1 ∈ C1,η ([0, T ]), for an appropriate constant.
In particular, u1 ∈ C0 ([0, T ] ,R). Therefore, by Theorem 2.5, implies that u1 > 0.
As u1 is continuous, we concluded that the Eq. (3.12) is valid.

Lemma 3.3. Let u ∈ Hν,η;ψp not negative, satisfying∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ ϕ (x) dx =

∫ T

0

f(x)

u1(x)ν̃
ϕ (x) dx

∀ϕ (x) ∈ C∞
0 ([0, T ] ,R). So u is a weak solution to Eq. (1.1).

Proof. Let w an arbitrary function in Hν,η;ψp and taking {ξn} ⊂ C∞
0 ([0, T ] ,R)

such that ξn → |w| in Hν,η;ψp . Hence, ξn → |w| in Lp ([0, T ] ,R) and passing to a
subsequence, if necessary, we also have the convergence a.e in [0, T ]. As u, f ≥ 0,
ξn ∈ C∞

0 ([0, T ] ,R). Using Fatou’s Lemma and Holder’s inequality, we have∣∣∣∣∣
∫ T

0

f(x)w(x)

u(x)ν̃
dx

∣∣∣∣∣ ≤ lim
n→∞

inf

∫ T

0

f(x)ξn(x)

u(x)ν̃
dx
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= lim
n→∞

∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ ξn(x)dx

≤
∥∥∥HDν,η;ψ

0+ u
∥∥∥p−1

p
lim
n→∞

∥∥∥HDν,η;ψ
0+ ξn

∥∥∥
p

=
∥∥∥HDν,η;ψ

0+ u
∥∥∥p−1

p

∥∥∥HDν,η;ψ
0+ w

∥∥∥
p
. (3.15)

Now, let ϕ ∈ Hν,η;ψp . So there is a sequence (ϕn) ⊂ C∞
0 ([0, T ] ,R) such that

ϕn → ϕ in Hν,η;ψp . Therefore, using Eq. (3.15) for w = ϕn − ϕ, yields

lim
n→∞

∣∣∣∣∣
∫ T

0

f(x)

u(x)ν̃
(ϕn(x)−ϕ(x))dx

∣∣∣∣∣≤∥∥∥HDν,η;ψ
0+ u

∥∥∥p−1

p
lim
n→∞

∥∥∥HDν,η;ψ
0+ (ϕn − ϕ)

∥∥∥=0.

(3.16)
Therefore,

lim
n→∞

∫ T

0

f(x)

u(x)ν̃
ϕn(x)dx =

∫ T

0

f(x)

u(x)ν̃
ϕn(x)dx. (3.17)

On the other hand, we have ϕn ∈ C∞
0 ([0, T ],R) and by the Holder inequality,

we have ∣∣∣∣∣
∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ (ϕn (x)− ϕ (x)) dx

∣∣∣∣∣
≤
∥∥∥HDν,η;ψ

0+ u(x)
∥∥∥p−1

p

∥∥∥HDν,η;ψ
0+ (ϕn(x)− ϕ(x))

∥∥∥ .
So, it follows from the hypothesis that

lim
n→∞

∫ T

0

f(x)

u(x)ν̃
ϕn(x)dx

= lim
n→∞

∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ ϕn (x) dx

=

∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ ϕ (x) dx. (3.18)

Combining the Eq. (3.17) and Eq. (3.18), we obtain∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ ϕ (x) dx =

∫ T

0

f(x)

u(x)ν̃
ϕn(x)dx.

Therefore, u is a weak solution to Eq. (1.1).

Theorem 3.1. Suppose f is a non-negative function on L 1
ν ([0, T ] ,R) and 0 < ν̃ ≤

1. Then, the Eq. (1.1) has a unique solution u ∈ Hν,η;ψp .

Proof. Let’s prove this result in two steps.
Step 1: Existence
Note that un is a solution of

HDν,η;ψ
T

(∣∣∣HDν,η;ψ
0+ w(x)

∣∣∣p−2
HDν,η;ψ

0+ w(x)

)
= g in [0, T ],

I
η(η−1);ψ
0+ w(0) = I

η(η−1);ψ
T w(T ) = 0,
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wherein g =
fn(

un + 1
n

)ν̃ . Therefore, by proving the Theorem 2.7, we have that un

minimizes the functional

Eν,η,n(w) =
1

p

∫ T

0

∣∣∣HDν,η;ψ
0+ w(x)

∣∣∣p dx−
∫ T

0

fn(x)(
un + 1

n

)ν̃ w(x)dx.
From Lemma 3.1, {un} is growing. Hence,

0 ≤ un ≤ u(x) := limun(x) ≤ ∞.

