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EXISTENCE OF KINK WAVES TO
PERTURBED DISPERSIVE K(3, 1) EQUATION∗

Minzhi Wei1 and Zizun Li2,†

Abstract This paper concerns on the existence problem of traveling wave
solutions to perturbed dispersive K(3, 1) equation by using geometric singular
perturbation technique. Based on the analogy between solitary wave solutions
and heteroclinic orbits of the associated ordinary differential equations, kink
and antikink waves persistent is concluded when the perturbed parameter is
small sufficiently in perturbed nonlinear wave equation.
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1. Introduction
The well-known nonlinear dispersive K(m,n) equation

Ut + σ(Um)x + (Un)xxx = 0, m > 0, n ≥ 1, (1.1)

was proposed by Rosenau and Hyman [18]. Eq. (1.1) was studied as a role of nonlin-
ear dispersion in the formation of patterns in liquid drops. It was formally derived
in [4, 13] that the delicate interaction between nonlinear convection and genuine
nonlinear dispersion generates solitary waves with compact support. Unlike soliton
that narrows as the amplitude increases, the compacton¡¯s width is independent on
the amplitude.

In 1997, Rosenau [19] found that (1.1) hold a number of dispersive effects. In
reference [21], Wu et al. investigated the traveling wave solutions by using the
bifurcation method of dynamic systems. When m = 3, n = 1, the expressions of
kink and antikink wave solutions were given

U(x− ct) = u(ξ) = ±
√

c

σ
tanh(

√
− c

2
ξ), (1.2)

where c < 0 is the wave speed.
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On discussing kink and anti-kink solitons, Cheng and Küpper [2] used pertur-
bation methods basing on inverse scattering transform to study the dynamical be-
havior of the kink and anti-kink solitons exhibited by a driven-damped sine-Gordon
equation with infinite boundary condition. It is shown that such solitons may be
forced by damping and external forces to remain in a finite region instead of ap-
proaching infinity. On using the geometric singular perturbation theory and the
regular perturbation analysis for a Hamiltonian system, Yan et al. [22] discussed a
perturbed generalized KdV equation, they proved that solitary wave solutions and
periodic wave solutions persist for sufficiently small perturbed parameter.

In reference [1], the existence of solitary waves and periodic waves for a perturbed
generalized BBM equation was established by using geometric singular perturbation
theory. More recently, Wen [20] studied the existence of kink and antikink wave
solutions of singularly perturbed Gardner equation from the geometric perspective.
In 2020, Cosgun and Sari [3] obtained different traveling wave solutions of the
kink type for singularly perturbed generalized Burgers Huxley and Burgers Fisher
equations. Ghazaryan et al. [8] proved the existence of traveling fronts in this
regime and investigated their stability by using geometric singular perturbation
theory. Du and Qiao [5] constructed a locally invariant manifold for a associated
traveling wave equation and obtained the traveling wave fronts for the equation by
employing geometric singular perturbation theory.

Motivated by the mentioned references, in this paper, the following singularly
perturbed dispersive K(3, 1) equation is considered

Ut + σ(U3)x + Uxxx + ε(Uxx + Uxxxx) = 0, (1.3)

where σ is a real parameter, ε is a positive parameter. We shall use Fenichel
persistence theorem [6,7,9,12,15,16] to study the existence of kink wave and antikink
solutions for equation (1.3).

The remaining part of presented paper is organized as follows: In next section, we
perform a useful tool Fenichel theory which is important to obtain our main results.
Singularly perturbation analysis to dispersive K(3,1) equation (1.3), the existence of
kink wave solutions for (1.3) are obtained in Section 3. Finally, numerical simulation
is presented in Section 4 to verify the theoretical prediction.

2. Fenichel theory
In this section, we review the necessary theory which will be used for our discussion.
Taking the exposition in Jones [12], for details, one can resort to Fenichel [7], or
Jones [12]. Geometric singular perturbation theory was first given by Fenichel [7],
and was often referred to as Fenichel theory. A comprehensive overview of the
theory, as well as new proofs of many theorems and detailed examples of applications
are given by [10].

Consider the standard fast-slow system: ḟ(t) = F (f(t), g(t), ε),

ġ(t) = εG(f(t), g(t), ε),
(2.1)

where · is the derivative with respect to t, 0 < ε ≪ 1 is a real parameter, f =
(f1, f2, . . . , fnf

)T ∈ Rnf , g = (g1, g2, . . . , gng
)T ∈ Rng , nf + ng = n, max ∥ḟ∥ =
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max ∥ġ∥, and f corresponds to fast directions and g corresponds to slow directions.
f, g are C∞ on set U × V , where U ⊂ Rn and V is an open interval containing
0. Assume that for ε = 0, the system has a compact normally hyperbolic manifold
M0 which is contained in a set {f(x, y, 0) = 0}. The manifold M0 is said to be
normally hyperbolic if the linearization of (2.1) at each point in M0 has exactly ng

eigenvalues with zero real part, where ng is the dimension of the center dimensions.

