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SOLVABILITY OF STURM-LIOUVILLE
BOUNDARY VALUE PROBLEMS FOR A
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Abstract In this paper, we probe into the solvability of Sturm-Liouville
problem for fractional advection-dispersion equations without traditional Amb-
rosetti-Rabinowitz conditions. Some existence results of infinitely many small
negative energy and large energy solutions are obtained by employing variant
fountain theorems. The nonlinearity f and li (i = 1, 2, . . . ,m) are considered
under certain appropriate assumptions which are distinct from those assumed
in previous articles. In addition, the main result is confirmed by an example
which is provided.
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1. Introduction
Consider the following Sturm-Liouville problem of fractional advection-dispersion
equation (FADE for short) given by

− d

dx

[
1

2
0D

−ζ
x (v′(x)) +

1

2
xD

−ζ
T (v′(x))

]
+K(x)v(x)

= f(x, v(x)) +

m∑
i=1

li(x, v(x)), a.e. x ∈ [0, T ],

αv(0)− β

[
1

2
0D

−ζ
x (v′(0)) +

1

2
xD

−ζ
T (v′(0))

]
= 0,

γv(T ) + σ

[
1

2
0D

−ζ
x (v′(T )) +

1

2
xD

−ζ
T (v′(T ))

]
= 0,

(1.1)
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where 0D
−ζ
x and xD

−ζ
T are the left and right Riemann-Liouville fractional integrals

of order 0 ≤ ζ < 1 individually, K(x) ∈ L∞([0, T ], R+) with K0 = ess sup[0,T ] K(x),
K0 = ess inf [0,T ] K(x) > 0, α, γ > 0, β, σ ≥ 0, and f ∈ C([0, T ] × R,R) and
li ∈ C([0, T ]× R,R) for every i = 1, 2, . . . ,m.

Motivated by increasing interest in the current literature concerning fractional
advection-dispersion equations which can be used to simulate physical phenomena,
such as exhibiting anomalous diffusion on certain conditions, and depicts nonsym-
metric or symmetric transition and solute transportation and so on. In [4], Ervin
and Roop studied the following form FADE

− d

dx
(p 0D

−β
x + (1− p)xD

−β
T )v′(x) + b(x)v′(x) + c(x)v(x) = ∇F (x, v(x)) (1.2)

for a.e. x ∈ [0, T ], where 0D
−β
x and xD

−β
T are the left and right Riemann-Liouville

fractional integral operators individually, 0 ≤ β < 1, p ∈ [0, 1] is a constant depicting
the deflection of conveyance transversion, b, c, F meets certain proper conditions. If
taking p = 1

2 in (1.2), then the FADE (1.2) delineates symmetric mutations. Sun
and Zhang in [23] probed into the FADE (1.2) with b(x) = c(x) = 0, T = 1, and the
boundary conditions v(0) = v(1) = 0. For more physical background information
and applications about FADE, see [1, 5, 7, 10, 12–15, 18, 19, 25, 28–30] and so on.
Critical point theory and variational approach have become an valid tool to solve
this type of FADE problem. In [8], Jiao and Zhou gained the existence of nontrivial
solutions for following FADE by employing the usual Ambrosetti-Rabinowitz (A-R)
condition (i.e. there exist µ̃ > 2, and r̃ > 0 such that for any x ∈ [0, T ], ξ ∈ R, |ξ| ≥
r̃, 0 < µ̃F (x, ξ) ≤ ξf(x, ξ)),

d

dx

(
1

2
0D

−β
x (v′(x)) +

1

2
xD

−β
T (v′(x))

)
+∇F (x, v(x)) = 0, a.e. x ∈ [0, T ],

v(0) = v(T ) = 0,

(1.3)

where 0D
−β
x and xD

−β
T are the left and right Riemann-Liouville fractional integral

operators individually, 0 ≤ β < 1, and ∇F (x, y) is the gradient of F at y. Since
that time, a lot of literatures concerning FADE have been written by employing
the (A-R) condition. Its importance is as a result of the truth that it guarantees
the boundedness of the Palais-Smale sequences for the energy functional related
to the problem under consideration. The (A-R) condition is a superlinear growth
assumption concerning the nonlinearity and proved that it can be expressed as
F (x, ξ) ≥ ♭1|ξ|µ̃ − ♭2,∀(x, ξ) ∈ [0, T ] × R, for some ♭1, ♭2 > 0. We notice that some
functional such as f(x, ξ) = ξ log(1 + |ξ|) is superlinear at infinity, but does not
satisfy the (A-R) condition. So, some new assumptions have been used by scholars
to replace the (A-R) condition and overcome this restriction.

Recently, some FADE problems without the Ambrosetti-Rabinowitz condition
have been researched by many scholars. For instance, in [6], the authors introduced
the following assumption on f, there exists σ̂ ≥ 1 such that σ̂F(s, ξ) ≥ F(s, ξ) for
any (s, ξ) ∈ [0, T ] × RN , s ∈ [0, 1], where F(s, ξ) = (∇F (s, ξ), ξ) − 2F (s, ξ). The
authors in [3] obtained multiplicity results exist in the asymptotically quadratic
case and subquadratic case to the above boundary value problem. In [2], the author
obtained the existence of infinitely many small or high energy solutions to the above
boundary value problem by applying the variant fountain theorems.
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Very little research has been done on the Sturm-Liouville problem of FADE by
taking advantage of the variant fountain theorems. In [24], the authors investi-
gated the existence of solutions for the Sturm-Liouville problem of discontinuous
fractional-order differential equation by critical-point theory

− d

dx

(
1

2
0D

−β
x (v′(x)) +

1

2
xD

−β
T (v′(x))

)
= λf(v(x)), a.e. x ∈ [0, T ],

av(0)− b

(
1

2
0D

−β
x (v′(0)) +

1

2
xD

−β
T (v′(0))

)
= 0,

cv(T ) + d

(
1

2
0D

−β
x (v′(T )) +

1

2
xD

−β
T (v′(T ))