Furthermore, by doing ϕ = un in Eq. (3.10), we get

∥un∥pHν,η;ψp
=

∫ T

0

∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p dx
=

∫ T

0

fn(x)(
un(x) +

1
n

)ν̃ wn(x)dx
≤
∫ T

0

f(x)un(x)
1−ν̃dx

≤ ∥f∥ 1
ν̃

∥∥∥u1−ν̃n

∥∥∥
1

1−ν̃

≤ ∥f∥ 1
ν̃

(
C ∥un∥pHν,η;ψp

)1−ν̃
= C1−ν̃ ∥f∥ 1

ν̃
∥un∥1−ν̃Hν,η;ψp

that is,
∥un∥pHν,η;ψp

≤ C
1−ν̃

p−(1−ν̃) ∥f∥
1−ν̃

p−(1−ν̃)
1
ν̃

.

Hence, {un} is bounded in Hν,η;ψp . So, as Hν,η;ψp is reflexive, without loss of
generality taking a convergent subsequence {uk}, there exists u ∈ Hν,η;ψp such that

un → u weakly in Hν,η;ψp . (3.19)

So, going to a subsequence, if necessary we have un → u in L1 ([0, T ] ,R) and
then, going again to a subsequence, we have un → u a.e in [0, T ]. Therefore, u =
u ∈ Hν,η;ψp also follows from Eq. (3.19) that

∥u∥Hν,η;ψp
≤ lim
n→∞

inf ∥un∥Hν,η;ψp
. (3.20)

Since un minimizes the functional Eν,η,n, yields

Eν,η,n(un) ≤ Eν,η,n(u)

that is,

1

p

∫ T

0

∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p dx−
∫ T

0

fn(x)(
un(x) +

1
n

)ν̃ un(x)dx
≤ 1

p

∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p dx−
∫ T

0

fn(x)(
un(x) +

1
n

)ν̃ u(x)dx
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that implies

1

p

∫ T

0

∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p dx
≤ 1

p

∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p dx+

∫ T

0

(un(x)− u(x))(
un(x) +

1
n

)ν̃ fn(x)dx
≤ 1

p

∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p dx
once un ≤ u a.e in [0, T ]. Hence,

lim
n→∞

inf ∥un∥Hν,η;ψp
≤ ∥u∥Hν,η;ψp

. (3.21)

Therefore, from Eq. (3.20) and Eq. (3.21) follows that

lim
n→∞

∥un∥Hν,η;ψp
= ∥u∥Hν,η;ψp

. (3.22)

As Hν,η;ψp is uniformly convex, follows from Eq(3.19) and Eq. (3.22) that un → u

in Hν,η;ψp . Therefore, using the Proposition 3.1, we conclude that

lim
n→∞

∫ T

0

∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ un(x)
HDν,η;ψ

0+ φ (x) dx

=

∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ φ (x) dx (3.23)

∀φ ∈ Hν,η;ψp .
On the other hand, for each φ ∈ C∞

0 ([0, T ] ,R) we obtain from Eq. (3.12) that

0 ≤

∣∣∣∣∣ fnφ(
u+ 1

n

)ν̃
∣∣∣∣∣ ≤ ∥φ∥L∞

(CΩ′ )ν̃

on what Ω′ = {x ∈ Ω, φ ̸= 0}. Besides that, {fn} converge for f a.e and how the
immersion Hν,η;ψp ↪→ Lp ([0, T ] ,R) is compact, possibly going to a subsequence, we
have un → u strong in Lp ([0, T ] ,R) and a.e in [0, T ]. Thus, applying the Lebesgue
dominated convergence theorem, we obtain

lim
n→∞

∫ T

0

fn(x)φ(x)(
u(x) + 1

n

)ν̃ dx =

∫ T

0

f(x)φ(x)

u(x)ν̃
dx, ∀φ ∈ C∞

0 ([0, T ],R). (3.24)