Proposition 2.1 (Feichel’s Persistence Theorem 1). Under assumption above, if
ε > 0 is sufficiently small, there exists a function Mε defined on D such that the
manifold Mε is locally invariant under the flow of (2.1). Moreover, Mε is Cr smooth
for any r < +∞, Mε = {(x, y)|x = hε(y)} for some Cr function hε and y in some
compact set K.

With a change of time-scale τ = εt, ′ = d
dτ , system (2.1) can be changed to εf ′ = F (f, g, ε),

g′ = εG(f, g, ε),
(2.2)

when ε ̸= 0, system (2.1) and (2.2) are equivalent, system (2.1) is called the fast
system and (2.2) is called the slow system. Geometric singular perturbation the-
ory exploits a differential equation’s geometric structures, such as its slow (center)
manifolds and their fast stable and unstable fibers.

3. Singularly perturbation analysis to dispersive
K(3, 1) equation

For given constant c < 0, substituting U(x, t) = u(x − ct) = u(ξ) into Equation
(1.1), integrating and setting the integral constant to be zero, we have

−cu+ σu3 + u′′ + ε(u′ + u′′′) = 0, (3.1)

Then ODE (3.1) can be rewritten to a three-dimensional system as follows

du

dξ
= y,

dy

dξ
= w,

ε
dw

dξ
= cu− σu3 − w − εy.

(3.2)

System (3.2) is obviously formulated on a slow time scale because of the location of
the small parameter ε. The corresponding fast system is

du

dτ
= εy,

dy

dτ
= εw,

dw

dτ
= cu− σu3 − w − εy.

(3.3)
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Generally, system (3.2) is referred to as the slow system since the time scale ξ is
slow, and system (3.3) is referred to as the fast system since the time scale τ is
fast. The two systems are equivalent when ε > 0. On the following, we shall find
the equilibrium points of system (3.3) and discuss the local dynamical behavior in
a neighborhood of the given equilibria. Let Z = (u, y, w)T and

G(Z, c, ε) =


εy

εw

cu− σu3 − w − εy

 ,

system (3.3) can be formulated as dZ
dτ = G(Z, c, ε). For cσ > 0, there are three

equilibria satisfying G(Z, c, ε) = 0, which are Z0 = (0, 0, 0), Z1 =
(√

c
σ , 0, 0

)
, Z2 =(

−
√

c
σ , 0, 0

)
.

Note that Ai is the coefficient matrix of the linearized system for (3.3)ε=0 at
equilibrium points Zi(ui, 0, 0) for (i = 1, 2), with u0 = 0, u1 =

√
c
σ , u2 = −

√
c
σ .

We obtain

Ai =


0 0 0

0 0 0

c− 3σu2
i 0 − 1

 ,

since M0 can be characterized as the graph of a function, we have that

Mε = {(u, y, w)|w = g(u, y, ε)},

where g is a analytic function depending smoothly on ε and satisfies g(u, y, 0) = cu−
σu3. Therefore, system (3.2) can be reduced to the following differential equation
on Mε 

du

dξ
= y,

dy

dξ
= g(u, v, ε),

(3.4)

which has the limiting form on M0 of
du

dξ
= y,

dy

dξ
= cu− σu3.

(3.5)

It is necessary to state that M0 is normally hyperbolic by examining the lin-
earization of fast system (3.5). According to the geometric singular perturbation
theory, it is easy to know that Mε can be characterized as the graph of a function,
and g(u, y, w) be expanded with respect to ε for ε > 0 sufficiently small. Assume
that

w = g(u, y, ε) = cu− σu3 + εg1(u, y) +O(ε2). (3.6)
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Figure 1. Heteroclinic orbits of system (3.5)) under the condition c < 0, σ < 0.

Substituting (3.6) into the last equation of slow system (3.2), comparing coefficients
of ε yields

g1(u, y) = −(c+ 1− 3σu2)y. (3.7)

Thus, dynamics on the slow manifold Mε for system (3.2) becomes
du

dξ
= y,

dy

dξ
= cu− σu3 − ε(c+ 1− 3σu2)y +O(ε2).