)
= 0,

(1.4)

where 0D
−β
x and xD

−β
T are the left and right Riemann-Liouville fractional integrals

of order 0 ≤ β < 1 individually, λ is a positive parameter, a, c > 0, b, d ≥ 0, and
f : R → R is an almost everywhere continuous function. In [21], the authors studied
the existence of weak solutions for the following damped-like fractional boundary
value problem from the point of view of variational approach

d

dx

(
1

2
0D

−β
x (v′(x)) +

1

2
xD

−β
T (v′(x))

)
+ p(x)

(
1

2
0D

−β
x (v′(x)) +

1

2
xD

−β
T (v′(x))

)
+ q(x)v(x)

= f(x, v(x)) +

n∑
j=1

gj(x, v(x)), a.e. x ∈ [0, T ],

v(0) = v(T ) = 0,

(1.5)

where 0D
−β
x and xD

−β
T are the left and right Riemann-Liouville fractional integral

operators individually, 0 ≤ β < 1, and p ∈ C([0, T ]), q ∈ L∞([0, T ]), f ∈ C([0, T ]×
R,R) and gj ∈ C([0, T ]× R,R) for every j = 1, 2, . . . , n.

Here, we are interested in the existence of infinitely many small or high energy
solutions for Sturm-Liouville problem of FADE. Our analysis will be on the ac-
count of variant fountain theorem which has been adopted for Dirichlet boundary
problem in some literatures. Difficulties such as how to construct suitable function
and how to prove the boundedness of the required sequences in the theorem need
to overcome due to the weaker conditions and Sturm-Liouville boundary condi-
tions taken into consideration. The innovation is twofold: For one thing, we study
the Sturm-Liouville problem for fractional advection-dispersion equations under no
Ambrosetti-Rabinowitz condition, it can free ourself from the (Palais-Smale)-type
assumptions. The conditions we give are different from those assumed in Refer-
ence [2, 3, 6, 21, 24], although there is no Ambrosetti-Rabinowitz condition in refer-
ence [2,3,6,17,21,24,27], either. This is the essential difference between this paper
and the previous paper. For another thing, boundary conditions in this paper are
more general cases, which cover the Dirichlet boundary condition as special cases.

The framework of this article is as follows. Some fundamental preliminaries and
lemmas are stated in the next section. The fundamental consequences of this article
are given in the last section, as well as an application to FADE (1.1).
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2. Preliminaries and lemmas
Definition 2.1 ( [9, 22]). Let y be a function defined on [a, b]. Then the left and
right Riemann-Liouville fractional derivatives of order 0 ≤ δ < 1 for function y are
represented by

aD
δ
t y(t) =

d

dt
aD

δ−1
t y(t) =

1

Γ(1− δ)

d

dt

∫ t

a

(t− s)−δy(s)ds, t ∈ [a, b],

and

tD
δ
by(t) = − d

dt
tD

δ−1
b y(t) = − 1

Γ(1− δ)

d

dt

∫ b

t

(s− t)−δy(s)ds, t ∈ [a, b].

Definition 2.2 ( [9, 22]). If δ ∈ (0, 1) and y ∈ AC([a, b],RN ), then the left and
right Caputo fractional derivatives of order δ for function y denoted by c

aD
δ
t y(t) and

c
tD

δ
by(t), individually, exist a.e. on [a, b]. c

aD
δ
t y(t) and c

tD
δ
by(t) are represented as

c
aD

δ
t y(t) = aD

δ−1
t y′(t) =

1

Γ(1− δ)

∫ t

a

(t− s)−δy′(s)ds, t ∈ [a, b],

and

c
tD

δ
by(t) = −tD

δ−1
b y′(t) = − 1

Γ(1− δ)

∫ b

t

(s− t)−δy′(s)ds, t ∈ [a, b].

If δ = 1, then c
aD

1
t y(t) = y′(t) and c

tD
1
by(t) = −y′(t), for every t ∈ [a, b]. Especially,

c
aD

0
t y(t) =

c
tD

0
by(t) = y(t) for every t ∈ [a, b].

Proposition 2.1 ( [9,22]). The left and right Riemann-Liouville fractional integral
operators have the property of semigroup, i.e.,

aD
−α1
t (aD

−α2
t y(t)) = aD

−α1−α2
t y(t),

and

tD
−α1

b (tD
−α2

b y(t)) = tD
−α1−α2

b y(t), ∀α1, α2 > 0.

in any point t ∈ [a, b] for a continuous function y and for almost every point in [a, b]
if the function y ∈ L1([a, b],RN ).

Proposition 2.2 ( [9, 22]). If h ∈ Lp([a, b],RN ), g ∈ Lq([a, b],RN ) and p ≥ 1, q ≥
1, 1

p + 1
q ≤ 1 + δ or p ̸= 1, q ̸= 1, 1

p + 1
q = 1 + δ, then∫ b

a

[aD
−δ
t h(t)]g(t)dt =

∫ b

a

[tD
−δ
b g(t)]h(t)dt, δ > 0.

Definition 2.3. Let 1
2 < ϱ ≤ 1. We denote the fractional derivative space Eϱ =

{v : [0, T ] → RN : v is absolutely continous and c
0D

ϱ
xv(x) ∈ L2([0, T ],RN )} as the

closure of C∞([0, T ],RN ) endued with the norm

∥v∥ϱ =

(∫ T

0

|c0Dϱ
xv(x)|2dx+

∫ T

0

|v(x)|2dx

) 1
2

, ∀v ∈ Eϱ. (2.1)
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Remark 2.1. Following Definition 4.1 in [24], we are aware that the fractional
derivative space Eϱ is the space of functions v ∈ L2([0, T ],RN ), which has an ϱ-
order Caputo fractional derivative c

0D
ϱ
xv(x) ∈ L2([0, T ],RN ).

Proposition 2.3 ( [24]). Let 0 < ϱ ≤ 1, the fractional derivative space Eϱ is a
reflexive and separable Banach space.