We also have that u not is a weak solution of Eq. (3.4) and so,∫ T

0

∣∣∣HDν,η;ψ
0+ un(x)

∣∣∣p−2
HDν,η;ψ

0+ un(x)
HDν,η;ψ

0+ φ (x) dx =

∫ T

0

fn(x)φ(x)(
u(x) + 1

n

)ν̃ dx
(3.25)

∀φ ∈ Hν,η;ψp .
Therefore, follow from Eq. (3.23), Eq. (3.24) and Eq. (3.25), that∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ φ (x) dx =

∫ T

0

f(x)φ(x)

u(x)ν̃
dx
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∀φ ∈ C∞
0 ([0, T ],R). So, by Lemma 3.3 u is a weak solution of Eq. (1.1).

Step 2: Uniqueness.
Let u1, u2 ∈ Hν,η;ψp weak solutions of Eq. (1.1). Considering ϕ = u1 − u2, we

have ∫ T

0

∣∣∣HDν,η;ψ
0+ u1(x)

∣∣∣p−2
HDν,η;ψ

0+ u1(x)
HDν,η;ψ

0+ (u1 (x)− u2 (x)) dx

=

∫ T

0

f(x)

u1(x)ν̃
(u1 (x)− u2 (x)) dx

and ∫ T

0

∣∣∣HDν,η;ψ
0+ u2(x)

∣∣∣p−2
HDν,η;ψ

0+ u2(x)
HDν,η;ψ

0+ (u1 (x)− u2 (x)) dx

=

∫ T

0

f(x)

u2(x)ν̃
(u1 (x)− u2 (x)) dx.

Thus,∫ T

0

(∣∣∣HDν,η;ψ
0+ u1(x)

∣∣∣p−2
HDν,η;ψ

0+ u1(x)−
∣∣∣HDν,η;ψ

0+ u2(x)
∣∣∣p−2

HDν,η;ψ
0+ u2(x)

)
×HDν,η;ψ

0+ (u1 (x)− u2 (x)) dx

=

∫ T

0

f(x) (u1 (x)− u2 (x))

(
1

u1(x)ν̃
− 1

u2(x)ν̃

)
dx.

It follows from the inequality (2.16) that the left side of this equality is then
negative. We also have that the right side is less than or equal to 0. Therefore,∫ T

0

(∣∣∣HDν,η;ψ
0+ u1(x)

∣∣∣p−2
HDν,η;ψ

0+ u1(x)−
∣∣∣HDν,η;ψ

0+ u2(x)
∣∣∣p−2

HDν,η;ψ
0+ u2(x)

)
×HDν,η;ψ

0+ (u1 (x)− u2 (x)) dx = 0.

So, it follows from inequality (2.16) that HDν,η;ψ
0+ (u1 (x)− u2 (x)) = 0, a.e. So,∥∥∥HDν,η;ψ

0+ (u1 − u2)
∥∥∥
p
= 0, i.e, ∥u1 − u2∥Hν,η;ψp

= 0. Therefore, u1 = u2.

4. Minimization of functional energy
Before starting our main purpose of this section, that is, to investigate the min-
imization of the functional energy related to Eq. (1.1), let’s present the following
essential remark for the realization of this section.

Remark 4.1. For 1 < q < p∗, the solutions of
HDν,η;ψ

T

(∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x)

)
= f(x, u),

I
η(η−1);ψ
0+ u(0) = I

η(η−1);ψ
T u(T ) = 0

(4.1)

are the critical points of a class functional C1 in Hν,η;ψp .
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Indeed, by definition u ∈ Hν,η;ψp is weakly solution of Eq. (4.1) if∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ v(x)dx

=

∫ T

0

f(x, u(x))v(x)dx, ∀v ∈ Hν,η;ψp .

In addition, it follows the functional $(u) :=
1

p

∥∥∥HDν,η;ψ
0+ u(x)

∥∥∥p
p

is class C1 in

Hν,η;ψp and

⟨$′(u), v⟩ :=
∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ v(x)dx.

