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Abstract The global dynamics of the Nicholson’s blowfly reaction-diffusion
model with zero Dirichlet boundary condition is less understood. In this paper,
we provide a discrete version of diffusive Nichlson’s blowflies equation with zero
Dirichlet boundary condition. Local and global stability of the equilibria are
obtained by some comparison arguments, fluctuation method and the theory
of exponential ordering. Hopf bifurcation at the positive equilibrium and the
global existence of the periodic solutions are studied by local and global Hopf
bifurcation theory.
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1. Introduction
Gurney et al. [9] proposed the following delayed model

du(t)

dt
= −δu(t) + pu(t− τ)e−au(t−τ) (1.1)

to describe the population dynamics of the Australian sheep-blowfly, hoping to
explain the oscillatory phenomena in Nicholson’s laboratory experiments [15]. Here
p is the maximum per capita daily egg production rate, 1/a is the size at which
the blowfly population reproduces at its maximum rate, δ is the per capita daily
adult death rate, and τ is the generation time. Since the numerical solutions of
(1.1) in [9] agree with the real data of the Nicholson’s laboratory experiments [15]
very well, (1.1) has been widely quoted as the Nicholson blowflies equation and has
been extensively studied in the literature, see e.g. [2, 12, 23] and references therein.
Considering the mobility of the adults and immobility of eggs, Yang and So [27]
extended (1.1) to the following diffusive form

du(t, x)

dt
= d∆u(t, x)− δu(t, x) + pu(t− τ)e−au(t−τ), x ∈ Ω, (1.2)

which is known as the diffusive Nicholson’s blowfly model. For (1.2) with Neumann
boundary condition, Yang and So [27] obtained results on the global attractivity of
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positive steady state and the existence of Hopf bifurcations. When zero Dirichlet
boundary condition

u(t, x) = 0, on (0,∞)× ∂Ω, (1.3)
is imposed, numerics suggests there is rich dynamics that is less understood. So
and Yang [20] and Yi et al. [28] studied the global attractivity of the steady states.
In particular, they obtained that:

(R) Assume p/δ ∈ (1, e2], if p > dλ1+ δ then there exists a unique positive steady
state which attracts all solutions of (1.2)-(1.3) with the positive initial value,
where λ1 is the principle eigenvalue of −∆.

This result implies that for any delay τ , the newly bifurcated positive steady state
is globally asymptotically stable when the diffusion coefficient d is small enough.
Then a natural question is : when p ≫ dλ1 + δ, would the stability of the positive
steady state depends on time delay τ? In such a case, So et al. [19] proposed a
numerical scheme to verify that time delay can destabilize the positive steady state
due to the occurrence of periodic solutions.

In 1996, Busenberg and Huang [3] first studied the Hopf bifurcating periodic
solutions arising from the positive steady state of the delayed reaction diffusion
equation with the zero Dirichlet boundary condition. For the following Hutchison
equation: 

∂u(t, x)

∂t
=
∂2u(t, x)

∂2x2
+ ku(t, x)[1− u(t− r, x)], t > 0,

u(t, 0) = u(t, π) = 0, t ≥ 0.

Combining the Lyapunov-Schmidt reduction and the implicit function theorem,
they proved that for each fixed k > 1, 0 < k − 1 ≪ 1, there is an r(k) > 0 such
that the steady state uk is locally stable if 0 ≤ r < r(k) and unstable if r > r(k).
Moreover, there exists a sequence {rkn

}∞n=0, r(k) = rk0
< rk1

< · · · , such that there
is a Hopf bifurcation arising from uk as the delay r monotonically passes through
each rkn

. Then, motivated by the methods of Busenberg and Huang [3], many
researchers obtained similar results for different delayed population models with
the zero Dirichlet boundary condition( see e.g. [14,21,22,25,26,31]), for the models
with nonlocal or distributed delay (see e.g. [1, 5–8, 29]) and for reaction-diffusion-
advection models (see [4] and [11]). Note that in the aforementioned works, the
Hopf bifurcation analysis are only available when the bifurcated steady state is
close to zero. Therefore, these methods can not be applied to answer the question
for the Nicholson’s blowflies model, i.e. when p ≫ dλ1 + δ, would the stability of
the positive steady state of (1.2)-(1.3) depends on time delay τ?

Liao and Lou [13] proposed a discrete analogue of the Hutchinson equation and
studied the bifurcation problems. The obtained results has deep implications for the
original diffusive equation. This motivates us to consider a two-patch Nicholson’s
blowfly model, as a discretized approximation of (1.2)-(1.3), aiming to understand
the numerical observations for (1.2)-(1.3). With the variable changes ũ = au, τ̃ =
δτ, β = p/δ, t̃ = δt for dimensionless, (1.1) can be written as

du(t)

dt
= −u(t) + βu(t− τ)e−u(t−τ). (1.4)

Using the method in [13], we consider a two-patch Nicholson’s blowflies model. Let
ui denote the population density of a single species in patch i (i = 1, 2), d denote
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the dispersal rate from patch to patch. Corresponding to the Dirichlet boundary
condition, the two-patch model will be

du1(t)

dt
= d[u2(t)− 2u1(t)]− u1(t) + βu1(t− τ)e−u1(t−τ),

du2(t)

dt
= d[u1(t)− 2u2(t)]− u2(t) + βu2(t− τ)e−u2(t−τ).

(1.5)

Define the positive parameter

µ :=
β

d+ 1
. (1.6)

Given ϕ ∈ C([−τ, 0],R2
+)\{0}, we often write ϕ = (ϕ1, ϕ2) when its components are

used. Let u(t, ϕ) = (u1(t, ϕ), u2(t, ϕ)) be the solution of (1.5) staring from ϕ. The
first result of this paper is about the global convergence of solutions to equilibrium.

Theorem 1.1. (i) If µ < 1, then u(t, ϕ) → (0, 0) exponentially as t→ ∞.
(ii) If µ = 1, then u(t, ϕ) → (0, 0) as t→ ∞.

(iii) If µ > 1, then (1.5) admits a unique positive equilibrium u∗ with the following
explicit form

u∗ = (lnµ, lnµ).

Further, u(t, ϕ) → u∗ exponentially as t → ∞ provided that either of the
following holds:
(a) µ ∈ (1, e2];
(b) µ > e2 and τ < τ∗, where τ∗ = maxη>2βµe−1 τ(η) with τ(η) being the

minimal solution to

ηe−(d+1+η)τ (1 + e−2dτ ) + 2βµe−1 = 0.

