
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 12, Number 2, April 2022, 662–675 DOI:10.11948/20210260

ENTIRE FUNCTIONS THAT SHARE A SET
WITH THEIR DIFFERENCES∗
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Abstract In this paper, we study the uniqueness of entire functions con-
cerning deficient value and exponent of convergence, and have mainly proved
the following theorem: Let S = {1, ω, ω2, · · · , ωn−1}, where ωn = 1, n ≥ 1
is an integer, let k be a positive integer, and let f be a nonconstant entire
function such that λ(f) < ρ(f) < ∞. If f(z) and ∆k

ηf(z) share S IM, where
η is a nonzero complex number, then f(z) = eaz+b, where a( ̸= 0) and b are
two finite complex numbers. The results obtained in this paper improve some
results due to Li ( [15]).
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1. Introduction and main results
In this paper, a meromorphic function always means it is meromorphic in the whole
complex plane C. We assume that the reader is familiar with the standard nota-
tions in the Nevanlinna theory. We use the following standard notations in value
distribution theory, see ( [9, 13,25,26]):

T (r, f),m(r, f), N(r, f), N(r, f), · · · .

We denote by S(r, f) any quantity satisfying S(r, f) = o(T (r, f)) as r → ∞ possible
outside of an exceptional set E with finite logarithmic measure

∫
E
dr/r < ∞.

Let f be a nonconstant meromorphic function. Define

ρ(f) = lim
r→∞

log+ T (r, f)

log r
,

by the order of f .
Let α be a complex number, and let f be a transcendental meromorphic function

of order ρ(f). If

lim
r→∞

log+ N
(
r, 1

f−α

)
log r

< ρ(f)

for ρ(f) > 0; and N
(
r, 1

f−α

)
= O(log r) for ρ(f) = 0, then α is called a Borel

exceptional value of f .
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The exponents of convergence of zeros and poles of f are defined by

λ(f) = lim
r→∞

log+ N(r, 1
f )

log r
,

and
λ

(
1

f

)
= lim

r→∞

log+ N(r, f)

log r
.

We define
E(a, f) = {z : f(z)− a = 0},

where each zero of f(z) − a with multiplicity m is repeated m times in E(a, f).
Similarly, we define

E(a, f) = {z : f(z)− a = 0},
where each zero of f(z)− a with multiplicity m is repeated 1 time in E(a, f).

Let m be a positive integer, let a1, a2, · · · , am be distinct complex numbers, and
let S = {a1, a2, · · · , am}. We define

E(S, f) = {z : f(z) ∈ S}.

If E(S, f) = E(S, g), then we say that f and g share the set S CM; if E(S, f) =

E(S, g), then we say that f and g share the set S IM. If N
(
r, 1

f−α

)
+N

(
r, 1

g−α

)
−

2N(r, α) ≤ S(r, f)+S(r, g), where N(r, α) is called the counting function of common
zeros of both f(z) − α and g(z) − α with multiplicity been counted, then we call
that f and g share α CM almost.

Let f and g be two nonconstant meromorphic functions and E(1, f) = E(1, g).
We denote by NL

(
r, 1

f−1

)
the counting function for 1-points of both f(z) and

g(z) about which f(z) has larger multiplicity than g(z), with multiplicity being
not counted. Similarly, we have the notation NL

(
r, 1

g−1

)
. Especially, if E(1, f) =

E(1, g), then NL

(
r, 1

f−1

)
= NL

(
r, 1

g−1

)
= 0.

We denote by N(k(r, f) the counting function for poles of f with multiplicity≥ k,
and by N (k(r, f) the corresponding one for which multiplicity is not counted. Set
Nk(r, f) = N(r, f) +N (2(r, f) + · · ·+N (k(r, f).

For a nonzero complex constant η ∈ C, we define the difference operators of f
as △ηf(z) = f(z + η) −f(z) and △k

ηf(z) = △η(△k−1
η f(z)), k ∈ N, k ≥ 2.

Uniqueness of meromorphic functions is an important topic of value distribution
theory. In recent years, many articles have studied this aspect, see ( [1, 5, 7, 16, 17,
20–22]).

In this paper, we consider uniqueness of entire functions sharing a set with their
difference operators.