On the other hand, like immersion Hν,η;ψp ↪→ Lq ([0, T ] ,R) is continuous, fol-
lows from Proposition 2.4 that the functional energy associated with the Eq. (4.1),
defined by

Eν,η(u) =
1

p

∥∥∥HDν,η;ψ
0+ u(x)

∥∥∥p
p
−
∫ T

0

f(x, u(x))dx

is of class C1 in Hν,η;ψp and its derivative is given by the expression〈
E′
ν,η(u), v

〉
=

∫ T

0

∣∣∣HDν,η;ψ
0+ u(x)

∣∣∣p−2
HDν,η;ψ

0+ u(x) HDν,η;ψ
0+ v(x)dx−

∫ T

0

f(x, u(x))v(x)dx

∀u, v ∈ Hν,η;ψp . Thus, the solutions of the problem Eq. (4.1) are the critical points
of Eν,η.

Initially, we prove that the weak solution of Eq. (1.1) minimizes the functional
Eθν,η : Hν,η;ψp → R define by

Eθν,η(v) =
1

p

∥∥∥HDν,η;ψ
0+ v

∥∥∥p
p
− 1

1− θ

∫ T

0

v(x)1−θf(x)dx

is known as the energy functional associated with Eq. (1.1). Since 0 < θ < 1,
this functional is not derivable. Later, we prove that the u solution minimizes the
quotient ∥∥∥HDν,η;ψ

0+ v
∥∥∥p
p(∫ T

0

|v(x)|1−θf(x)dx

) p
1−θ

, v ∈ Hν,η;ψp \ {0} . (4.2)

Remark 4.2. Let 0 < η̃ < 1, γ > 1 and a, b ≥ 0 such that a + b = 1. The the
function t→ tη̃is strictly concave and the function t→ tγ is strictly convex, that is,

(ax+ by)η̃ ≥ axη̃ + byη̃, ∀x, y ∈ R,
(ax+ by)γ ≥ axγ + byγ , ∀x, y ∈ R

and these inequalities are restricted where x ̸= y.
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As 0 < 1− θ < 1 and p > 1, for w1, w2 ∈ Hν,η;ψp ([0, T ] ,R), we have

(aw1 + bw2)
1−θ ≥ aw1−θ

1 + bw1−θ
2 ,(

a
∣∣∣HDν,η;ψ

0+ w1

∣∣∣+ b
∣∣∣HDν,η;ψ

0+ w2

∣∣∣)p ≤ a
∣∣∣HDν,η;ψ

0+ w1

∣∣∣p + ∣∣∣HDν,η;ψ
0+ w2

∣∣∣p
is the first inequality is strict, at the points where w1 ̸= w2.

Lemma 4.1. Let 0 < θ ≤ 1. The functional Eθν,η : Hν,η;ψp → R has a unique
minimizer, which is nonnegative.

Proof. The proof of this result will be presented in 3 steps.
Step 1: Existence
Note that the functional Eθν,η is well defined, that is, by the Holder inequality

and Hν,η;ψp ↪→ L1 [0, T ] we have

∣∣Eθν,η(v)∣∣ ≤ 1

p

∥∥∥HDν,η;ψ
0+ v

∥∥∥p
p
+ ∥f∥ 1

θ

∥∥∥(v+)1−θ∥∥∥
1

1−θ

=
1

p
∥v∥pHν,η;ψp

+ ∥f∥ 1
θ

∥∥∥(v+)1−θ∥∥∥1−θ
1

≤ 1

p
∥v∥pHν,η;ψp ([0,T ],R) + c ∥f∥ 1

θ
∥v∥1−θHν,η;ψp

. (4.3)

Also, similarly we have

∣∣Eθν,η(v)∣∣ ≥ 1

p
∥v∥pHν,η;ψp

− c ∥f∥ 1
θ
∥v∥1−θHν,η;ψp

. (4.4)

So, as 0 < 1− θ < 1 < p, it follows that the function p(t) = 1

p
(t)

p − c ∥f∥ 1
θ
t1−θ

is bounded inferiorly in R+ and then

µ := inf
v∈Hν,η;ψp

Eθν,η(v) > −∞. (4.5)

It is interesting to note that µ < 0. In fact, fixing v ∈ Hν,η;ψp such that∫ T

0

(v+(x))1−θf(x)dx ≥ 0

we have

Eθν,η(tv) = t1−θ

(
tp−(1−θ)

p

∥∥∥HDν,η;ψ
0+ v

∥∥∥p
p
− 1

1− θ

∫ T

0

(v+1−θ)f(x)dx

)

for all t ≥ 0. How the function t → Eθν,η(tv) is negative for values of t between its
two roots, we can conclude that the functional Eθν,η takes negative values.