Clearly, limη→2βµe−1 τ(η) = 0 = limη→∞ τ(η). Hence, τ∗ = maxη>2βµe−1 τ(η) is
attained at some η∗ > 2βµe−1. Further, τ∗ is decreasing in µ with

lim
µ→∞

τ∗(µ) = 0.

The second result is about the local and global Hopf bifurcations.

Theorem 1.2. There exists τ−0 and τ−1 (τ−1 > τ−0 > τ∗) such that the following
statements hold.

(i) For µ > e2, (1.5) undergoes a Hopf bifurcation at u∗ when τ = τ−0 . Further, it
is a supercritical (subcritical) Hopf bifurcation if ReC1(0) < 0 (ReC1(0) > 0),
where ReC1(0) will be given in (3.11) in the Appendix.

(ii) For µ ∈ (e2, e
4d+2
d+1 ], (1.5) has at least one periodic solution when τ > τ−1 .

The rest of this paper is organized as follows. In Section 2 the local and global
stability of the equilibria are investigated for the two-patch model. Section 3 deals
with the Hopf bifurcations and their global continuation of the branch of periodic
solutions from Hopf bifurcation. The derivation of the results on the direction of
the Hopf bifurcations and the stability of bifurcating periodic solutions are provided
in the Appendix.
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2. Convergence to equilibrium
In this section, we first study the existence of equilibria and their linear stabil-
ity. Then we establish the convergence to equilibrium by appealing to some useful
tools, including the monotone dynamics system theory, super and sub solutions
method, exponential ordering for delay differential equations as well as the fluctu-
ation method.

Clearly, (0, 0) is an equilibrium of (1.5). Linearizing it at (0, 0) yields{
u′1(t) = d[u2(t)− 2u1(t)]− u1(t) + βu1(t− τ),

u′2(t) = d[u1(t)− 2u2(t)]− u2(t) + βu2(t− τ),
(2.1)

which admits the comparison principle since the quasi-monotone condition for delay
differential equation is satisfied. Thus, the solution of (2.1) provides a super solution
of (1.5) thanks to the inequality βs ≥ βse−s, s ≥ 0. Let λ∗ be the unique real
solution of

λ+ d+ 1− βe−λτ = 0.

Consequently, (u1(t), u2(t)) := (leλ
∗t, leλ

∗t), l > 0 solves (2.1). Moreover, λ∗ < 0 if
µ < 1. As such, we have the following convergence to (0, 0).

Lemma 2.1. If µ < 1, then u(t, ϕ), solution of (1.5), converges to (0, 0) exponen-
tially as t→ ∞.

Proof. Choose l > ∥ϕ∥. Then by the comparison principle we obtain 0 ≤ u(t, ϕ) ≤
(leλ

∗t, leλ
∗t). Since λ∗ < 0, the proof is complete.

When µ > 1, we see that (0, 0) is linearly unstable. This gives rise to the
existence of positive equilibrium.

Lemma 2.2. If µ > 1, then (1.5) admits a unique positive equilibrium, having the
explicit form (u∗1, u

∗
2) = (lnµ, lnµ).

Proof. An equilibrium (u∗1, u
∗
2) must satisfy{

d[u∗2 − 2u∗1]− u∗1 + βu∗1e
−u∗

1 = 0,

d[u∗1 − 2u∗2]− u∗2 + βu∗2e
−u∗

2 = 0.
(2.2)

Assuming u∗1 = u∗2 yields that (lnµ, lnµ) is the unique solution of (2.2). It then
suffices to prove that any equilibrium has the same components. Let u∗1/u∗2 := w.
Next we prove w = 1. Using (2.2) we obtain that (u∗2, w) satisfies the following
system: {

d[1/w − 2]− 1 + βe−u∗
2w = 0,

d[w − 2]− 1 + βe−u∗
2 = 0.

(2.3)

From the first equation of (2.3) we have u∗2 = ln[β/(1−dw+2d)], which is increasing
in w. From the second equation of (2.3) we have u∗2 = ln[β/(1−d/w+2d)]/w, which
is decreasing in w. These two functions have only one intersection at w = 1.

Linearizing (1.5) at (u∗1, u
∗
2) = (lnµ, lnµ) we obtain{

u′1(t) = d[u2(t)− 2u1(t)]− u1(t) + (d+ 1)
(
1− lnµ

)
u1(t− τ),

u′2(t) = d[u1(t)− 2u2(t)]− u2(t) + (d+ 1)
(
1− lnµ

)
u2(t− τ),

(2.4)
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of which, the characteristic equation is

∆(λ, τ) := det(λI −A−He−λτ ) = 0,

where

A =

−2d− 1 d

d −2d− 1

 , H =

(d+ 1)
(
1− lnµ

)
0

0 (d+ 1)
(
1− lnµ

)
 . (2.5)

By direct computations, we obtain

∆(λ, τ) = λ2 + β1λ+ e−λτ (η1λ+ η0) + δ0e
−2λτ + γ (2.6)

where

β1 := 2(2d+ 1),

η1 := 2(d+ 1)
(
lnµ− 1

)
,

γ := 3d2 + 4d+ 1,

η0 := 2(2d+ 1)(d+ 1)
(
lnµ− 1

)
,

δ0 := (d+ 1)2
(
lnµ− 1

)2
.

By analyzing the characteristic equation, we obtain the sufficient and necessary
conditions for the linear stability of the positive equilibrium.

Lemma 2.3. All roots of the characteristic equation (2.6) have negative real parts
if and only if µ ∈ (1, e2] or µ > e2 with τ < τ−0 , where

τ−0 :=
1

(d+ 1)

√(
1− lnµ

)2 − 1
arccos

1

1− lnµ
. (2.7)

Proof. We employ a continuation method [16, corollary 2.4] with τ being the
parameter. As τ = 0, we see that the characteristic equation reduces to

λ2 + (β1 + η1)λ+ η0 + δ0 + γ = 0.

Solving it we obtain two solutions

λ+ = −2d− (d+ 1) lnµ, λ− = −(d+ 1) lnµ.

Clearly λ± < 0. As τ increases from 0 to ∞, a necessary condition to ensure that
(2.6) admits a root with positive real part is the following: there exists τ ′ > 0 such
that at τ = τ ′ equation (2.6) admits roots with zero real parts. Next we find the
minimal value of τ so that this condition holds.