In ( [15]), Li proved

Theorem 1.1. Let f be a nonconstant entire function with λ(f) < ρ(f) < ∞ and
ρ(f) ̸= 1, and let a, b be two distinct entire functions such that ρ(a) < ρ(f) and
ρ(b) < ρ(f). If f and ∆ηf share {a, b} CM, then ∆ηf(z) = f(z) for all z ∈ C.

Theorem 1.2. Let S = {1, ω, ω2, · · · , ωn−1}, where ωn = 1, n ≥ 2 is an integer,
let η be a nonzero complex number, and let f be a nonconstant entire function such
that λ(f) < ρ(f) < ∞ and ρ(f) ̸= 1. If f(z) and ∆ηf(z) share S CM. Then
∆ηf(z) = tf(z) for all z ∈ C, where t ̸= −1 is a complex number satisfying tn = 1.
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Theorem 1.3. Let m and n be two distinct positive integers such that n ≥ 2m+3,
and n and n−m are relatively prime, let a and b be two nonzero complex numbers
such that ωn + aωn−m + b = 0 has no multiple roots, and let f be a nonconstant
entire function such that λ(f) < ρ(f) < ∞ and ρ(f) ̸= 1. If f(z) and ∆ηf(z) share
S CM, where S = {ω : ωn + aωn−m + b = 0}, then ∆ηf(z) = f(z) for all z ∈ C.

In ( [22]), Qi et al. got rid of the condition ρ(f) ̸= 1 in Theorem A and proved

Theorem 1.4. Let f be a nonconstant entire function with λ(f) < ρ(f) < ∞, and
let a, b be two distinct entire functions such that ρ(a) < ρ(f) and ρ(b) < ρ(f). If f
and ∆ηf share {a, b} CM, then f(z) = Aeµz, where A, µ are two nonzero constants
satisfying eµz = 2. Furthermore, ∆ηf(z) = f(z) for all z ∈ C.

In ( [20]), Niu et al. studied the case that f and ∆n
ηf (n ≥ 2) share {a, b} CM

and proved

Theorem 1.5. Let f be a nonconstant entire function with λ(f) < ρ(f) < ∞, and
let a, b be two distinct entire functions such that ρ(a) < ρ(f) and ρ(b) < ρ(f). If f
and ∆2

ηf share {a, b} CM, then f must take one of the following conclusions:

(i) f(z) = Aeµz, where A, µ are two nonzero constants satisfying eµz = 2.
Furthermore, ∆ηf(z) = f(z) for all z ∈ C;

(ii) f(z) = H(z)eAz, for all z ∈ C, where H(z) is an entire function and λ(f) =
ρ(H) < 1.

Theorem 1.6. Let f be a nonconstant entire function with λ(f) < ρ(f) < ∞, and
let a, b be two distinct entire functions such that ρ(a) < ρ(f) and ρ(b) < ρ(f). If f
and ∆n

ηf (n ≥ 3) share {a, b} CM, then f(z) = H(z)eAz, for all z ∈ C, where H(z)
is an entire function and λ(f) = ρ(H) < 1.

Naturally, we pose the following problem.

Problem 1.1. In Theorem 1.2 and Theorem 1.3, whether ρ(f) ̸= 1 can be deleted
or not, whether f and ∆ηf(z) share S CM can be replaced by f and ∆ηf(z) share S
IM or not, and whether ∆ηf(z) can be replaced by ∆k

ηf(z) for any positive integer
k or not?

In this paper, we give a positive answer to Problem 1.1 and have proved

Theorem 1.7. Let S = {1, ω, ω2, · · · , ωn−1}, where ωn = 1, n ≥ 1 is an integer,
let k be a positive integer, and let f be a nonconstant entire function of finite order
such that δ(0, f) > 1

2 . If f(z) and ∆k
ηf(z) share S CM, where η is a nonzero

complex number, then ∆k
ηf(z) = tf(z) for all z ∈ C, where t is a complex number

satisfying tn = 1.

Theorem 1.8. Let S = {1, ω, ω2, · · · , ωn−1}, where ωn = 1, n ≥ 1 is an integer,
let k be a positive integer, and let f be a nonconstant entire function of finite order
such that δ(0, f) > 4

5 . If f(z) and ∆k
ηf(z) share S IM, where η is a nonzero complex

number, then ∆k
ηf(z) = tf(z) for all z ∈ C, where t is a complex number satisfying

tn = 1.