(3.8)

Note that when ε = 0, system (3.8) reduces to system (3.5). By the bifurca-
tion theory of dynamical systems [14], it is easy to find that the equilibrium point
u1(

√
c
σ , 0) and u2(−

√
c
σ , 0) are saddle points, then there exists a heteroclinic orbit

L1 and another heteroclinic orbit exists, which denoted by L2 (see Figure 1).
However, with a small perturbation, the heteroclinic orbits will persist or blow

up? In the present paper, we wonder the sufficient conditions to guarantee the
persistence of heteroclinic orbits of system (3.8). As u1 = (

√
c
σ , 0) and u2 =

(−
√

c
σ , 0) are two saddles of (3.8), let L3 be an unstable manifold of u1 and L4 be

a stable manifold of u2 for system (3.8) for 0 < ε ≪ 1. In order to investigate the
existence of a heteroclinic orbit connecting the saddle points u1 and u2 near L1 for
0 < ε ≪ 1, suppose that l is a segment normal line, which intersects with L1 at a
point P1 ∈ L1, intersects L3 at a point P2, and intersects L4 at P3 (see Figure 2).

Note that d(L1, ε)=−n⃗·
−−−→
P2P3, where n⃗=(Hu(P1),Hy(P1))/|(Hy(P1),−Hu(P1))|,

thus d(L1, ε) is quoted to measure the distance between L3 and L4. If d(L1, ε) = 0,
we conclude that system (3.8) has a heteroclinic orbit near L1, which connecting
u2 to u1 for 0 < ε ≪ 1. Similar procedure can be applied to study whether system
(3.8) has another heteroclinic orbit near L2 for 0 < ε ≪ 1.

From [11,17], the Melnikov function for system (3.8) can be expressed by

M(L) =

∫
L

F (u, y(u))du, (3.9)
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Figure 2. Diagram of the connection of saddles of system (3.8) with 0 < ε ≪ 1.

where F (u, y) = −(c+ 1− 3σu2)y +O(ε) and y(u) is the expression of L1.
Note that L1 and L2 possess the following expressions

y(u) = ±α0(u
2 −A2), −

√
c

σ
< u <

√
c

σ
, (3.10)

where α0 is a coefficient, A is the root of the equation u4 − 2c
σ u2 − 4

σh1 = 0.
Therefore, it is obtained

M(L1) =

∫ √
c
σ

−
√

c
σ

F (u, y(u))du = ±2α0

∫ √
c
σ

0

[(c+ 1− 3σu2)(u2 −A2) +O(ε)]du

= ±2α0

15

√
c

σ
(4c2 − 5c+ 15A2σ) +O(ε).

(3.11)

Consequently, we have following Lemma:

Lemma 3.1. For ε > 0 sufficiently small, it has

d(ε, L1) = ε ·M(L1) +O(ε2),

where M(L1) = ± 2α0

15

√
c
σ (4c

2 − 5c+ 15A2σ) +O(ε).

On the following, we will prove that there exists two heteroclinic orbits connects
the two equilibria, and then the perturbed dispersive K(3, 1) equation has kink
and antikink wave solution connecting u2 to u1. It is obvious that when c =
5−

√
25−240A2σ

8 and ε = 0, M(L1) ≡ 0. Furthermore,

∂M(L1)

∂c
|
c=

5−
√

25−240A2σ
8 ,ε=0

= ± α0

12
√
cσ

(5− 48A2σ −
√
25− 240A2σ) ̸= 0. (3.12)

Hence, from the implicit function theorem and the definition of the function d(ε, L1),
we conclude that perturbed dispersive K(3, 1) equation has a heteroclinic orbit for
0 < ε ≪ 1. In other words, system (1.3) has a kink wave solution. Therefore, we
have the following theorem:
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Figure 3. Simulations: (a) shows the existence of heteroclinic orbits of system (3.2) for
ε = 0.01, (b) shows the heteroclinic orbits blow up for ε = 0.1.

Theorem 3.1. For the singularly perturbed dispersive K(3, 1) equation with 0 <
ε ≪ 1 and c < 0, σ < 0, we conclude that system (1.3) has kink wave solution and
antikink wave solution, when the wave speed satisfies c = 5−

√
25−240A2σ

8 +O(ε).

4. Numerical simulations
We now numerically simulate the persistence of heteroclinic orbits of the singularly
perturbed dispersive K(3, 1) equation (1.3) through system (3.2). Setting σ = −1,
c = −1, and taking the initial condition u0 = −1, y0 = ±0.001, w0 = 0.001, the
persistence of heteroclinic orbits for sufficient small ε = 0.01 is shown in Figure
3(a), and the heteroclinic orbits blow up for ε = 0.1 is shown in Figure 3(b).
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