Lemma 2.1 ( [24]). If 1
2 < ϱ ≤ 1, then for any v ∈ Eϱ, we have

− cos(πϱ)

∫ T

0

|c0Dϱ
xv(x)|2dx ≤ −

∫ T

0

(c0D
ϱ
xv(x),

c
xD

ϱ
T v(x))dx

≤ − 1

cos(πϱ)

∫ T

0

|c0Dϱ
xv(x)|2dx. (2.2)

Lemma 2.2 ( [16]). Let 1
2 < ϱ ≤ 1, v ∈ Eϱ, the norm ∥v∥ϱ is isovalent to

∥v∥ =

(
−
∫ T

0

(c0D
ϱ
xv(x),

c
xD

ϱ
T v(x))dx+

∫ T

0

K(x)(v(x))2dx

+
γ

σ
(v(T ))2 +

α

β
(v(0))2

) 1
2

, (2.3)

i.e. there exist A1ϱ, A2ϱ > 0 satisfying

1

A2ϱ
∥v∥ ≤ ∥v∥ϱ ≤ A1ϱ∥v∥, (2.4)

where

A1ϱ =

(
max

{
2T

β

α
,− 2T 2ϱ

(Γ(ϱ+ 1))2 cosπϱ

}
− 1

cosπϱ

) 1
2

, (2.5)

A2ϱ =

2max

{
− 1

cosπϱ
,K0

}
+ 2

γ

σ
max

{
T− 1

2 ,
−T ϱ− 1

2

Γ(ϱ+ 1) cosπϱ

}2

(2.6)

+ 2
α

β
max

{
T− 1

2 ,
T ϱ− 1

2

Γ(ϱ+ 1)

}2
 1

2

.

Lemma 2.3 ( [16]). For v ∈ Eϱ, there exists A3ϱ > 0 such that ∥v∥∞ ≤ A3ϱ∥v∥,
where

∥v∥∞ = max
x∈[0,T ]

|v(x)|,

A3ϱ =
√
2A1ϱ max

{
T− 1

2 ,
T ϱ− 1

2

Γ(ϱ+ 1)

}
+

T ϱ− 1
2

Γ(ϱ)(2ϱ− 1)
1
2

√
| cosπϱ|

,

and A1ϱ is defined in (2.5).

Proposition 2.4 ( [24]). If 1
2 < ϱ ≤ 1, the sequence {vk} converges weakly to v

in Eϱ, namely vk ⇀ v. Then vk → v in C([0, T ],RN ), namely ∥vk − v∥∞ → 0 as
k → ∞.
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Hereinafter, we will probe into FADE (1.1) in the Eϱ with the corresponding
norm ∥v∥ which is defined in (2.3).

To facilitate this discussion, we denote

Dϱ(v(x)) =
1

2
0D

ϱ−1
x (c0D

ϱ
xv(x))−

1

2
xD

ϱ−1
T (cxD

ϱ
T v(x)). (2.7)

As discussed in [16], FADE (1.1) transforms to the following form− d

dt
Dϱ(v(x)) +K(x)v(x) = f(x, v(x)) +

m∑
i=1

li(x, v(x)), a.e. x ∈ [0, T ],

αv(0)− βDϱ(v(0)) = 0, γv(T ) + σDϱ(v(T )) = 0,

(2.8)

where ϱ = 1− ζ
2 ∈ ( 12 , 1].

Definition 2.4. A function v ∈ Eϱ is termed as a weak solution of FADE (1.1) if

− 1

2

∫ T

0

[(c0D
α
xv(x),

c
xD

α
Tω(x)) + ( c

0D
α
xω(x),

c
xD

α
T v(x))] + (K(x)v(x), ω(x))dx

+
γ

σ
v(T )ω(T ) +

α

β
v(0)ω(0)

=

∫ T

0

[
f(x, v(x))ω(x) +

m∑
i=1

li(x, v(x))ω(x)

]
dx,

holds for every ω ∈ Eϱ.

The energy functional Θ : Eϱ → R associated with FADE (1.1) is defined by

Θ(v) =

∫ T

0

1

2
[−(c0D

ϱ
xv(x),

c
xD

ϱ
T v(x)) + (K(x)v(x), v(x))] dx+

γ

2σ
(v(T ))2

+
α

2β
(v(0))2 −

∫ T

0

[
F (x, v(x)) +

m∑
i=1

Li(x, v(x))

]
dx (2.9)

=
1

2
∥v∥2 −

∫ T

0

[
F (x, v(x)) +

m∑
i=1

Li(x, v(x))

]
dx,

where F (x, v) =
∫ v

0
f(x, ξ)dξ and Li(x, v) =

∫ v

0
li(x, ξ)dξ (i = 1, 2, . . . ,m).

Due to the properties of F,Li (i = 1, 2, . . . ,m), which manifest that Θ ∈
C1(Eϱ,R) and for every ω ∈ Eϱ,

⟨Θ′(v), ω⟩ =− 1

2

∫ T

0

(c0D
ϱ
xv(x),

c
xD

ϱ
Tω(x)) + (c0D

ϱ
xω(x),

c
xD

ϱ
T v(x))dx (2.10)

+

∫ T

0

(K(x)v(x), ω(x))dx+
γ

σ
v(T )ω(T ) +

α

β
v(0)ω(0)

−
∫ T

0

[
f(x, v(x))ω(x) +

m∑
i=1

li(x, v(x))ω(x)

]
dx.