Theorem 1.9. Let S = {1, ω, ω2, · · · , ωn−1}, where ωn = 1, n ≥ 1 is an integer,
let k be a positive integer, and let f be a nonconstant entire function such that
λ(f) < ρ(f) < ∞. If f(z) and ∆k

ηf(z) share S IM, where η is a nonzero complex
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number, then f(z) = eaz+b for all z ∈ C, where a(̸= 0) and b are two finite complex
numbers.

Theorem 1.10. Let m and n be two distinct positive integers such that n ≥ 2m+1,
and n and n−m are relatively prime, let k be a positive integer, let a and b be two
nonzero complex numbers such that ωn + aωn−m + b = 0 has no multiple roots, and
let f be a nonconstant entire function of finite order such that δ(0, f) > 3

4 . If f(z)
and ∆k

ηf(z) share S CM, where S = {ω : ωn+aωn−m+b = 0}, then ∆k
ηf(z) = f(z)

for all z ∈ C.

Theorem 1.11. Let m and n be two distinct positive integers such that n ≥ 5m+1,
and n and n−m are relatively prime, let k be a positive integer, let a and b be two
nonzero complex numbers such that ωn + aωn−m + b = 0 has no multiple roots, and
let f be a nonconstant entire function of finite order such that δ(0, f) > 19

20 . If f(z)
and ∆k

ηf(z) share S IM, where S = {ω : ωn+aωn−m+ b = 0}, then ∆k
ηf(z) = f(z)

for all z ∈ C.

Theorem 1.12. Let m and n be two distinct positive integers such that n ≥ 2m+1,
and n and n − m are relatively prime, let k be a positive integer, let a and b be
two nonzero complex numbers such that ωn + aωn−m + b = 0 has no multiple roots,
and let f be a nonconstant entire function such that λ(f) < ρ(f) < ∞. If f(z) and
∆k

ηf(z) share S IM, where S = {ω : ωn + aωn−m + b = 0}, then f(z) = eaz+b for
all z ∈ C, where a(̸= 0) and b are two finite complex numbers.

By Theorem 1.9 and Theorem 1.12, we get the following results.

Proposition 1.1. Let S = {1, ω, ω2, · · · , ωn−1}, where ωn = 1, n ≥ 1 is an integer,
let η be a nonzero finite complex number, and let f be a nonconstant entire function
such that λ(f) < ρ(f) < ∞ and ρ(f) ̸= 1. Then f(z) and ∆k

ηf(z) can not share the
set S IM.

Proposition 1.2. Let m and n be two distinct positive integers such that n ≥
2m+ 1, and n and n−m are relatively prime, let a and b be two nonzero complex
numbers such that ωn + aωn−m + b = 0 has no multiple roots, and let f be a
nonconstant entire function such that λ(f) < ρ(f) < ∞ and ρ(f) ̸= 1. Then f(z)
and ∆k

ηf(z) can not share the set S IM, where S = {ω : ωn + aωn−m + b = 0}.

2. Some Lemmas
For the proof of our results, we need the following lemmas.

Lemma 2.1 ( [3,10,12]). Let f be a meromorphic function of finite order, and let
η be a nonzero finite complex number. Then

m

(
r,
f(z + η)

f(z)

)
= S(r, f).

Lemma 2.2 ( [3,10,12]). Let f be a nonconstant meromorphic function, and let k
be a positive integer. Then

N

(
r,

1

f (k)

)
≤ N

(
r,

1

f

)
+ kN(r, f) + S(r, f).
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Lemma 2.3 ( [19]). Let f be a nonconstant meromorphic function, and R(f) =

P (f)
Q(f) , where P (f) =

p∑
k=0

akf
k and Q(f) =

q∑
j=0

bjf
j are two mutually prime poly-

nomials in f . If the coefficients {ak(z)}, {bj(z)} are small functions of f and
ap(z) ̸≡ 0, bq(z) ̸≡ 0, then

T (r,R(f)) = max{p, q} · T (r, f) + S(r, f).

Lemma 2.4 ( [3, 10, 12]). Let f and g be two nonconstant entire functions. If
E(1, f) = E(1, g) and

lim
r→∞
r ̸∈E

N2

(
r, 1

f

)
T (r, f)

<
1

2
, lim

r→∞
r ̸∈E

N2

(
r, 1

g

)
T (r, g)

<
1

2
,

where E is a set with finite logarithmic measure, then either f ≡ g or fg ≡ 1.