Now, let’s take a minimizing sequence corresponding to µ, that is, a sequence
{wk} ⊂ Hν,η;ψp such that

lim
k→∞

Eθν,η(wk) = µ. (4.6)
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So, the sequence
(
Eθν,η(wk)

)
k∈N is bounded to R and then follows from Eq. (4.4)

that there exists M > 0 such that
1

p
∥wk∥pHν,η;ψp

− c ∥f∥ 1
θ
∥wk∥1−θHν,η;ψp

≤M

∀k ∈ N. Therefore, {wk} is a bounded sequence in Hν,η;ψp because lim
t→∞

p(t) = +∞.
As Hν,η;ψp is reflexive, (wk) has a subsequence that we continue to denote by

(wk), weakly converged on Hν,η;ψp . Moving possibly to a subsequence, we have that
there w ∈ L1([0, T ],R) such that wk → w in L1([0, T ],R). Note that

w+
k =

1

2
(|wk|+ wk) →

1

2
(|w|+ w) = w+ in L1([0, T ],R) (4.7)

when k → ∞. As ∣∣∣aη̃ − bη̃
∣∣∣ ≤ |a− b|η̃ , ∀a, b ≥ 0, 0 < η̃ ≤ 1 (4.8)

by Holder inequality, we have∣∣∣∣∣
∫ T

0

((
w+
k (x)

)1−θ − (w+(x)
)1−θ)

f(x)dx

∣∣∣∣∣ ≤
∫ T

0

∣∣w+
k (x)− w+(x)

∣∣1−θ |f(x)|dx
≤
∥∥w+

k − w+
∥∥1−θ
1

∥f∥ 1
θ
.

Therefore, it follows from Eq. (4.7) that

lim
k→∞

∫ T

0

(w+
k (x))

1−θf(x)dx =

∫ T

0

(w+(x))1−θf(x)dx. (4.9)

Observe that

Eθν,η(w) =
1

p
∥w∥pHν,η;ψp

− 1

1− θ

∫ T

0

(w+(x))1−θf(x)dx

≤ 1

p
lim
k→∞

inf ∥w∥pHν,η;ψp
− 1

1− θ

∫ T

0

(w+(x))1−θf(x)dx

= lim
k→∞

inf Eθν,η(wk)

+
1

1− θ
lim
k→∞

(∫ T

0

(w+
k (x))

1−θf(x)dx−
∫ T

0

(w+(x))1−θf(x)dx

)
= µ

that is, Eθν,η(w) ≤ µ. On the other hand

µ = inf
v∈Hν,η;ψp

Eθν,η(v) ≤ Eθν,η(w). (4.10)

So, Eθν,η(w) = µ and then w minimize Eθν,η.
Step 2: w is not negative.
We know that

HDν,η;ψ
0+ (w)+ =

HDν,η;ψ
0+ (w), if w ≥ 0,

0, inf w < 0
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and

HDν,η;ψ
0+ (w)− =

0, ifw ≥ 0,

−HDν,η;ψ
0+ (w), if w < 0.

If HDν,η;ψ
0+ (w)− ̸= 0, then

∥∥∥HDν,η;ψ
0+ w

∥∥∥
p
=

(∫ T

0

∥∥∥HDν,η;ψ
0+ w+

∥∥∥p dx) 1
p

+

(∫ T

0

∥∥∥HDν,η;ψ
0+ w−

∥∥∥p dx) 1
p

>

(∫ T

0

∥∥∥HDν,η;ψ
0+ w+

∥∥∥p dx) 1
p

=
∥∥∥HDν,η;ψ

0+ w+
∥∥∥
p
.