Let W be a Banach space endued with the norm ∥ · ∥ and W = ⊕j∈Nwj with
dimwj < ∞ for j ∈ N. Put M∗

k = ⊕k
j=1wj , N

∗
k = ⊕∞

j=kwj and Z∗
k = {v ∈ M∗

k :
∥v∥ ≤ R∗

k}, S∗
k = {v ∈ N∗

k : ∥v∥ = r∗k} for R∗
k > r∗k > 0.
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Lemma 2.4 ( [31]). The C1 functional Θλ̃ : W → R defined by Θλ̃(v) := Λ(v) −
λ̃Ψ(v), λ̃ ∈ [1, 2], satisfies:

(i) Θλ̃ maps bounded sets to bounded sets uniformly for λ̃ ∈ [1, 2]. Furthermore,
Θλ̃(−v) = Θλ̃(v) for all (λ̃, v) ∈ [1, 2]×W ;

(ii) Ψ(v) ≥ 0 for all v ∈ R, Ψ(v) → ∞ as ∥v∥ → ∞ on any finite dimensional
subspace of W ;

(iii) there exist R∗
k > r∗k > 0 such that

ã∗k(λ̃) := inf
v∈N∗

k ,∥v∥=R∗
k

Θλ̃(v) ≥ 0 > b̃∗k(λ̃) := max
v∈M∗

k ,∥v∥=r∗k

Θλ̃(v),∀ λ̃ ∈ [1, 2],

and

d̃∗k(λ̃) := inf
v∈N∗

k ,∥v∥≤R∗
k

Θλ̃(v) → 0, as k → ∞ uniformly for λ̃ ∈ [1, 2].

Then, there exist λ̃n∗ → 1, v(λ̃n∗) ∈ Mn∗ such that

Θ′
λ̃n∗

|Mn∗
(v(λ̃n∗)) = 0, Θλ̃n∗

(v(λ̃n∗)) → c̃∗k ∈ [d̃∗k(2), b̃
∗
k(1)], as n∗ → ∞.

Specially, if {v(λ̃n∗)} has a convergent subsequence for every k, then Θ1 has infinitely
many nontrivial critical points {vk} ∈ W\{0} satisfying Θ1(vk) → 0− as k → ∞.

Lemma 2.5 ( [31]). The C1 functional Θλ̃ : W → R defined by Θλ̃(v) := Λ(v) −
λ̃Ψ(v), λ̃ ∈ [1, 2], satisfies:

(i) Θλ̃ maps bounded sets to bounded sets uniformly for λ̃ ∈ [1, 2]. Additionally,
Θλ̃(−v) = Θλ̃(v) for all (λ̃, v) ∈ [1, 2]×W ;

(ii) Ψ(v) ≥ 0 for all v ∈ W, Λ(v) → ∞ or Ψ(v) → ∞ as ∥v∥ → ∞; or
(ii′) Ψ(v) ≤ 0 for all v ∈ W, Ψ(v) → −∞ as ∥v∥ → ∞;
(iii) There exist R∗

k > r∗k > 0 such that

b̃∗k(λ̃) = inf
v∈N∗

k ,∥v∥=r∗k

Θλ̃(v) > ã∗k(λ̃) = max
v∈M∗

k ,∥v∥=R∗
k

Θλ̃(v), ∀ λ̃ ∈ [1, 2].

Then,

b̃∗k(λ̃) ≤ c̃∗k(λ̃) = inf
Υ∈Γk

max
v∈Z∗

k

Θλ̃(Υ(v)), ∀ λ̃ ∈ [1, 2],

where Γk = {Υ ∈ C(Z∗
k ,W ) : Υ is odd, Υ|∂Z∗

k
= id}(k ≥ 2). Furthermore, for

almost every λ̃ ∈ [1, 2], there exists a sequence {vkn∗
(λ̃)} such that

sup
n∗

∥vkn∗
(λ̃)∥ < ∞, Θ′

λ̃
(vkn∗

(λ̃)) → 0, Θλ̃(v
k
n∗
(λ̃)) → c̃∗k(λ̃), as n∗ → ∞.

Since Eϱ is a separable Banach space in the light of Proposition 2.3. We choose
an orthonormal basis {ℓj} of Eϱ and write wj = span{ℓj}, M∗

k = ⊕k
j=1wj , N

∗
k =

⊕∞
j=kwj . Consider Θλ̃ : Eϱ → R defined by

Θλ̃(v) :=Λ(v)− λ̃Ψ(v) (2.11)
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=
1

2
∥v∥2 −

∫ T

0

m∑
i=1

Li(x, v(x))dx− λ̃

∫ T

0

F (x, v(x))dx, ∀v ∈ Eϱ, λ̃ ∈ [1, 2].

Namely, Λ(v) = 1
2∥v∥

2 −
∫ T

0

∑m
i=1 Li(x, v(x))dx, Ψ(v) =

∫ T

0
F (x, v(x))dx.

To facilitate this discussion, henceforth, we will repeatedly use the letter c̃∗ to
bespeak varieties of positive constants whose exact value is irrelevant.

3. Main result
We give some assumptions of f, li as follows:
(A1) f, li ∈ C([0, T ]× R,R) are odd in v for i = 1, 2, . . . ,m.
(A2) There exist ς∗, τ∗ ∈ (1, 2), b∗1 > 0, b∗2 > 0, b∗3 > 0 such that

b∗1|v|τ
∗
≤ f(s, v)v ≤ b∗2|v|τ

∗
+ b∗3|v|ς

∗
, a.e. s ∈ [0, T ], v ∈ R.

(A3) There exists 2 ≤ σ̃i < ∞ such that |li(s, v)| ≤ b̃∗i (1 + |v|σ̃i−1) for a.e. s ∈
[0, T ], v ∈ R. Furthermore, limv→0

li(s,v)
v = 0 uniformly for s ∈ [0, T ], i = 1, 2, . . . ,m.

(A4) Suppose one of the following conditions hold

(i) lim|v|→∞
li(s,v)

v = 0 uniformly for s ∈ [0, T ], i = 1, 2, . . . ,m;

(i′) lim|v|→∞
li(s,v)

v = −∞ uniformly for s ∈ [0, T ], i = 1, 2, . . . ,m. Moreover,
li(s,v)

v and f(s,v)
v are decreasing in v for v large enough;

(ii′) lim|v|→∞
li(s,v)

v = ∞ uniformly for s ∈ [0, T ], i = 1, 2, . . . ,m, li(s,v)
v is increas-

ing in v for v large enough. Additionally, there exists ℘i > ℘ > ς∗ + τ∗ >

max{ς∗, τ∗} such that lim inf |v|→∞
li(s,v)v−2Li(s,v)

|v|℘i
≥ ci > 0 uniformly for

s ∈ [0, T ], i = 1, 2, . . . ,m, where ℘ = mini=1,2,...,m{℘i}.