Lemma 2.5 ( [6]). Let f and g be two meromorphic functions. If E(1, f) = E(1, g),
then one of the following cases must occur:

(i) T (r, f) + T (r, g) ≤ 2
{
N2(r, f) +N2(r, g) +N2

(
r, 1

f

)
+N2

(
r, 1

g

)}
+ 3NL

(
r, 1

f−1

)
+ 3NL

(
r, 1

g−1

)
+ S(r, f) + S(r, g);

(ii) f = (b+1)g+(a−b−1)
bg+(a−b) , where a(̸= 0) and b are two constants.

Lemma 2.6 ( [23]). Let η be a nonconstant finite complex number, let n be a
positive integer, and let f be a transcendental meromorphic function of finite order
satisfying

∑
a ̸=∞

δ(a, f) = 1, δ(∞, f) = 1. If ∆n
ηf(z) ̸≡ 0, then

(i) T (r,∆n
ηf) = T (r, f) + S(r, f);

(ii) δ(0,∆n
ηf) = δ(∞,∆n

ηf) = 1.

Lemma 2.7 ( [26]). Let f be a nonconstant entire function of finite order, if α is
a Borel exception value , then δ(α, f) = 1.

Lemma 2.8 ( [7]). Let n be a positive integer, let f be a transcendental meromorphic
function of finite order with two Borel exceptional values 0 and ∞, and let η(̸= 0)
be a constant such that ∆n

ηf ̸≡ 0. If f and ∆n
ηf share 0,∞ CM, then f(z) = eaz+b,

where a( ̸= 0), b are constants.

3. Proof of Theorems
3.1. Proof of Theorem 1.7
Set

F (z) = fn(z), G(z) = (∆k
ηf(z))

n. (3.1)

Then F and G are two nonconstant entire functions. It follows from E(S, f) =
E(S,∆k

ηf) that E(1, F ) = E(1, G).
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Since δ(0, f) > 1
2 , then

lim
r→∞

N
(
r, 1

f

)
T (r, f)

<
1

2
. (3.2)

So,
N

(
r,

1

f

)
≤ 2c+ 1

4
T (r, f) + S(r, f), (3.3)

where c = lim
r→∞

N(r, 1f )
T (r,f) .

Thus,
N

(
r,

1

F

)
≤ 2c+ 1

4
T (r, F ) + S(r, f). (3.4)

Clearly,
N2

(
r,

1

F

)
≤ N

(
r,

1

F

)
. (3.5)

By (3.4) and (3.5), we get

lim
r→∞
r ̸∈E

N2

(
r, 1

F

)
T (r, F )

<
1

2
. (3.6)

Obviously,

m

(
r,

1

f

)
≤m

(
r,
∆k

ηf

f

)
+m

(
r,

1

∆k
ηf

)
≤m

(
r,

1

∆k
ηf

)
+ S(r, f). (3.7)

It follows from (3.7) and Lemma 2.6 that

1

2
< δ(0, f) ≤ lim

r→∞
r ̸∈E

m
(
r, 1

f

)
T (r, f)

≤ lim
r→∞
r ̸∈E

m
(
r, 1

∆k
ηf

)
T (r,∆k

ηf)
· lim
r→∞
r ̸∈E

T
(
r,∆k

ηf
)

T (r, f)
+ lim

r→∞
r ̸∈E

S(r, f)

T (r, f)

≤ lim
r→∞
r ̸∈E

m
(
r, 1

∆k
ηf

)
T (r,∆k

ηf)
. (3.8)

Likewise,

lim
r→∞
r ̸∈E

N2

(
r, 1

G

)
T (r,G)

<
1

2
. (3.9)

By Lemma 2.4, we know that either F ≡ G or FG ≡ 1.
Suppose that FG ≡ 1, then fn(∆k

ηf)
n ≡ 1. That is(

∆k
ηf

f

)n

≡ 1

f2n
. (3.10)
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Since f is an entire function, it follows f ̸= 0. By (3.10) and Lemma 2.1, we get

2nT (r, f) =2nT

(
r,

1

f

)
+O(1) = T

(
r,

1

f2n

)
+O(1)

=m

(
r,

1

f2n

)
+O(1) = m

(
r, (

∆k
ηf

f
)n

)
+O(1)

=n ·m

(
r,
∆k

ηf

f

)
+O(1) = S(r, f). (3.11)

It gives T (r, f) = S(r, f), a contradiction. So by Lemma 2.4, we know that
F ≡ G. Hence ∆k

ηf ≡ tf , where tn = 1. This completes the proof of Theorem 1.7.