Thus,
Eθν,η

(
w+
)
< Eθν,η (w) (4.11)

which contradicts the fact that w is a minimizer of Eθν,η. Therefore,

w− = 0. (4.12)

Thereby, w ≥ 0.
Step 3: Uniqueness
Let w1 and w2 minimizers of Eθν,η and suppose that

D = {x ∈ [0, T ]/w1(x) ̸= w2(x)}

has positive measure. As we have already prove that w1 and w2 are non-negative.
Let a, b ≥ 0 be such that a+ b = 1. Therefore, due to the triangular inequality and
Remark 4.2, we have

µ ≤ Eθν,η(aw1 + bw2)

=
1

p

∫ T

0

∣∣∣a HDν,η;ψ
0+ w1 + b HDν,η;ψa+ w2

∣∣∣p dx− 1

1− θ

∫ T

0

(aw1 + w2)
1−θfdx

≤ 1

p

∫ T

0

(
a
∣∣∣HDν,η;ψ

0+ wp1

∣∣∣+ b
∣∣∣HDν,η;ψ

0+ w2

∣∣∣)p dx− 1

1− θ

∫ T

0

(aw1 + bw2)
1−θfdx

<
1

p

∫ T

0

(
a
∣∣∣HDν,η;ψ

0+ wp1

∣∣∣+ b
∣∣∣HDν,η;ψ

0+ w2

∣∣∣)p dx− 1

1− θ

∫ T

0

(aw1−θ
1 + bw1−θ

2 fdx

= aEθν,η (w1) + bEθν,η (w2)

= (a+ b)µ.

So we arrive at the absurd µ < µ. Hence |D| = 0 and w1 = w2 a.e in [0, T ].

Lemma 4.2. The solution un found in Lemma 3.1 is the only positive minimizer
of the functional

Hn(v) =
1

p

∥∥∥HDν,η;ψ
0+ v

∥∥∥p
p
−
∫ T

0

Un(v(x))fn(x)dx
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on what

Un(t) =

∫ t

0

(
s+ +

1

n

)−θ

ds

=


1

1− θ

(
t+

1

n

)1−θ

− 1

1− θ

(
1

n

)1−θ

, if t ≥ 0,(
1

n

)−θ

t, if t < 0.

Proof. First, let’s prove that Hn is of class C1.
Define

g(x, s) =
fn(x)(
s+ + 1

n

)θ . (4.13)

Note that, for all s ∈ R, the function x → g(x, s) is Lebesgue measurable,
because fn ∈ L1([0, T ],R). We also have to stop almost everything x ∈ [0, T ] the
function s → g(x, s) is continuous in R. Therefore, g define in Eq. (4.13) it is a
function of Caratheodory.

We have that g satisfies the growth condition

|g(x, s)| ≤ C|s|q−1 + b(x), x ∈ [0, T ], s ∈ R (4.14)

where C ≥ 0 is a constant, 1 < q < p∗ and b ∈ Lq
′
([0, T ] ,R) , because

|g(x, s)| = fn(x)(
s+ + 1

n

)θ
≤ n(

1
n

)θ
= nθ+1.

Therefore, it follows from Remark 4.1 that the functional Hn : Hν,η;ψp → R class
C1 and

⟨H′
n(v), φ⟩=

∫ T

0

∣∣∣HDν,η;ψ
0+ v(x)

∣∣∣p−2
HDν,η;ψ

0+ v(x)HDν,η;ψ
0+ φ(x)dx−

∫ T

0

g(x, v)φ(x)dx.

Let’s prove that Hn has a minimizer. For this, first, note that

Un(v(x)) =
1

1− θ

(
v(x) +

1

n

)1−θ

− 1

1− θ

(
1

n

)1−θ

≤ 1

1− θ

(
v+(x) +

1

n

)1−θ

,

for v(x) ≥ 0 and

Un(v(x)) = v(x)

(
1

n

)−θ

≤ 0 ≤ 1

1− θ

(
1

n

)1−θ

=
1

1− θ

(
v+(x) +

1

n

)1−θ

,

for v(x) ≤ 0.
Thus,

Un(v) ≤
1

1− θ

(
v+ +

1

n

)1−θ

,
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which, by Holder’s inequality and Sobolev’s immersion, implies∫ T

0

Un(v(x))fn(x)dx ≤
∫ T

0

1

1− θ

(
v+(x) +

1

n

)1−θ

f(x)dx

≤ 1

1− θ
∥f∥ 1

θ
∥v + 1∥1−θ1

≤ 1

1− θ
∥f∥ 1

θ

(
c
∥∥∥HDν,η;ψ

0+ v
∥∥∥
p
+ |Ω|

)1−θ

= c1

(
c
∥∥∥HDν,η;ψ

0+ v
∥∥∥
p
+ c2

)1−θ

. (4.15)

Thus,

Hn(v) =
1

p

∥∥∥HDν,η;ψ
0+ v

∥∥∥p
p
−
∫ T

0

Un (v(x)) fn(x)dx

≥ 1

p

∥∥∥HDν,η;ψ
0+ v

∥∥∥p
p
− c1

(
c
∥∥∥HDν,η;ψ

0+ v
∥∥∥
p
+ c2

)1−θ

.