Theorem 3.1. Suppose that (A1), (A2), (A3) and (A4) hold, then FADE (1.1) has
infinitely many solutions {vk} satisfying

Θ(vk) =
1

2
∥vk∥2 −

∫ T

0

[
F (x, vk(x)) +

m∑
i=1

Li(x, vk(x))

]
dx → 0−, as k → ∞.

Proof. Evidently, Ψ(v) ≥ 0 and Ψ(v) → ∞ as ∥v∥ → ∞ on any finite dimensional
subspace. Combining (A2) and (A3), it is easily seen that Θλ̃ maps bounded sets
into bounded sets uniformly for λ̃ ∈ [1, 2]. What’s more, by virtue of (A1), Θλ̃(−v) =

Θλ̃(v) for all (λ̃, v) ∈ [1, 2]×Eϱ. On account of (A3), for any εi > 0, there exists Cεi

such that |Li(x, v(x))| ≤ εi|v|2 + Cεi |v|σ̃i , (i = 1, 2, . . . ,m). Hence, for ∥v∥ small
enough,

Θλ̃(v) ≥
1

2
∥v∥2 − T

m∑
i=1

εiA
2
3ϱ∥v∥2 − c̃∗∥v∥τ

∗

τ∗ − c̃∗∥v∥ς
∗

ς∗ (3.1)

≥
[
1

2
− TmεA2

3ϱ

]
∥v∥2 − c̃∗∥v∥τ

∗

τ∗ − c̃∗∥v∥ς
∗

ς∗

≥1

4
∥v∥2 − c̃∗∥v∥τ

∗

τ∗ − c̃∗∥v∥ς
∗

ς∗ ,
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combining with (A2), where ε := maxi=1,2,...,m{εi} ≤ 1
4TmA2

3ϱ
. Suppose τ∗ ≤ ς∗ and

set Ωk(τ
∗) := supv∈N∗

k ,∥v∥=1 ∥v∥τ∗ , Ωk(ς
∗) := supv∈N∗

k ,∥v∥=1 ∥v∥ς∗ , then Ωk(τ
∗) →

0,Ωk(ς
∗) → 0 as k → ∞. It is similar to the proof of Lemma 3.5 in [2] and Lemma 3.2

in [26], we omit the proving processes. Accordingly, for ∥v∥ = R∗
k := (8c̃∗Ωτ∗

k (τ∗) +

8c̃∗Ως∗

k (ς∗))1/(2−τ∗), we get Θλ̃(v) ≥
(R∗

k)
2

8 > 0. For another thing, if v ∈ M∗
k with

∥v∥ small enough, we acquire that

Θλ̃(v) ≤
1

2
∥v∥2 − c̃∗

∫ T

0

|v|τ
∗
dx+

m∑
i=1

∫ T

0

εi|v|2 + Cεi |v|σ̃idx (3.2)

≤c̃∗∥v∥2 +
m∑
i=1

c̃∗∥v∥σ̃i − c̃∗∥v∥τ
∗

<0,

for τ∗ ∈ (1, 2), 2 ≤ σ̃i < ∞, i = 1, 2, . . . ,m, due to (A2), (A3), and the equivalence
of norm in finite dimensional space. The above discussions indicate that b∗k(λ̃) <

0 ≤ a∗k(λ̃) for λ̃ ∈ [1, 2]. Additionally, if v ∈ N∗
k with ∥v∥ ≤ R∗

k, we can acquire that

Θλ̃(v) ≥ −c̃∗∥v∥τ
∗

τ∗ − c̃∗∥v∥ς
∗

ς∗ ≥ −c̃∗Ωτ∗

k (τ∗)Rτ∗

k − c̃∗Ως∗

k (ς∗)Rς∗

k → 0,

as k → ∞, in terms of (3.1). Consequently, d∗k(λ̃) → 0 as k → ∞. By Lemma 2.4,
we get there exist λ̃n∗ → 1, v(λ̃n∗) ∈ Mn∗ such that

Θ′
λ̃n∗

|Mn∗
(v(λ̃n∗)) = 0, Θλ̃n∗

(v(λ̃n∗)) → c̃∗k ∈ [d̃∗k(2), b̃
∗
k(1)], as n∗ → ∞. (3.3)

Subsequently, we certify that {v(λ̃n∗)} is bounded in Eϱ. On account of

Θ′
λ̃n∗

|Mn∗
(v(λ̃n∗)) = 0,

then

1 =

∫ T

0

λ̃n∗f(x, v(λ̃n∗))v(λ̃n∗) +
∑m

i=1 li(x, v(λ̃n∗))v(λ̃n∗)

∥v(λ̃n∗)∥2
dx.

If, up to a subsequence, ∥v(λ̃n∗)∥ → ∞ as n∗ → ∞, thus, as a result of (A2), we
acquire

1 + o(1) =

∫ T

0

∑m
i=1 li(x, v(λ̃n∗))v(λ̃n∗)

∥v(λ̃n∗)∥2
dx,

where o(1) → 0 as n∗ → ∞. Distinctly, it is a contradiction if (A4)(i) holds.
In addition, choose ϖn∗ =

v(λ̃n∗ )

∥v(λ̃n∗ )∥
, then, ϖn∗ ⇀ ϖ in Eϱ, ϖn∗ → ϖ in

L2([0, T ]) and ϖn∗(x) → ϖ(x) for a.e. x ∈ [0, T ].

Case 1. If, ϖ ̸= 0 in Eϱ, and lim|v|→∞
li(x,v)

v = −∞ in (A4) (i′), for n∗ large
enough, via Fatou’s Lemma, we get that

−1 + o(1) =

∫ T

0

−
∑m

i=1 li(x, v(λ̃n∗))v(λ̃n∗)

|v(λ̃n∗)|2
|ϖn∗ |2dx
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≥ c̃∗ +

∫
{ϖ ̸=0}∩{|v(λ̃n∗ )|≥c̃∗}

−
∑m

i=1 li(x, v(λ̃n∗))v(λ̃n∗)

|v(λ̃n∗)|2
|ϖn∗ |2dx

→ ∞,

a contradiction. It is similar if lim|v|→∞
li(s,v)

v = ∞ in (A4)(i
′′).