3.2. Proof of Theorem 1.8
It follows from E(S, f) = E(S,∆k

ηf) and (3.1) that E(1, F ) = E(1, G).
Since δ(0, f) > 4

5 , then

N2

(
r,

1

F

)
≤ N

(
r,

1

F

)
≤ 5c+ 1

10
T (r, F ) + S(r, f), (3.12)

where c = lim
r→∞

N(r, 1
F )

T (r,F ) < 1
5 .

By Lemma 2.2, we have

NL

(
r,

1

F − 1

)
≤N

(
r,

1

F ′

)
≤ N

(
r,

1

F ′

)
−
[
N

(
r,

1

F ′

)
−N

(
r,

1

F ′

)]
≤N

(
r,

1

F

)
+N(r, F )−

[
N

(
r,

1

F ′

)
−N

(
r,

1

F ′

)]
≤N

(
r,

1

F

)
−
[
N

(
r,

1

F ′

)
−N

(
r,

1

F ′

)]
+ S(r, F )

≤N2

(
r,

1

F

)
+ S(r, F ). (3.13)

By (3.12) and (3.13), we get

2N2

(
r,

1

F

)
+ 3NL

(
r,

1

F − 1

)
≤ 5c+ 1

2
T (r, F ) + S(r, F ). (3.14)

Similarly,

2N2

(
r,

1

G

)
+ 3NL

(
r,

1

G− 1

)
≤ 5c+ 1

2
T (r,G) + S(r,G). (3.15)

Suppose that

T (r, F ) + T (r,G) ≤2N2

(
r,

1

F

)
+ 3NL

(
r,

1

F − 1

)
+ S(r, F )

+ 2N2

(
r,

1

G

)
+ 3NL

(
r,

1

G− 1

)
+ S(r,G). (3.16)
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It follows from (3.14)-(3.16) that(
1− 5c+ 1

2

)
{T (r, F ) + T (r,G)} ≤ S(r, F ) + S(r,G).

It follows from c < 1
5 that T (r, F )+T (r,G) ≤ S(r, F )+S(r,G), a contradiction.

Thus, by Lemma 2.5, we obtain

F =
(B + 1)G+ (A−B − 1)

BG+ (A−B)
, (3.17)

where A(̸= 0) and B are two constants.
Clearly,

T (r, F ) = T (r,G) +O(1). (3.18)
Next we consider three cases:
Case 1. B ̸= 0,−1. In the following, we consider two subcases.
Case 1.1. A−B − 1 ̸= 0. From (3.17), we have

N

(
r,

1

G+ A−B−1
B+1

)
= N

(
r,

1

F

)
.

By the second fundamental theorem and (3.18), we get

T (r,G) ≤N(r,G) +N(r,
1

G
) +N

(
r,

1

G+ A−B−1
B+1

)
+ S(r,G)

≤N(r,G) +N(r,
1

G
) +N

(
r,

1

F

)
+ S(r,G)

<
2

5
T (r,G) + S(r,G).

It follows T (r,G) = S(r,G), a contradiction.
Case 1.2. A−B − 1 = 0. Then by (3.17), we have N

(
r, 1

G+ 1
B

)
= N(r, F ).

By the second fundamental theorem, we get

T (r,G) ≤N(r,G) +N(r,
1

G
) +N

(
r,

1

G+ 1
B

)
+ S(r,G)

≤N(r,G) +N(r,
1

G
) +N(r, F ) + S(r,G)

<
1

5
T (r,G) + S(r,G).

So we get T (r,G) = S(r,G), a contradiction.
Case 2. B = −1. Then (3.17) becomes

F =
A

(A+ 1)−G
. (3.19)

Next we consider two subcases.
Case 2.1. A+ 1 ̸= 0. By (3.19), we have N

(
r, 1

G−(A+1)

)
= N(r, F ). Similarly,

we deduce a contradiction as in Case 1.
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Case 2.2. A + 1 = 0. By (3.19), we have FG ≡ 1. Next, using the same
argument as used in the proof of Theorem 1.7, we get a contradiction.