Since ∆(0, τ) = 2d(d+ 1) lnµ+ (d+ 1)2(lnµ)2 > 0 for all τ ≥ 0, it then suffices
to consider the possible purely imaginary roots iω with ω > 0.

Note that (2.6) can be factored into

∆(λ, τ) = ∆+(λ, τ) ·∆−(λ, τ) = 0, (2.8)

where
∆+(λ, τ) = λ+ 3d+ 1− (d+ 1)

(
1− lnµ

)
e−λτ (2.9)
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and
∆−(λ, τ) = λ+ d+ 1− (d+ 1)

(
1− lnµ

)
e−λτ . (2.10)

As such, it remains to study the purely imaginary solutions of ∆±(λ, τ) = 0. Note
that λ = iω solves ∆+(λ, τ) = 0 if and only if

iω + 3d+ 1− (d+ 1)
(
1− lnµ

)
e−iωτ = 0,

in which, separating the real and imaginary parts yields{
3d+ 1− (d+ 1)

(
1− lnµ

)
cos(ωτ) = 0,

ω + (d+ 1)
(
1− lnµ

)
sin(ωτ) = 0,

leading to
(3d+ 1)2 + ω2 = (d+ 1)2

(
1− lnµ

)2
,

and consequently,

ω = ω+ :=

√
(d+ 1)2

(
1− lnµ

)2 − (3d+ 1)2 (2.11)

subject to the condition
lnµ >

4d+ 2

d+ 1
.

With such a condition, we compute to have a sequence of values of τ , at which
∆+(λ, τ) = 0 admits purely imaginary solutions iω+:

τ+k :=
1

ω+

[
arccos

3d+ 1

(d+ 1)
(
1− lnµ

) + 2kπ

]
, for k = 0, 1, · · · . (2.12)

Similarly, we compute to have a sequence of values of τ , at which ∆−(λ, τ) = 0
admits purely imaginary solutions iω−:

τ−k :=
1

ω−

[
arccos

1

1− lnµ
+ 2kπ

]
, for k = 0, 1, · · · , (2.13)

where
ω− := (d+ 1)

√
(lnµ− 2) lnµ, (2.14)

subject to the condition
lnµ > 2.

Since for any d ≥ 0,

4d+ 2

d+ 1
≥ 2, ω− ≥ ω+,

π

2
> arccos

3d+ 1

(d+ 1)
(
1− lnµ

) ≥ arccos
1

1− lnµ
> 0,

we can infer that τ+0 ≥ τ−0 . Hence, as τ increases from zero to infinity, the first
value of τ , at which purely imaginary roots emerges, is τ−0 . Meanwhile, lnµ > 2 is
necessary.

Therefore, all roots of (2.6) have negative real parts provided that either lnµ < 2
or τ < τ−0 holds.

When µ = 1, we see from the proof of Lemma 2.2 that no equilibria other than
zero exist. In such a case, below we show that all solutions converges to zero as t
tends to infinity.



698 H. Liu, Y. Cong & Y. Su

Lemma 2.4. If µ = 1, then u(t, ϕ) → (0, 0) as t→ ∞.

Proof. Define an auxiliary function

h(z) :=

{
βze−z, z < 1,

βe−1, z ≥ 1.

Clearly, h : R+ → R+ is nondecreasing (see Fig. 1).
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Figure 1. Function h(z).

Consider {
v′1(t) = d[v2(t)− 2v1(t)]− v1(t) + h(u1(t− τ)),

v′2(t) = d[v1(t)− 2v2(t)]− v2(t) + h(u2(t− τ)).
(2.15)

By a similar proof to Lemma 2.2 we can show that (2.15) admits a unique equilib-
rium that is (0, 0). Then by using the generic convergence theory on the solutions
of delay differential equations [17], we can infer that any solution v(t, ϕ) of (2.15)
converges to (0, 0). By the comparison principle, 0 ≤ u(t, ϕ) ≤ v(t, ϕ). The proof is
complete.

Remark 2.1. For µ > 1, the auxiliary equation (2.15) admits a unique positive
equilibrium (v∗1 , v

∗
2), which equals (lnµ, lnµ) when µ ≤ e and (µe−1, µe−1) when

µ > e. By the generic convergence theory again, we infer that any solution v(t, ϕ)
with ϕ ̸= 0 converges to (v∗1 , v

∗
2) as t → ∞. Then by the comparison principle we

have 0 ≤ u(t, ϕ) ≤ v(t, ϕ), and hence, we conclude that for any M > v∗1 and ϕ ̸= 0,
there exists t0 = t0(M,ϕ) > 0 such that

0 ≤ u(t, ϕ) ≤ [0,M ]2, t ≥ t0. (2.16)

When µ ≤ 1, there is no positive equilibrium and we have established the global
converge to zero in Lemmas 2.1 and 2.4. When µ > 1, a unique positive equilibrium
emerges. Next we consider the possible global convergence to it. From Lemma 2.3,
we have seen that it is locally stable if and only if either µ ∈ (1, e2] or µ > e2 with
τ < τ−0 . Then it is mandatory to restrict our attention on the following two cases:

(a) µ ∈ (1, e2];
(b) µ > e2 and τ < τ−0 .



Dynamics of a two-patch Nicholson’s blowflies. . . 699

We employ a fluctuation argument to deal with case (a).

Lemma 2.5. For µ ∈ (1, e2] and ϕ ̸= 0, u(t, ϕ) → (lnµ, lnµ) exponentially as
t→ ∞.

Proof. We first write (1.5) as the following integral form:u(t) = eAtu(0) +

∫ t

0

eAsF (u(t− s− τ))ds, t > 0,

u(t) = ϕ(t), t ∈ [−τ, 0].
(2.17)

where A is the 2× 2 matrix defined as in (2.5) and F : R2 → R2 is defined by

F (v) = (f(v1), f(v2))
T , with f(s) = βse−s. (2.18)

Define g : R2
+ → R+ by

g(x, y) =

{
infz∈[x,y] f(z), x ≤ y,

supz∈[y,x] f(z), y ≤ x.

Clearly, g(x, y) is non-decreasing in x and non-increasing in y. Moreover, g(x, x) =
f(x). Define

u∞i = lim sup
t→∞

ui(t), ui∞ = lim inf
t→∞

ui(t), i = 1, 2.