Case 2. If, ϖ = 0 in Eϱ, we denote

Θλ̃n∗
(s̃n∗v(λ̃n∗)) := max

s̃∈[0,1]
Θλ̃n∗

(s̃v(λ̃n∗)), (3.4)

then

lim
n∗→∞

Θλ̃n∗
(s̃n∗v(λ̃n∗)) = ∞, ⟨Θ′

λ̃n∗
(s̃n∗v(λ̃n∗)), s̃n∗v(λ̃n∗)⟩ = 0.

As a matter of fact, for any c̃∗ > 0 and ϑ∗
n∗

:= (4c̃∗)
1
2ϖn∗ , due to (4c̃∗)

1
2 ∥v(λ̃n∗)∥−1 ∈

(0, 1) and
∫ T

0
Li(x, ϑ

∗
n∗
(x))dx → 0 (i = 1, 2, . . . ,m),

∫ T

0
F (x, ϑ∗

n∗
(x))dx → 0, we

obtain, for n∗ large enough, that

Θλ̃n∗
(s̃n∗v(λ̃n∗)) ≥Θλ̃n∗

(ϑ∗
n∗
)

=2c̃∗ −
∫ T

0

m∑
i=1

Li(x, ϑ
∗
n∗
(x))dx− λ̃n∗

∫ T

0

F (x, ϑ∗
n∗
(x))dx

≥c̃∗,

which means that

lim
n∗→∞

Θλ̃n∗
(s̃n∗v(λ̃n∗)) = ∞. (3.5)

We note that Θλ̃n∗
(0) = 0 and (3.3) holds, combining with (3.5), we observe that

there exists s̃n∗ ∈ (0, 1), and so by (3.4), we deduce

d

ds̃
|s̃=s̃n∗

Θλ̃n∗
(s̃v(λ̃n∗)) = 0

for any n∗ ∈ N. Thereby, we have

⟨Θ′
λ̃n∗

(s̃n∗v(λ̃n∗)), s̃n∗v(λ̃n∗)⟩ = s̃n∗

d

ds̃
|s̃=s̃n∗

Θλ̃n∗
(s̃v(λ̃n∗)) = 0.

It follows that

∞ = lim
n∗→∞

(
Θλ̃n∗

(s̃n∗v(λ̃n∗))−
1

2
⟨Θ′

λ̃n∗
(s̃n∗v(λ̃n∗)), s̃n∗v(λ̃n∗)⟩

)
≤ lim

n∗→∞
λ̃n∗

∫ T

0

1

2
f(x, s̃n∗v(λ̃n∗))s̃n∗v(λ̃n∗)− F (x, s̃n∗v(λ̃n∗))dx

+

m∑
i=1

∫ T

0

1

2
li(x, s̃n∗v(λ̃n∗))s̃n∗v(λ̃n∗)− Li(x, s̃n∗v(λ̃n∗))dx.

If (A4) (i
′) holds, we have that

1

2
f(s, χ̃v)χ̃v − F (s, χ̃v) +

m∑
i=1

[
1

2
li(s, χ̃v)χ̃v − Li(s, χ̃v)

]
≤ c̃∗
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for all χ̃ > 0 and v ∈ R, which is a contradiction.
If (A4)(i

′′) holds, we have that

∞ ≤c̃∗
∫ T

0

|v(λ̃n∗)|τ
∗
dx+

∫ T

0

1

2
li(x, v(λ̃n∗))v(λ̃n∗)− Li(x, v(λ̃n∗))dx,

which means that∫ T

0

1

2
li(x, v(λ̃n∗))v(λ̃n∗)− Li(x, v(λ̃n∗))dx → ∞.

Whereas, owing to the property of v(λ̃n∗), we know that

b̃∗k(1) ≥λ̃n∗

∫ T

0

1

2
f(x, v(λ̃n∗))v(λ̃n∗)− F (x, v(λ̃n∗))dx

+

∫ T

0

m∑
i=1

1

2
li(x, v(λ̃n∗))v(λ̃n∗)− Li(x, v(λ̃n∗))dx

≥1

2

∫ T

0

m∑
i=1

1

2
li(x, v(λ̃n∗))v(λ̃n∗)− Li(x, v(λ̃n∗))dx

+
1

2

m∑
i=1

ci
2

∫ T

0

|v(λ̃n∗)|℘idx− 1

2
c̃∗
∫ T

0

|v(λ̃n∗)|τ
∗
dx− 1

2
c̃∗
∫ T

0

|v(λ̃n∗)|ς
∗
dx

≥1

2

∫ T

0

m∑
i=1

1

2
li(x, v(λ̃n∗))v(λ̃n∗)− Li(x, v(λ̃n∗))dx

+
1

2
c̃∗
∫ T

0

|v(λ̃n∗)|℘dx− 1

2
c̃∗
∫ T

0

|v(λ̃n∗)|τ
∗
dx− 1

2
c̃∗
∫ T

0

|v(λ̃n∗)|ς
∗
dx

≥c̃∗
∫ T

0

m∑
i=1

1

2
li(x, v(λ̃n∗))v(λ̃n∗)− Li(x, v(λ̃n∗))dx− c̃∗,

where ℘ = mini=1,2,...,m{℘i}, c̃∗ represents different positive exact values that are
unrelated, which contradicts the prior estimate. The above discussions suggest
that {v(λ̃n∗)} is bounded. Applying similar arguments of the proof of Theorem 12
in [26] or Theorem 3.1 in [2], we have {v(λ̃n∗)} has a convergent subsequence for
every k. According to Lemma 2.4, we are aware of that Θ = Θ1 has infinitely many
nontrivial critical points {vk} ∈ W\{0} satisfying Θ1(vk) → 0− as k → ∞. The
proof is complete.