Case 3. B = 0. Then (3.17) gives

F =
G+ (A− 1)

A
. (3.20)

Now we consider two subcases.
Case 3.1. A− 1 ̸= 0. By (3.20), we have N

(
r, 1

G+(A−1)

)
= N(r, F ). Similarly,

we deduce a contradiction as in Case 1.
Case 3.2. A− 1 = 0. Then by (3.20), we get F ≡ G.
Thus, we have ∆k

ηf ≡ tf , where tn = 1. This completes the proof of Theorem
1.8.

3.3. Proof of Theorem 1.9
Since f be a nonconstant entire function such that λ(f) < ρ(f) < ∞, then by
Lemma 2.7, we have

δ(0, f) = δ(∞, f) = 1.

By Theorem 1.8, we get ∆k
ηf ≡ tf , where tn = 1. Hence f and ∆k

ηf share 0, ∞
CM. So, it follows from Lemma 2.8 that f(z) = eaz+b for all z ∈ C, where a( ̸= 0)
and b are two complex numbers. This completes the proof of Theorem 1.9.

3.4. Proof of Theorem 1.10
Set

F (z) =fn(z) + afn−m(z), (3.21)
G(z) =(∆k

ηf(z))
n + a(∆k

ηf(z))
n−m. (3.22)

Then F and G are two nonconstant entire functions. Since E(S, f) = E(S,∆k
ηf),

then E(−b, F ) = E(−b,G).
It follows from Lemma 2.3 that

T (r, F ) =nT (r, f) + S(r, f), (3.23)
T (r,G) =nT (r,∆k

ηf) + S(r, f). (3.24)

Since δ(0, f) > 3
4 , then

lim
r→∞

N
(
r, 1

f

)
T (r, f)

<
1

4
. (3.25)

Clearly,

N2

(
r,

1

F

)
≤2N

(
r,

1

f

)
+N

(
r,

1

fm + a

)
<

(
1

2
+m

)
T (r, f) + S(r, f). (3.26)
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By (3.5), (3.23) and n ≥ 2m+ 1, we get

lim
r→∞
r ̸∈E

N2

(
r, 1

F

)
T (r, F )

<
1

2
. (3.27)

By the same argument as used in the proof of Theorem 1.7, we have

lim
r→∞
r ̸∈E

N
(
r, 1

∆k
ηf

)
T (r,∆k

ηf)
<

1

4
.

Thus, we get

lim
r→∞
r ̸∈E

N2

(
r, 1

G

)
T (r,G)

<
1

2
. (3.28)

By Lemma 2.4, (3.27), (3.28) and E(−b, F ) = E(−b,G), we get either F ≡ G
or FG ≡ b2.

Suppose that FG ≡ b2, that is

fn−m(fm + a) · [(∆k
ηf)

n + a(∆k
ηf)

n−m] ≡ b2. (3.29)

It follows from (3.29) and that f is an entire function that f ̸= 0, fm + a ̸=
0, f ̸= ∞.

By the second fundamental theorem, we have

mT (r, f) = T (r, fm)

≤N(r, fm) +N

(
r,

1

fm

)
+N

(
r,

1

fm + a

)
+ S(r, f) ≤ S(r, f). (3.30)

It gives T (r, f) = S(r, f), a contradiction.
So by Lemma 2.4, we know that F ≡ G. That is

fn + afn−m = (∆k
ηf)

n + a(∆k
ηf)

n−m. (3.31)

Set
h =

∆k
ηf

f
. (3.32)

Thus, we get
(hn − 1)fm = −a(hn−m − 1). (3.33)

Since n, n − m are relatively prime, then h = 1 is the only common root of
hn = 1 and hn−m = 1. Let ω1, ω2, · · · , ωn−1 be n−1 distinct simple roots of hn = 1
such that ωj ̸= 1 and ωn−m

j ̸= 1 for 1 ≤ j ≤ n− 1. Next, we consider the following
two cases.

Case 1. h is a constant. If hn ̸= 1, then by (3.33), we get f is a constant, a
contradiction. Thus, hn = 1. Then by (3.33) we know that hn−m = 1. Obviously,
we obtain h = 1. Hence, ∆k

ηf ≡ f .
Case 2. h is not a constant. Then by (3.33), we get

fm = −a
hn−m−1 + hn−m−2 + · · ·+ h+ 1

(h− ω1)(h− ω2) · · · (h− ωn−1)
. (3.34)
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It follows from (3.34) and the condition that f is a nonconstant entire function
that h ̸= ω1, ω2, · · · , ωn−1.