Note that all eigenvalues of matrix A are negative. It then follows that lim
t→∞

eAtu(0)→
(0, 0)T as t→ ∞. Hence, from (2.17) we have

u∞i = lim sup
t→∞

∫ t

0

(
eAsF (u(t− s− τ))i

)
ds.

In view of the positivity of eAs and the property of g, we employ the Fatou lemma
to obtain u∞1

u∞2

 ≤
∫ ∞

0

eAs

g(u∞1 , u1∞)

g(u∞2 , u2∞)

 ds. (2.19)

Define w∗ := max{u∞1 , u∞2 } and w∗ := min{u1∞, u2∞}. By using the symmetry of
A, we combine the two components of inequality (2.19) to obtain

w∗ ≤ g(w∗, w∗)

∫ ∞

0

[(
eAs
)
11

+
(
eAs
)
12

]
ds,

where
(
eAs
)
ij

is the entry of matrix eAs in the i-th row and j-th column. By virtue
of the Cayley-Hamilton theorem, we compute to have eAs = a0(s)I+a1(s)A, where

a0(s) =
λ1e

λ2s − λ2e
λ1s

λ1 − λ2
, a1(s) =

eλ1s − eλ2s

λ1 − λ2

with λ1 and λ2 being the two distinct eigenvalues of matrix A. As such,(
eAs
)
11

+
(
eAs
)
12

= a0(s)− (d+ 1)a1(s).
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Consequently,∫ ∞

0

[(
eAs
)
11

+
(
eAs
)
12

]
ds =

∫ ∞

0

a0(s)− (d+ 1)a1(s)ds

=
−λ1

λ2
+ λ2

λ1

λ1 − λ2
− (d+ 1)

− 1
λ1

+ 1
λ2

λ1 − λ2

= −λ1 + λ2 + d+ 1

λ1λ2

=
1

d+ 1
.

Therefore, we have
w∗ ≤ 1

d+ 1
g(w∗, w∗), (2.20)

and similarly,
w∗ ≥ 1

d+ 1
g(w∗, w

∗). (2.21)

By the definition of g, inequalities (2.20) and (2.21) become, respectively,

w∗ ≤ 1

d+ 1
sup

s∈[w∗,w∗]

f(s), w∗ ≥ 1

d+ 1
inf

s∈[w∗,w∗]
f(s).

Thus, there exist x, y ∈ [w∗, w
∗] such that f(x) = sups∈[w∗,w∗] f(s) and f(y) =

infs∈[w∗,w∗] f(s), and hence, w∗ ≤ 1
d+1f(x) and w∗ ≥ 1

d+1f(y). This implies that

1

d+ 1

f(x)

x
≥ w∗

x
≥ 1 =

1

d+ 1

f(lnµ)

lnµ
= 1 ≥ 1

d+ 1

f(y)

y
≥ w∗

y
.

Note that f(s)
s is decreasing. It then follows that w∗ ≥ y ≥ lnµ ≥ x ≥ w∗. Finally,

by the same arguments as in page 279 of [30], we obtain that w∗ = w∗ = lnµ
provided that µ ∈ (1, e2]. Therefore, u(t, ϕ) → (lnµ, lnµ) as t→ ∞, which, together
with the local stability established in Lemma 2.3, completes the proof.

Remark 2.2. It is unclear whether such a fluctuation method is extendable to the
diffusive Nicholson blowfly equation with zero Dirichlet boundary condition since
the solutions vanish in the boundary.

Case (b) in general is hard to be completely solved. It is related to the long-
standing open conjecture by Wright. Here we try to construct an exponential
ordering to cast (1.5) into the monotone dynamical system framework, in order to
verify the folklore in delay differential equations that small delay does not influence
the generic convergence to equilibria.

By Remark 2.1, we see that all solutions will eventually stay in the box [0,M ]2

with M > µe−1. And by the comparison principle, [0,M ]2 is positively invariant for
the solution semiflow of (1.5). For the sake of convenience, we pick up M = µe−1+1.
Define

S := {ϕ ∈ C([−τ, 0], [0,M ]2) : lim
t→∞

u(t, ϕ) is an equilibrium of (1.5)}. (2.22)

By appealing to [18, Theorem 4.1], we obtain the following result.
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Lemma 2.6. Assume that µ > e2. Then there exists τ∗ > 0 such that the interior
of S is dense in C([−τ, 0], [0,M ]2).

Proof. Recall that the nonlinearity G of (1.5) is

G[ϕ] = Aϕ(0) + F (ϕ(−τ)),

where A is defined in (2.5) and F is defined in (2.18). Clearly, the functional G
is of C1. By Remark 2.1, we see that all solutions eventually will stay in the box
[0,M ]2 with M > µe−1. This implies that condition (T) of [18, Theorem 4.1] holds
for (1.5). It then remains to construct a 2 × 2 cooperative matrix B such that
conditions (I ′B) and (SM ′

B) of [18, Theorem 4.1] hold.
Indeed, for η > 0, define 2× 2 irreducible and cooperative matrix B by

B :=

−(2d+ 1 + η), d

d −(2d+ 1 + η)

 . (2.23)

Since B is irreducible, we see that (SM ′
B) implies (I ′B). It then remains to find

η > 0 such that (SM ′
B) holds. As in [18], we define

KB := {ϕ ∈ C([−τ, 0],R2
+) : ϕ(t) ≥ eB(t−s)ϕ(s), τ ≤ s ≤ t ≤ 0}.

We write ϕ ≥B ψ iff ϕ− ψ ∈ KB and ψ ≫ 0 iff ψi(θ) > 0 for i = 1, 2, θ ∈ [−τ, 0].
Differentiating the functional G we obtain the differential operator DG below:

DG[ϕ]ψ = Aψ(0) + β

e−ϕ1(−τ)[1− ϕ1(−τ)] 0

0 e−ϕ2(−τ)[1− ϕ2(−τ)]

ψ(−τ).
Clearly, for every ϕ ∈ C([−τ, 0],R2

+) and ψ ∈ KB with ψ ≫ 0, we have

DG[ϕ]ψ = (A−B)ψ(0) + β

e−ϕ1(−τ)[1− ϕ1(−τ)] 0

0 e−ϕ2(−τ)[1− ϕ2(−τ)]

ψ(−τ)
≥ (A−B)eBτψ(−τ) + β

−|1− ϕ1(−τ)| 0

0 −|1− ϕ2(−τ)|

ψ(−τ)
= ηeBτψ(−τ) + β

−|1− ϕ1(−τ)| 0

0 −|1− ϕ2(−τ)|

ψ(−τ).
Thus, for ϕ ∈ [0,M ]2 we obtain

DG[ϕ]ψ ≥ [ηeBτ + βµe−1I]ψ(−τ).

