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Abstract By means of the weight coefficients, the idea of introduced param-
eters, Hermite-Hadamard’s inequality and Euler-Maclaurin summation for-
mula, a reverse more accurate Hardy-Hilbert’s inequality and the equivalent
forms are given. The equivalent statements of the best possible constant factor
related to a few parameters are also considered, and some particular reverse
inequalities are obtained.
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1. Introduction

n=1"n

o0, we have the following Hardy-Hilbert’s inequality with the best possible constant
P
Syt et ()

factor s (cf [6], Theorem 315):
- 1
<Z b%) . (1.1)
n=1m=1 n=1

In 2006, by introducing parameters A; € (0,2] (i = 1,2),A\1 + A2 = A € (0,4], an
extension of (1.1) was provided by Krni¢ et al. [13] as follows:

Assumingthatp>1,%+%:1,am,bn20,0<z _,ab, <ocoand 0 < > 07 bl <

=

;mz:: ern
oo 1 IS 1
< B(\1, \9) [Z mp(l_)‘l)_lafn] lz nq“—kz)—lbg] , (1.2)

m=1 n=1

where, the constant factor B(A1, A2) is the best possible, and

oo tu—l
Bu,v):= | —dt (w0 >0
(u,v) /0 AT (u,v )
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is the beta function. For A=1,7 = )\2 1nequahty (1.2) reduces to (1.1); for

P=q=2\ =X =3, 2 (2) reduces to Yang’s 1nequahty in [25]. Recently, applying
(1.2), Adiyasuren et al [1] gave a new Hardy-Hilbert’s inequality with the kernel as
W involving partial sums.

If f(z),9(y) > 0,0 < [;° fP(x)dz < oo and 0 < [, g%(y)dy < oo, then we still
have the following Hardy Hllbert s integral inequality (cf. [6], Theorem 316):

/0OO /000 dedy < @ (/000 fp(x)dm> (/000 gq(y)dy>é . (L1.3)

Smtr7py s the best possible. Inequalities (1.1), (1.2) and
(1.3) with their extensions and reverses are important in analysis and its applications
(cf. [2,3,5,7,8,14,16,17,21-23,26,29-31]).

In 1934, a half-discrete Hilbert-type inequality was given as follows (cf. [6],
Theorem 351): If K(¢) (¢t > 0) is decreasing, p > 1,- —|— = =10 < ¢(s) =

JoC K (t)t*1dt < oo, then for a, > 0,0 < 377 aP < oo, wehave

0
/000 xp_l(z K(nz)a,)Pdr < ¢P(

In recent years, some new extensions of (1.4) with the reverses were provided by
[18—-20,27,28].

In 2016, by means of the techniques of real analysis, Hong et al. [9] considered
some equivalent statements of the extensions of (1) with the best possible constant
factor related to several parameters. The other similar works were given by [4, 10—
12,23].

In this paper, following the way of [9,13], by the use of the weight coefficients,
the idea of introduced parameters, Hermite-Hadamard’s inequality, Euler-Maclaurin
summation formula and the techniques of real analysis, a reverse more accurate
Hardy-Hilbert’s inequality as well as the equivalent forms are given. The equivalent
statements of the best possible constant factor related to several parameters are
considered, and and some particular reverse inequalities are obtained.

T =

where, the constant factor

)Y ak. (1.4)

2. Some lemmas

In what follows, we assume that 0 < p < 1(q < 0),% + % =1,N:={1.2.---),nm; €
[0.3] (1 =1,2),m +n2=n€[0,5],A € (0.3], s €[0,3]N (0, ),

kx(Ai) = B(Ai, A = A\ (i = 1,2).

We also assume that a.,, b, > 0, such that

pPl-(G52 43011

WK

0< al < oo and

(m —m

m=1

A=y

YIL-CFH 14 < oo, (2.1)

M8

0< (n—n9

3
Il
—
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Lemma 2.1. For Xy € [0, 3] N (0, ), define the following weight coefficient:

> Agl

w@(Ag,m) == (m —m)* nz::l m + 5 (mEeN). (2.2)
We have the following inequalities:
1
where, O(W) is indicated as

1 1 [ el
O((m - 771)/\2) - Ex(A2) /0 (1+ u)*du (>0).