Since the function t ∈ [0,+∞) → tp

p
− c1(t + c2)

1−θ is inferiorly bounded, we
have

λ := inf
v∈Hν,η;ψp

Hn(v) > −∞.

Therefore, exist a sequence {wk} ⊂ Hν,η;ψp such that

Hn(wk) → λ when k → ∞. (4.16)

It follows from Eq. (4.16) that wk is bounded to Hν,η;ψp , because

lim
t→+∞

[
tp

p
− c1(t+ c2)

1−θ
]
= +∞.

As Hν,η;ψp is reflexive, , without loss of generality taking a subsequence {wk} is
weakly convergent on Hν,η;ψp . Note also, there exists w ∈ L1([0, T ],R) such that

wk → w in L1([0, T ],R), when k → ∞. (4.17)

Note that

U′
n(t) =

(
t+ +

1

n

)−θ

≤
(
1

n

)−θ

= nθ, ∀t ∈ R. (4.18)

Thus, Un is Lipschitzian and using the fact that |fn| ≤ n is Eq. (4.18), then∣∣∣∣∣
∫ T

0

Un (wk) fndx−
∫ T

0

Un (w) fndx

∣∣∣∣∣ ≤ n

∫ T

0

|Un (wk)−Un (w)| dx

≤ nθ+1

∫ T

0

|wk − w| dx

≤ nθ+1c ∥wk − w∥Hν,η;ψp
.
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Therefore,

lim
k→∞

∫ T

0

Un (wk) fndx =

∫ T

0

Un (w) fndx

that implies

Hn(w) ≤
1

p
lim
k→∞

inf
∥∥∥HDν,η;ψ

0+ v
∥∥∥p
p
−
∫ T

0

Un(w)fndx

= lim
k→∞

inf

(
1

p

∥∥∥HDν,η;ψ
0+ v

∥∥∥p
p
−
∫ T

0

Un(wk)fndx

)
= lim

k→∞
infHn(wk)

= λ. (4.19)

So w minimizes Hn.
Once Un (w) ≤ Un(w

+), we can conclude that HDν,η;ψ
0+ w− = 0, that is, w ≥ 0.

As Hn is of class C1 and w is a minimizer, we conclude that w is a critical point
of Hn. Therefore, w is a solution of Eq. (3.4) implying that w = un and then un
minimizes Hn.

To finish the proof, let’s get the uniqueness of Hn. We have already prove that
Hn is of class C1, and therefore every minimizer of Hn is a critical point. We
also prove that every critical point of Hn is a solution of Eq. (3.4). Hence, every
minimizer of Hn is a solution of Eq. (3.4). Furthermore, it follows from Lemma 3.1
that the Eq. (3.4) has only one solution. Therefore, Hn has a unique minimizer,
which is un.

Theorem 4.1. The u solution found in Theorem 3.1 minimize Eθν,η with 0 < θ ≤ 1.

Proof. Note that

lim
n→∞

Un(t) =


1

1− θ
t1−θ , if t ≥ 0

0 , if t < 0

=
(t+)

1−θ

1− θ
.

So,

lim
n→∞

fn(x)Un(un(x)) ≤ f(x) |Un(un(x))|

≤ f(x)

1− θ

(
u(x) +

1

n

)1−θ

≤ f(x)

1− θ
(u(x) + 1)

1−θ

and ∥∥(u+ 1)1−θf
∥∥
1
≤ (∥u∥1 + |Ω|)1−θ ∥f∥ 1

θ
<∞.