Since eBτ is positive, it follows that DG[ϕ]ψ ≫ 0 provided that the two diagonal
entries of ηeBτ − βµe−1I are positive. Note that

B =

−(d+ 1 + η) 0

0 −(d+ 1 + η)

+

−d d

d −d

 := −(d+ 1 + η)I + P
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and IP = PI. Thus, by virtue of the Cayley-Hamilton theorem we compute to
have

eBτ = e(−(d+1+η)I+P )τ = e−(d+1+η)τePτ = e−(d+1+η)τ

(
I +

1− e−2dτ

2d
P

)
.

It then remains to check

ηe−(d+1+η)τ (1 + e−2dτ ) + 2βµe−1 > 0,

which is true for every η > 2βµe−1 and τ ≤ τ(η), where τ(η) is the minimal value
of τ such that ηe−(d+1+η)τ (1+ e−2dτ )+2βµe−1 = 0. Clearly, limη→∞ τ(η) = 0 and
limη→2βµe−1 τ(η) = 0. Therefore, τ∗ := maxη>2βµe−1 τ(η) is positive and achieved
at some η∗ > 2βµe−1. The proof is complete.
Proof of Theorem 1.1. (i) It follows from Lemma 2.1 and 2.4. (ii) The exis-
tence and uniqueness of positive equilibrium follow from Lemma 2.2. The global
convergence to (lnµ, lnµ) when µ ∈ (1, e2] follows from (2.5). Finally we show that
for µ > e2 and τ < τ∗, any solution u(t, ϕ) with ϕ ≥ 0, ̸≡ 0 tends to (lnµ, lnµ)
as t → ∞. Indeed, we have established in Lemma 2.6 the generic convergence to
(lnµ, lnµ) in [0,M ]2. Since in [0,M ]2 there are only two equilibria that are ordered
with respect to KB . By [17, Remark 1.4.2] we then can conclude that every solu-
tion converges to one of the two equilibria. Meanwhile, by the eventually strong
monotonicity we infer that u(t, ϕ) ≫ 0 for all large t. Hence, u(t, ϕ) converges to
(lnµ, lnµ), which, together with Remark 2.1, complete the proof.

3. Bifurcated periodic solutions and their global con-
tinuation

In the previous section, we have obtained the global convergence to equilibrium if
µ ∈ (0, e2]. For µ > e2, using delay τ as the parameter, we have seen that the
positive equilibrium u∗ is linearly stable when τ < τ−0 and linearly unstable when
τ > τ−0 . In such a case, we have also shown that u∗ is globally asymptotically
stable when τ ∈ [0, τ∗] for some τ∗ < τ−0 . In this section, we seek for time periodic
solutions when u∗ lose its linear stability by analyzing the local Hopf bifurcations
and their global continuation as τ is far away from τ−0 .

From the proof of Lemma 2.3, we see that the characteristic equation admits
pure imaginary roots if and only if τ = τ±k , which are defined by (2.12) and (2.13),
and the corresponding imaginary roots are ±iω± that are given in (2.11) and (2.14).
Let λ±k (τ) = α±

k (τ) ± iσ±
k (τ) be the root of (2.6) when τ is near τ±k , respectively,

such that α±
k (τ

±
k ) = 0 and σ±

k (τ
±
k ) = ω±.

By appealing to the standard Hopf bifurcation theory, we can infer that the
following transversality property guarantees the bifurcated time periodic solutions
when τ is close to τ±k from left-hand side or right-hand side.

Lemma 3.1. dα+
k

dτ
|τ=τ+

k
> 0 and dα−

k

dτ
|τ=τ−

k
> 0.

Proof. Differentiating both sides of (2.6) with respect to τ , we have

dλ

dτ
=

λe−λτ (η1λ+ η0) + 2δ0λe
−2λτ

2λ+ β1 − τe−λτ (η1 + η0) + η1e−λτ − 2τδ0e−2λτ
.
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By direct computations, we have

dα+
k

dτ
|τ=τ+

k
=

4(ω+)2d2

[2d+ 2τ+k d(3d+ 1)]2 + 4(τ+k )2(ω+)2d2

and
dα−

k

dτ
|τ=τ−

k
=

4(ω−)2d2

[2d+ 2τ−k d(3d+ 1)]2 + 4(τ−k )2(ω−)2d2
.

Clearly, both dα+
k

dτ
|τ=τ+

k
and dα−

k

dτ
|τ=τ−

k
are positive.

Remark 3.1. (i) If µ ∈ (e2, e
4d+2
d+1 ], then there exists only one sequence {τ−k }+∞

k=0

such that the characteristic equation (2.6) has a pair of purely imaginary roots
±iω−.

(ii) If µ > e
4d+2
d+1 , then there exist two sequences {τ−k }+∞

k=0 and {τ+k }+∞
k=0, such that

the characteristic equation (2.6) has a pair of purely imaginary roots ±iω−

and ±iω+, respectively. Moreover, {τ−k }+∞
k=0 and {τ+k }+∞

k=0 are in following
order:

τ−0 < τ−1 , τ
+
0 < τ−2 , τ

+
1 < · · · < τ−k , τ

+
k+1 < · · · .

With the transversal property in Lemma 3.1, we are led to the following results
about local Hopf bifurcations, as an application of Hopf bifurcation theory in [10].

Lemma 3.2. (i) If e2 < µ ≤ e
4d+2
d+1 , then (1.5) undergoes a Hopf bifurcation at

(u∗1, u
∗
2) when τ = τ−k , k = 0, 1, · · · ; When µ > e

4d+2
d+1 , if τ−k ̸= τ+k+1 for any

fixed k, then (1.5) undergoes a Hopf bifurcation at (u∗1, u
∗
2) when τ = τ−k and

τ = τ+k+1.
(ii) (1.5) undergoes a Hopf bifurcation at (u∗1, u

∗
2) when τ = τ−0 . Further, it is

a supercritical (subcritical) Hopf bifurcation if ReC1(0) < 0 (ReC1(0) > 0),
where ReC1(0) will be given in (3.11) in the Appendix.