In the following, we consider two subcases.
Case 2.1. m ≥ 2. Since n − 1 ≥ 2m ≥ 4, by Picard’s Theorem, we get h is a

constant, a contradiction.
Case 2.2. m = 1. Then n ≥ 2m+1 ≥ 3. Without loss of generality, we consider

the case n = 3.
By (3.25) and (3.34), we get

N(r, h) +N

(
r,

1

h+ 1

)
≤ N

(
r,

1

f

)
<

1

4
T (r, f). (3.35)

By the second fundamental theorem, (3.34), (3.35) and Lemma 2.3, we obtain

T (r, f) =2T (r, h) + S(r, h)

≤N(r, h) +N

(
r,

1

h+ 1

)
+N

(
r,

1

h− ω1

)
+N

(
r,

1

h− ω2

)
+ S(r, h)

≤N

(
r,

1

f

)
+ S(r, f)

<
1

4
T (r, f) + S(r, f).

It follows T (r, f) = S(r, f), a contradiction.
By the above discuss, we deduce that h = 1, that is ∆k

ηf ≡ f . This completes
the proof of Theorem 1.10.

3.5. Proof of Theorem 1.11
It follows from E(S, f) = E(S,∆k

ηf), (3.21) and (3.22) that E(−b, F ) = E(−b,G).
Since δ(0, f) > 19

20 , then we have

lim
r→∞

N
(
r, 1

F

)
T (r, F )

<
1

20
. (3.36)

So by (3.26), we get

N2

(
r,

1

F

)
<

(
1

10
+m

)
T (r, f) + S(r, f). (3.37)

By (3.13) and (3.37), we get

2N2

(
r,

1

F

)
+ 3NL

(
r,

1

F − 1

)
<

(
1

2
+ 5m

)
T (r, f) + S(r, f). (3.38)

Similarly, we have

2N2

(
r,

1

G

)
+ 3NL

(
r,

1

G− 1

)
<

(
1

2
+ 5m

)
T (r,∆k

ηf) + S(r, f). (3.39)

Suppose that

T (r, F ) + T (r,G) ≤2N2

(
r,

1

F

)
+ 3NL

(
r,

1

F − 1

)
+ S(r, F )
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+ 2N2

(
r,

1

G

)
+ 3NL

(
r,

1

G− 1

)
+ S(r,G). (3.40)

It follows from (3.38)-(3.40) and n ≥ 5m+1 that T (r, f) ≤ S(r, f), a contradic-
tion.

Next, using the same argument as used in the proof of Theorem 1.8 and Theorem
1.10, we deduce that ∆k

ηf ≡ f . This completes the proof of Theorem 1.11.

3.6. Proof of Theorem 1.12
Since f is a nonconstant entire function such that λ(f) < ρ(f) < ∞, then by Lemma
2.7, we have

δ(0, f) = δ(∞, f) = 1.

By the second fundamental theorem, for any nonzero constant a, we have

T (r, f) ≤N(r, f) +N

(
r,

1

f

)
+N

(
r,

1

f − a

)
+ S(r, f)

≤N

(
r,

1

f − a

)
+ S(r, f)

≤N1)

(
r,

1

f − a

)
+N (2

(
r,

1

f − a

)
+ S(r, f)

≤N1)

(
r,

1

f − a

)
+

1

2
N(2

(
r,

1

f − a

)
+ S(r, f)

≤1

2
N1)

(
r,

1

f − a

)
+

1

2
N

(
r,

1

f − a

)
+ S(r, f).

It follows that
T (r, f) ≤ N1)

(
r,

1

f − a

)
+ S(r, f).

Thus, we get

N(2

(
r,

1

f − a

)
= S(r, f).

So we deduce that f and ∆k
ηf share the set S CM almost. Next using the same

argument as used in the proof of Theorem 1.10 we get ∆k
ηf ≡ f . Hence, f and ∆k

ηf

share 0, ∞ CM. It follows from Lemma 2.8 that f(z) = eaz+b for all z ∈ C, where
a(̸= 0) and b are two complex numbers. This completes the proof of Theorem 1.12.
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