Remark 3.1. Conditions (A3) and (A4)(i) involve the case of li ≡ 0 (i = 1, 2, . . . ,m).

In what follows, we consider the case that li ≡ 0 (i = 1, 2, . . . ,m), and list some
hypotheses which are different from Theorem 3.1. The assumptions are made as
follows:

(B1) f ∈ C([0, T ]× R,R), |f(s, v)| ≤ ℓ∗(1 + |v|η∗−1), a.e. s ∈ [0, T ], v ∈ R with
η∗ ∈ (2,∞), ℓ∗ > 0, and f(s, v)v ≥ 0 for all v > 0.

(B2) lim inf |v|→∞
f(s,v)v
|v|ι ≥ d̂∗ > 0 uniformly for s ∈ [0, T ], where ι > 2.

(B3) lim|v|→0
f(s,v)

v = 0 uniformly for s ∈ [0, T ]; f(s,v)
v is an increasing function

of v for every s ∈ [0, T ].
(B4) f(s,−v) = −f(s, v) for any v ∈ Eϱ, s ∈ [0, T ].



Sturm-Liouville boundary value problems for FADE 687

Theorem 3.2. Suppose that (B1), (B2), (B3) and (B4) hold, then FADE (1.1) with
li ≡ 0 (i = 1, 2, . . . ,m) has infinitely many solutions {vk} satisfying

Θ(vk) =
1

2
∥vk∥2 −

∫ T

0

F (x, vk(x))dx → ∞, as k → ∞.

Proof. Consider Θλ̃ : Eϱ → R defined by

Θλ̃(v) :=Λ(v)− λ̃Ψ(v) =
1

2
∥v∥2 − λ̃

∫ T

0

F (x, v(x))dx, ∀v ∈ Eϱ, λ̃ ∈ [1, 2]. (3.6)

Namely, Λ(v) = 1
2∥v∥

2, Ψ(v) =
∫ T

0
F (x, v(x))dx. Obviously, Ψ(v) ≥ 0,Λ(v) → ∞

as ∥v∥ → ∞, Θλ̃(−v) = Θλ̃(v) for all (λ̃, v) ∈ [1, 2]× Eϱ.
Clearly, by conditions (B1), (B2), (B3), for any ε̃ > 0, there exists C∗

ε̃ such that
f(s, v)v ≥ C∗

ε̃ |v|ι − ε̃|v|2,∀v ∈ R. Consequently, it can be easily proved, for cer-
tain R∗

k > 0 large enough, that ã∗k(λ̃) := maxv∈M∗
k ,∥v∥=R∗

k
Θλ̃(v) ≤ 0 uniformly

for λ̃ ∈ [1, 2]. For another, due to (B3), for any ε̃ > 0, there exists C∗
ε̃ > 0

such that |f(s, v)| ≤ C∗
ε̃ |v|η

∗−1 + ε̃|v|,∀s ∈ [0, T ], v ∈ R. Consider Ωk(η
∗) :=

supv∈N∗
k ,∥v∥=1 ∥v∥η∗ , then Ωk(η

∗) → 0 as k → ∞ (see [2, 26]). Hence, for v ∈ N∗
k

and ε̃ small enough, we have

Θλ̃(v) =
1

2
∥v∥2 − λ̃

∫ T

0

F (x, v(x))dx

≥1

2
∥v∥2 − λ̃ε̃

2
∥v∥22 −

λ̃C∗
ε̃

η∗
∥v∥η

∗

η∗

≥1

4
∥v∥2 − c̃∗∥v∥η

∗

η∗

≥1

4
∥v∥2 − c̃∗Ωη∗

k (η∗)∥v∥η
∗
.

If we take r∗k = (4c̃∗η∗Ωη∗

k (η∗))
1

2−η∗ , then for v ∈ N∗
k with ∥v∥ = r∗k, we have

Θλ̃(v) ≥ (4c̃∗η∗Ωη∗

k )
2

2−η∗

(
1

4
− 1

4η∗

)
:= bk,

which indicates that b̃∗k(λ̃) := infv∈N∗
k ,∥v∥=r∗k

≥ bk → ∞ uniformly for λ̃ as k → ∞.

Thus, in virtue of Lemma 2.5, for a.e. λ̃ ∈ [1, 2], there exists a sequence {vkn∗
(λ̃)}∞n∗=1

such that

sup
n∗

∥vkn∗
(λ̃)∥ < ∞, Θ′

λ̃
(vkn∗

(λ̃)) → 0, Θλ̃(v
k
n∗
(λ̃)) → c̃∗k(λ̃) ≥ b̃∗k(λ̃) ≥ bk, n∗ → ∞.

Additionally, since c̃∗k(λ̃) ≤ supv∈Z∗
k
Θ(v) := ck and Eϱ is embedded compactly

to L2([0, T ]), which is similar to the proof of Lemma 12 in [11] or Lemma 2.7
in [20], we omit the proving processes, and by standard argument (see [2, 26]),
{vkn∗

(λ̃)}∞n∗=1 has a convergent subsequence. Therefore, there exists ℏk(λ̃) such
that Θ′

λ̃
(ℏk(λ̃)) = 0 and Θλ̃(ℏ

k(λ̃)) ∈ [bk, ck]. Obviously, we may find λ̃n∗ → 1 as
n∗ → ∞, and {ℏn∗}∞n∗=1 ⊂ Eϱ such that

Θ′
λ̃n∗

(ℏn∗) = 0, Θλ̃n∗
(ℏn∗) ∈ [bk, ck], (3.7)
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with ck > bk > 0.
From now on, we attest that {ℏn∗}∞n∗=1 is bounded. Suppose that ∥ℏn∗∥ → ∞

as n∗ → ∞. Consider Ξn∗ :=
ℏn∗

∥ℏn∗∥
. Accordingly, up to a subsequence, we gain

Ξn∗ ⇀ Ξ in Eϱ, Ξn∗ → Ξ in L2([0, T ]), Ξn∗(s) → Ξ(s) a.e. s ∈ [0, T ].
Case 1. Ξ ̸= 0 in Eϱ. On account of Θ′

λ̃n∗
(ℏn∗) = 0, we get that

∫ T

0

f(s, ℏn∗)ℏn∗

∥ℏn∗∥2
ds ≤ c̃∗.