Next, we shall study global continuation of periodic solutions bifurcating at
τ = τ−k , k = 0, 1, 2, ...., for (1.5) using global Hopf bifurcation theorem given by
[24]. We closely follow the notions used in [24] and assume µ ∈ (e2, e

4d+2
d+1 ]. Let

x(t) = (u1(τt), u2(τt)), the (1.5) can be rewritten as a general functional differential
equation in the following form

ẋ(t) = F (xt, τ, p) (3.1)

with

F (xt, τ, p) =

(
dτ [x2(t)− 2x1(t)]− τx1(t) + βτx1(t− 1)e−x1(t−1)

dτ [x1(t)− 2x2(t)]− τx2(t) + βτx2(t− 1)e−x2(t−1)

)
,

where xt(s) = (xt1(s), x
t
2(s)) = (x1(t + s), x2(t + s)) ∈ X, X = C([−1, 0],R2

+),
F : X × R+ × R+ → R2. Identifying the subspace of X consisting of all constant
mappings with R2

+, we obtain a mapping F̂ = F |R2
+×R+×R+

: R2
+ ×R+ ×R+ → R2.

Obviously, F̂ is twice continuously differentiable, i.e. the assumption (A1) in [24]
holds. Denote x̂ = (u∗1, u

∗
2) = (lnµ, lnµ), then (x̂, τ, p) is the stationary solution of

(3.1). Define
∆(x̂,τ̂ ,p̂)(γ) = γId −DF (x̂, τ̂ , p̂)(eγ·Id), (3.2)
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then det∆(x̂,τ̂ ,p̂)(γ) = 0 if and only is γ = τ̂λ which λ and τ̂ satisfying the char-
acteristic equation (2.6). Therefore, the assumption (A2) and (A3) hold duo to
the properties of the eigenvalues of the characteristic equation (2.6). Moreover
(x̂, τ−k , ω

−τ−k ), k = 0, 1, · · · , are the isolated centers defined as in [24]. By the
definitions of τ−k and ω−

k and Lemma 3.1, (A4) in [24] hold for m = 1, and the
corresponding

γ1(x̂, τ
−
k , ω

−τ−k ) = −1.

As in [24], let

Σ(F ) = Cl{(x, τ, p); x is a p-periodic solution of (3.1)} ⊂ X × R+ × R+,

N(F ) = {(x̂, τ, p); F (x̂, τ, p) = 0}.

We are now in the position to state the following global Hopf bifurcation theorem.

Theorem 3.1. For each fixed k, k = 0, 1, · · · , denote by C(x̂, τ−k , ω−τ−k ) the con-
nected component of (x̂, τ−k , ω−τ−k ) in Σ(F ), then C(x̂, τ−k , ω

−τ−k ) is unbounded.

Proof. From Theorem 3.3 in [24], one of the follwing holds:

(i) C(x̂, τ−k , ω
−τ−k ) is unbounded, or

(ii) C(x̂, τ−k , ω
−τ−k ) is bounded, C(x̂, τ−k , ω−τ−k ) ∩N(F ) is finite and∑

(x̂,τ,p)∈C(x̂,τ−
k ,ω−τ−

k )∩N(F )

γm(x̂, τ, p) = 0 (3.3)

for all m = 1, 2, · · · , where µm(x̂, τ, p) is the m-th crossing number of (x̂, τ, p)
if m ∈ J(x̂, τ, p), J(x̂, τ, p) denote the set of all positie integers m suth that
im 2π

p is a characteristic value of (x̂, τ, p), or it is zero if otherwise.

Note that γ1(x̂, τ−k , ω−τ−k ) = −1, we have that for each fixed k, k = 0, 1, · · · ,∑
(x̂,τ,p)∈C(x̂,τ−

k ,ω−τ−
k )∩N(F )

γ1(x̂, τ, p) < 0.

This is a contradiction to (3.3) with m = 1. Therefore the second alternative could
not happen, and C(x̂, τ−k , ω

−τ−k ) is unbounded for any k.
For the further structure of each C(x̂, τ−k , ω

−τ−k ), we prove the following prop-
erties of solutions of (1.5).

Theorem 3.2. (1.5) has no nontrivial positive periodic solution of period τ .

Proof. Note that any nontrivial positive τ -periodic solution of (1.5) is also a
nontrivial positive solution of the following ordinary differential system

du1(t)

dt
= d[u2(t)− 2u1(t)]− u1(t) + βu1(t)e

−u1(t),

du2(t)

dt
= d[u1(t)− 2u2(t)]− u2(t) + βu2(t)e

−u2(t).

(3.4)

In the following, we prove that (3.4) has no periodic solution in R2
+ using Bendixson-

Dulac theorem. Let
(
f(u1, u2), g(u1, u2)

)
denote the vector field of (3.4) and define

the following Dulac function

B(u1, u2) = u−1
1 u−1

2 eu1+u2 .
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Then by direct computations we have

∂(Bf)

∂u1
+
∂(Bg)

∂u2
= eu1+u2 [−du−2

1 − du−2
2 − (d+ 1)u−1

1 − (d+ 1)u−1
2 ] (3.5)

which is less than 0 duo to d > 0, (u1, u2) ∈ R2
+. Therefore, the classical Bendixson-

Dulac theorem implies that (3.4) has no periodic solutions in R2
+. It follows that

(1.5) has no nontrivial positive periodic solution of period τ .

Remark 3.2. (i) The proof of Theorem 3.2 implies that when τ = 0, (1.5) (or
equivalent (3.1)) has no any periodic solution.

(ii) Theorem 3.2 derives that (3.1) has no nontrivial positive periodic solution of
period 1. Since any nontrivial 1/m-periodic solution (m ∈ N) is also a non-
trivial 1-periodic solution, then (3.1) has no nontrivial positive 1/m-periodic
solution as well.

We now have the following global existence result for the periodic solution of
(1.5).

Lemma 3.3. When τ > τ−1 , (1.5) with µ ∈ (e2, e
4d+2
d+1 ] has at least one periodic

solution.