Therefore, by the Lebesgue dominated convergence theorem, yields

lim
n→∞

∫ T

0

fn(x)Un(un(x))dx =
1

1− θ

∫ T

0

f(x)u1−θdx. (4.20)
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Analogously, if v ∈ Hν,η;ψp , we get

|fn(x)Un(v(x))| ≤ f(x)
∣∣Un(v

+(x))
∣∣

≤ f(x)

1− θ

(
v+(x) +

1

n

)
∈ L1([0, T ],R)

and

lim
n→∞

∫ T

0

fn(x)Un(v(x))dx =
1

1− θ

∫ T

0

f(x)
(
v+(x)

)1−θ
dx. (4.21)

Since un ≥ 0 and un is a minimizer of Hn, we have

1

p

∥∥∥HDν,η;ψ
0+ un

∥∥∥p
p
−
∫ T

0

fn(x)Un(un(x))dx≤
1

p

∥∥∥HDν,η;ψ
0+ v

∥∥∥p
p
−
∫ T

0

fn(x)Un(v(x))dx.

Hence, how do we know that un → u in Hν,η;ψp ([0, T ] ,R) (see Proof Theorem
3.1), from Eq. (4.20) and Eq. (4.21), we have

1

p

∥∥∥HDν,η;ψ
0+ v

∥∥∥p
p
− 1

1− θ

∫ T

0

f(x)u1−θdx

≤ 1

p

∥∥∥HDν,η;ψ
0+ v

∥∥∥p
p
− 1

1− θ

∫ T

0

f(x)
(
v+(x)

)1−θ
dx

that is
Eθν,η(u) ≤ Eθν,η(v), ∀v ∈ Hν,η;ψp .

Therefore, we conclude the prove.
Now we will prove that u minimizes the quotient∥∥∥HDν,η;ψ

0+ v
∥∥∥p
p(∫ T

0

|v|1−θfdx

) , v ∈ Hν,η;ψp \ {0} .

Note that this is equivalent to proving the following theorem that

uθ :=
u(∫ T

0

|u|1−θfdx

) 1
1−θ

and

M :=

{
v ∈ Hν,η;ψp :

∫ T

0

|v|1−θfdx = 1

}
.

Theorem 4.2. Let 0 < ν ≤ 1 and 0 ≤ η ≤ 1. We have∥∥∥HDν,η;ψ
0+ uθ

∥∥∥p
p
= min

{∥∥∥HDν,η;ψ
0+ v

∥∥∥p
p
: v ∈ M

}
with 0 < θ ≤ 1.
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Proof. Using the Eq. (1.11) for ϕ = u, we obtain∥∥∥HDν,η;ψ
0+ v

∥∥∥p
p
=

∫ T

0

u(x)1−θf(x)dx. (4.22)

Therefore,

Eθν,η(u) =

(
1

p
− 1

1− θ

)∫ T

0

u(x)1−θf(x)dx.

Set v ∈ M. For every t > 0 we have

Eθν,η(u) ≤ Eθν,η(t |v|) =
tp

p

∥∥∥HDν,η;ψ
0+ v

∥∥∥p
p
− t1−θ

1− θ
,

and, by Eq. (4.22), this inequality is equivalent to

t1−θ

 1

1− θ
−
tp−(1−θ)

∥∥∥HDν,η;ψ
0+ v

∥∥∥p
p

p

 ≤
(

1

1− θ
− 1

p

)∫ T

0

u(x)1−θf(x)dx.

(4.23)

For t =
∥∥∥HDν,η;ψ

0+ v
∥∥∥− p

p−(1−θ)

p
, we get t1−θ ≤

∫ T

0

u(x)1−θf(x)dx, that is,

∥∥∥HDν,η;ψ
0+ v

∥∥∥− p(1−θ)
p−(1−θ)

p
≤
∫ T

0

u(x)1−θf(x)dx

or yet ∥∥∥HDν,η;ψ
0+ v

∥∥∥p
p
≥

(∫ T

0

u(x)1−θf(x)dx

)1− p
1−θ

.

Therefore, it follows from Eq. (4.22) that

∥∥∥HDν,η;ψ
0+ uθ

∥∥∥p
p
=

(∫ T

0

u(x)1−θf(x)dx

)1− p
1−θ

≤
∥∥∥HDν,η;ψ

0+ v
∥∥∥p
p

what ends the prove, since uθ ∈M .
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