In addition, via Fatou’s Lemma and conditions (B1) and (B2), we get that∫ T

0

f(s, ℏn∗)ℏn∗

∥ℏn∗∥2
ds =

∫
{Ξn∗ (s)̸=0}

|Ξn∗(s)|2
f(s, ℏn∗)ℏn∗

|ℏn∗(s)|2
ds → ∞,

a contradiction.
Case 2. Ξ = 0 in Eϱ. Similar to the arguments in Theorem 3.1, we set

Θλ̃n∗
(s̃n∗ℏn∗) := max

s̃∈[0,1]
Θλ̃n∗

(s̃ℏn∗). (3.8)

For any c̃∗ > 0 and Ξ̃n∗ := (4c)
1
2Ξn∗ , n∗ large enough, we gain that

Θλ̃n∗
(s̃n∗ℏn∗) ≥ Θλ̃n∗

(Ξ̃n∗) = 2c̃∗ − λ̃n∗

∫ T

0

F (s, Ξ̃n∗)ds ≥ c̃∗,

which means that

lim
n∗→∞

Θλ̃n∗
(s̃n∗ℏn∗) = ∞. (3.9)

We notice that Θλ̃n∗
(0) = 0 and (3.7) holds, combining with (3.9), we see that

there exists s̃n∗ ∈ (0, 1), and so by (3.8), we deduce d
ds̃ |s̃=s̃n∗

Θλ̃n∗
(s̃ℏn∗) = 0 for any

n∗ ∈ N. Thereby, we have

⟨Θ′
λ̃n∗

(s̃n∗ℏn∗ , s̃n∗ℏn∗⟩ = s̃n∗

d

ds̃
|s̃=s̃n∗

Θλ̃n∗
(s̃ℏn∗) = 0.

It follows that ∫ T

0

1

2
f(t, s̃n∗ℏn∗)s̃n∗ℏn∗ − F (t, s̃n∗ℏn∗)dt → ∞.

Via condition (B3), ℑ(x) = 1
2x

2f(t, y)y−F (t, xy) is increasing in x ∈ [0, 1], thereby,
1
2f(t, y)y − F (t, y) is increasing in y > 0. Together with the oddness of f, the
following inequality is obtained∫ T

0

1

2
f(t, ℏn∗)ℏn∗ − F (t, ℏn∗)dt ≥

∫ T

0

1

2
f(t, s̃n∗ℏn∗)s̃n∗ℏn∗ − F (t, s̃n∗ℏn∗)dt → ∞,

it is a contraction since

λ̃n∗

∫ T

0

1

2
f(t, ℏn∗)ℏn∗ − F (t, ℏn∗)dt =Θλ̃n∗

(ℏn∗)−
1

2
⟨Θ′

λ̃n∗
(ℏn∗), ℏn∗⟩
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=Θλ̃n∗
(ℏn∗) ∈ [bk, ck].

According to bk → ∞ as k → ∞, we acquire that FADE (1.1) with li ≡ 0 (i =
1, 2, . . . ,m) has infinitely many nontrivial high energy solutions. The proof is com-
plete.

Combining the above two theorems and their proof, we have the following corol-
lary.

Corollary 3.1. Suppose that (A1), (A2), (A3) hold, and li(s,v)
v is increasing in v

for v large enough. Moreover, suppose that

lim inf
|v|→∞

li(s, v)v

|v|ιi
≥ di > 0, lim inf

|v|→∞

li(s, v)v − 2Li(s, v)

|v|℘i
≥ ci > 0

uniformly for s ∈ [0, T ], where ιi > 2, i = 1, 2, . . . ,m, ℘i > ℘ > ς∗ + τ∗ >
max{ς∗, τ∗}, ℘ = mini=1,2,...,m{℘i}. Then FADE (1.1) has two sequences {vk} and
{ṽk} of nontrivial solutions such that

Θ(vk) → 0−, Θ(ṽk) → ∞, as k → ∞.

Remark 3.2. Boundary value conditions include the following four cases:
(i) β = 0, α ̸= 0, the boundary value conditions of FADE (1.1) convert into

v(0) = 0, γv(T ) + σ
[
1
2 0D

−ζ
x (v′(T )) + 1

2 xD
−ζ
T (v′(T ))

]
= 0.

(ii) σ = 0, γ ̸= 0, the boundary value conditions of FADE (1.1) convert into
v(T ) = 0, αv(0)− β

[
1
2 0D

−ζ
x (v′(0)) + 1

2 xD
−ζ
T (v′(0))

]
= 0.

(iii) β = σ = 0, the boundary value conditions of FADE (1.1) convert into
v(0) = 0, v(T ) = 0.

(iv) If ζ = β = σ = 0, FADE (1.1) convert into second-order differential equa-
tions with Dirichlet boundary value problem.

To sum up, our study is more general than the previous literature.

Example 3.1. Choose f(s, v) = v|v|τ∗−2 ln(2 + |v|), li(s, v) = κ̃iv ln(1 + |v|), (i =
1, 2, . . . ,m) where τ∗ ∈ (1, 2). It is easily to see that (A1), (A2), (A3) and (A4)(i

′)
hold while κ̃i < 0 (i = 1, 2, . . . ,m); (A1), (A2), (A3) and (A4)(i

′′) hold with ℘i = 2
while κ̃i > 0 (i = 1, 2, . . . ,m). Take

li(s, v) =

{
v3, |v| ≤ 1,

c̃∗i |v|
− 1

2 ln(1 + |v|), |v| ≥ 1,

where c∗i (i = 1, 2, . . . ,m) is well chosen, then (A1), (A2), (A3) and (A4)(i) hold.
By Theorem 3.1, FADE (1.1) has infinitely many solutions.
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