Proof. We have demonstrated that the connected component C(x̂, τ−
k , ω−τ−

k ) is un-
bounded for any k=0, 1, · · · . Remark 2.1 implies that the projection of C(x̂, τ−

k , ω
−τ−

k )

onto the x-space is bounded. Near the bifurcation point (x̂, τ−k , ω
−τ−k ), the period

p of periodic solution is close to 2π/(ω−τ−k ). According to the definition of ω− and
τ−k , we have

2

2k + 1
=

2π

π + 2kπ
<

2π

ω−τ−k
<

2π

π/2 + 2kπ
=

4

4k + 1
,

which derives that

1

k + 1
<

2π

ω−τ−k
<

1

k
,

for k ≥ 1. From Remark 3.2-(ii) and the continuity of p on the connected component
C(x̂, τ−k , ω

−τ−k ), 1/(k + 1) < p < 1/k for any (x, τ, p) ∈ C(x̂, τ−k , ω
−τ−k ) with k ≥ 1

which implies that the projection of C(x̂, τ−k , ω−τ−k ) onto the p-space is bounded for
k ≥ 1. Therefore, for the projection of C(x̂, τ−k , ω−τ−k ) with k ≥ 1 onto the τ -space
must be unbounded. From Remark 3.2-(i) and the continuity, the projection of
C(x̂, τ−k , ω

−τ−k ) with k ≥ 1 onto the τ -space includes [τ−k ,+∞). Duo to the order
of τ−k for k ≥ 1, the proof is completed.

Proof of Theorem 1.2. (i) It follows from Lemma 3.2; (ii) It follows from Lemma
3.3.
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Appendix: Derivation details of the explicit expres-
sion of C1(0)

Normalizing the time delay and transforming the equilibrium (u∗1, u
∗
2) to the origin,

(1.5) is transformed to
u′1(t) =dτ [u2(t)− 2u1(t)]− τu1(t) + (d+ 1)τ

(
u1(t− 1) + ln[β/(d+ 1)]

)
e−u1(t−1)

− (d+ 1)τ ln[β/(d+ 1)],

u′2(t) =dτ [u1(t)− 2u2(t)]− τu2(t) + (d+ 1)τ
(
u2(t− 1) + ln[β/(d+ 1)]

)
e−u2(t−1)

− (d+ 1)τ ln[β/(d+ 1)].
(3.6)

Let τ = τ−0 + µ, µ ∈ R, then µ = 0 is a Hopf bifurcation point for (1.5).
For ϕ = (ϕ1, ϕ2) ∈ C([−1, 0],R2), let

L(µ)ϕ := (τ−0 + µ)Bϕ(0) + (τ−0 + µ)Cϕ(−1),

where B, C is defined in Section 2. By the Riesz Representation Theorem, there
exists a function η(θ, µ) of bounded variation for θ ∈ [−1, 0], such that

L(µ)ϕ =

∫ 0

−1

dη(θ, µ)ϕ(θ), for ϕ ∈ C([−1, 0],R2).

In fact, we can choose

η(θ, µ) =


(τ−0 + µ)B, θ = 0,

0, θ ∈ (−1, 0),

−(τ−0 + µ)C, θ = −1.

For ϕ = (ϕ1, ϕ2) ∈ C([−1, 0],R2), define

A(µ)ϕ =


dϕ(θ)/dθ, θ ∈ [−1, 0),∫ 0

−1

dη(t, µ)ϕ(t), θ = 0,

and

R(µ) =

{
0, θ ∈ [−1, 0),

(τ−0 + µ)f(µ, ϕ), θ = 0,

where

f(µ, ϕ) := (d+ 1)[(ln[β/(d+ 1)]/2− 1)ϕ21(−1) + (1/2− ln[β/(d+ 1)]/6)ϕ31(−1)] +O
(
ϕ41(−1)

)
(d+ 1)[(ln[β/(d+ 1)]/2− 1)ϕ22(−1) + (1/2− ln[β/(d+ 1)]/6)ϕ32(−1)] +O

(
ϕ42(−1)

)


Then we can rewrite (3.6) as

ẏ(t) = A(µ)yt +R(µ)yt, (3.7)
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where yt(θ) = y(t+ θ) for θ ∈ [−1, 0). For ψ ∈ C1([0, 1],R2), define

A∗ψ(s) :=


dψ(s)/ds, s ∈ (0, 1],∫ 0

−1

dη(t, 0)ψ(−t), s = 0.

For ϕ ∈ C([−1, 0],R2), ψ ∈ C([0, 1],R2), define a bilinear form

⟨ϕ, ψ⟩ = ϕ̄(0)ψ(0)−
∫ 0

−1

∫ θ

ξ=0

ϕ̄(ξ − θ)dη(θ)ψ(ξ)dξ

where η(θ) = η(θ, 0). In the following, we use similar notations in [10]. Note that
±iω−τ−0 are also eigenvalues of A∗ and it can be verified that q(θ) := (q1(θ), q2(θ))

T

eiω
−τ−

0 θ = (1, 1)Teiω
−τ−

0 θ is an eigenvector of eigenvector of A(0) with respect to
the eigenvalue iω−τ−0 , and q∗(s) := 1

D (q∗1(s), q
∗
2(s))

Teiω
−τ−

0 s = 1
D (1, 1)Teiω

−τ−
0 s

is an eigenvector of A∗ with respect to the eigenvalue −iω−τ−0 . Then by direct
computations we have

⟨q∗, q⟩ = 1, ⟨q∗, q̄⟩ = 0,

and
D = 2[1 + (d+ 1)τ−0 + iω−τ−0 ].

We now compute the center manifold C0 at µ = 0. Let yt be the solution of
(3.7) when µ = 0. Define

z(t) = ⟨q∗, yt⟩, W (t, θ) = yt(θ)− 2Re{z(t)q(θ)},

then we have
ż(t) = iω−τ−0 z + q∗(θ)f(W + 2Re{z(t)q(θ)}). (3.8)

For simplicity of notation, denote f0(z, z̄) := f(W + 2Re{z(t)q(θ)}). Let

g(z, z̄) := q∗(θ)f0(z, z̄) := g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · .

Then, the Poincaré normal form for (3.7) has the following form:

ż(t) = λ(µ) + C1(µ)z
2z̄ + h.o.t.,

and

C1(0) =
i

2ω−τ−0

(
g20g11 − 2|g11|2 −

|g02|2

3

)
+
g21
2
. (3.9)

The remaining thing is the calculations of C1(0).
Using the centre manifold theorem given in [10], we know that on the centre

manifold W (t, z) has the following form

W (t, z) =W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+W30(θ)

z3

6
+ · · · ,
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and we denote Wij(θ) = (W
(1)
ij (θ),W

(2)
ij (θ)) here. By expanding the series and

comparing the corresponding coefficients, we obtain

g20=2τ−0 (d+ 1)
(
ln[β/(d+ 1)]− 2

)
e−2iω−τ−

0 /D,

g11=2τ−0 (d+ 1)
(
ln[β/(d+ 1)]− 2

)
/D,

g02=2τ−0 (d+ 1)
(
ln[β/(d+ 1)]− 2

)
e2iω

−τ−
0 /D,

g21=τ
−
0 (d+1)[β/(d+1)−2]v

[
q1(0)q̄

∗
1(0)W

(1)
11 (−1)e−iω−τ−

0+q̄1(0)q̄
∗
1(0)W

(1)
20 (−1)eiω

−τ−
0

+ q1(0)q̄
∗
1(0)W

(2)
11 (−1)e−iω−τ−

0 + q̄1(0)q̄
∗
1(0)W

(2)
20 (−1)e−iω−τ−

0
]
/D

+ 2(d+ 1)
(
3− ln[β/(d+ 1)]

)
q21 q̄1q̄

∗
1e

−iω−τ−
0 .

By (3.7) and (3.8), we have

Ẇ =ẏt − żq − ˙̄zq̄

=

{
AW − 2Re{q̄∗(0)f0q(θ)}, θ ∈ [−1, 0),

AW − 2Re{q̄∗(0)f0q(0) + f0}, θ = 0.

:=AW +H(z, z̄, θ)

where
H(z, z̄, θ) = H20(θ)

z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ · · · .

Expanding the above series and comparing the corresponding coefficients, we obtain

(A− 2iω∗τ∗)W20(θ) = H20(θ),

AW11(θ) = −H11(θ),

(A− 2iω∗τ∗)W02(θ) = H02(θ),

· · ·

(3.10)

Since, for θ ∈ [−1, 0),

H(z, z̄, θ) = −q̄∗(0)f0q(θ)− q∗(0)f̄0q̄(θ) = −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ),

comparing the coefficients, we have

H20(θ) = −g20q(θ)− ḡ02q̄(θ) and H11(θ) = −g11q(θ)− ḡ11q̄(θ).

Substituting these relations into (3.10) we can derive the following equation

Ẇ20(θ) = 2iω−τ−0 W20(θ) + g20q(θ) + ḡ02q̄(θ).

Solving for W20(θ) we obtain

W20(θ) =
ig20

ω−τ−0
q(0)eiω

−τ−
0 θ +

iḡ02
3ω0τ0

q̄(0)e−iω−τ−
0 θ + E1e

2iω−τ−
0 θ,

and similarly,

W11(θ) =
ig11

ω−τ−0
q(0)eiω

−τ−
0 θ +

iḡ11

ω−τ−0
q̄(0)e−iω−τ−

0 θ + E2,
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where E1 and E2 are constants and will be determined in the following. From
H(z, z̄, 0) = −2Re{q̄∗(0)f0q(0)}+ f0,

we have
H20 = −g20q(0)− ḡ02q̄(0) + τ0(d+ 1)

(
ln[β/(d+ 1)− 2

)
e−2iω−τ−

0 θ,

and
H11 = −g11q(0)− ḡ11q̄(0) + τ0(d+ 1)

(
ln[β/(d+ 1)− 2

)
.

Using (3.10) and the definition of A, we obtain∫ 0

−1

dη(θ)

[
ig20

ω−τ−0
q(0)eiω

−τ−
0 θ +

iḡ02q̄(0)

3ω−τ−0
e−iω−τ−

0 θ + E1e
2iω−τ−

0

]
=2iω−τ−0

[
ig20

ω−τ−0
q(0) +

iḡ02

3ω−τ−0
+ E1

]
+ g20q(0) + ḡ02q̄(0)

− τ−0 (d+ 1)
(
ln[β/(d+ 1)]− 2

)
e−2iω−τ−

0 θ

and ∫ 0

−1

dη(θ)

[
ig11

ω−τ−0
q(0)eiω

−τ−
0 θ +

iḡ11

ω−τ−0
e−iω−τ−

0 θ + E2

]
=g11q(0) + ḡ11q̄(0)− τ−0 (d+ 1)

(
ln[β/(d+ 1)]− 2

)
.

Thus,

E1 =
(d+ 1)

(
ln[β/(d+ 1)]− 2

)
e−2iω−τ−

0 θ

2iω− + (d+ 1)
[
1 +

(
ln[β/(d+ 1)]− 1

)
e−iω−τ−

0 θ
] (1

1

)
and

E2 =
ln[β/(d+ 1)]− 2

ln[β/(d+ 1)]

(
1

1

)
.

We now are in the position to substitute expressions for g20, g11, g02 and g21 into
(3.9) and obtain

ReC1(0)

=
τ−0
(
ln[β/(d+ 1)]2 − 5 ln[β/(d+ 1)] + 8

)
[(d+ 1)(1 + (d+ 1)τ−0 ) + (ω−)2τ−0 ]

ln[β/(d+ 1)]
(
1− ln[β/(d+ 1)]

)
[(1 + (d+ 1)τ−0 )2 + (ω−τ−0 )2]

−
2ω−[d+ 1 + (d+ 1)2

(
1− ln[β/(d+ 1)]

)2
τ−0
]

|D|2(d+ 1)2
(
1− ln[β/(d+ 1)]

)2 +

[
8(ω−)2(d+ 1)2 + 2(d+ 1)4

+ 2ω−(d+ 1)3
(
1− ln[β/(d+ 1)]

)2
τ−0 − 2(ω−)2(d+ 1)

(
1− ln[β/(d+ 1)]

)2
+ 2(d+ 1)5

(
1− ln[β/(d+ 1)]

)2
τ−0 − (d+ 1)5

(
1− ln[β/(d+ 1)]

)4
τ−0

− (d+1)5
(
1−ln[β/(dv +1)]

)5
τ−0 −2(ω−)2(d+1)2−(d+1)4

(
1−ln[β/(d+1)]

)2
− (d+1)4

(
1−ln[β/(d+1)]

)3]2τ−0 (d+1)3
(
ln[β/(d+1)]−2

)2(
1−ln[β/(d+1)]

)
[(1+(d+1)τ−0 )2+(ω−τ−0 )2]M

,

(3.11)
where
M =

[
4(ω−)2(d+ 1) + (d+ 1)3 − (d+ 1)(ω−)2 − (d+ 1)3

(
1− ln[β/(d+ 1)]

)3]2
+ [2ω−(d+ 1)2 − 2(ω−)3 − 2(d+ 1)2ω−]2.
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