Proof. For fixed m € N, we set the following real function:

(t —m)*!

g(m,t) :=

In the following we divide two cases to prove (2.3).
(i) For Ay € [0,1] N (0, A), since

(=1 (m,t) >0 (t > 1234 =0,1,2),

by Hermite-Hadamard’s inequality (cf. [15] ), setting u = 7;1”7]21, we have

oo o0

e, m) = (m =) 3 glmm) < (m =) [ glm, )
n=1 2

o] t— )\Q—ldt e8] Az—1
= (m—771)’\_/\2/ ( Gll) :/1 "

1 (m=mtt—m)t  Jazrm (1+u)

o) u)\Q—l
< ———du= B(Xa, A — Xg) = kx(A2).
f/o e (A2, 2) = ka(A2)

In view of the decreasingness property of series, we obtain
oo oo
@w(Aa,m) = (m —m)* Z (m — )2 / g(m, t)dt
el 1

oo yrelgy 1
I N

m—

where, O((m—in)kz) = kx(/\z) =y ﬁju)kdu > 0, satisfying
1-ng Ao—1 1-n2
e e 1 1-—
0 </ S — </ Tt lgy = = (2P e (g e N).
0 (1+u) 0 Ao m —m

Hence, we obtain (2.3).
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(ii) For A2 € (1,2] N (0,A), by using Euler- Maclaurin summation formula and
Bernoulli function of l-order as p(t) :==t — [t] — 3 (cf. [13]), we have

> glmen) = [ gl + gom 1)+ [ plog oy

= /OO g(m,t)dt — h(m),

712

where,

Mmyz/‘ﬂmﬂﬁ—;ﬂminKmmmﬂmﬁﬁ.

n
Ao —
We obtain —3g(m,1) = _221”1__"721_12);, and integrating by parts, it follows that

1 1 _ Ao—1 1 1 _ A2
/ o(m, )t = / (t—me)™"dt 1 [ d(t—m)
2 n

2 (min+t))\ >\2 n2 (min+t))\

L Cmm)® A [ mm)

Ao (m —n+1)> A2 S, (mo—n+ )AL
_1 (1) A /1 d(t — 2=t
X (men+ DN AN+ 1) Sy, (m— )M
RS D S SNl

Ay (m —n+ 1) )\()\2+ 1) (m—n+t)rLm"

1 — )™ (t — o)t ‘1

Ao (m—n+1> " Xa(Ag+1) (m—n+ )17

AA+1) Pt
4 2Tt
)\2()\2 + 1)(m n+1 /
1 (- (1 —mp)* !
Ao (m—n+1)> )\2()\2 +1) (m n+ AT
AN+ 1) (1 —mp)Pet?
Aa(Az +1)A2 +2) (m —n+ 1A
We find
Ao — D)t —ma)?272 At —mp)tet
—g'(m,t) :( 2~ 1) ]2),\ (¢ = m) pu]
(m—n+1) (m—n+t)>
_ A+ 1= A)(t —mo) P22 CA(m =) (t - )
(m—n+1t)> (m—n+t)t 7

and for 1 < Ay < %, Ao < A<3,i=0,1,2,3, it follows that

; di (t _ 772)/\2_2 ; di (t _ 772))\2—2

VG =y i) = O OV gl =y 2 0 > )

Still by Euler-Maclaurin summation formula (cf. [13]), setting a := 1—n, € [2,1],
we obtain

N Y A+ 1= )1 =2
()\+1—/\2)/1 P(t)(m_n+t)Adt>_ 12(m —n+ 1) 7
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—mwwmxzwpm(“‘m

m —n+ )1

Aa—2
) dt

(m—m)ra*"?  (m— 771))\[ (t—mp)*2 2 7
12(m —n + 1)1 720 (m —n 4 )AL
Aar2 2 a2t a2

T 12m—n+ 1) 12(m—n+ DML 720
X[()\+1)()\+2)a2 2()\+1)(2—)\2)a+ (2—)\2)(3—)\2>
(m—n+1)2*2 ° (m—n+ )M (m—n+1)*

I,

and then we have

Ap—4 A2—3 A2—2

a
(m—n+1)M2

a a

h hs,
m—nt D> T mo g ’

h(m) >

Tha +

where, h; (i = 1,2,3) are indicated as

Cl4 CL3 (1 — /\2)&2 )\(2 — /\2)(3 — /\2)

e W N TR 720 ’
4 2 1)(2 -
hQ;:ai_ai_M—)‘Q)and
Aa(hg+1) 12 360
I s — at 7)\—1—2
T e+ D) +2) 720

In view of

3.\
2[Ag—(6a+1)xz+12a2]=6(—A2+4a)>0 (a>4> 2),

da 4
and
i[Ag — (6a + 1)\ + 12a7]
s
:2/\2—(6a+1)§2x%—(6x%+1):372<07
we obtain
(3/4)% 3., 3 .3 3., 1
O 6x 2 +1)2 +12(0)Y - —
> 15ayla) —6x g U5 27— 155
3001
T8 120
402 1. 1 _ 3.,4(3/42 1, 1
> (s — ) — — > (2)2 - - =
hezd(m -5 e 2@ TG 5l
31
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8a* 5 _ 8(3/4)* 5 27 1
hs > > — e = Ton — 717 >0,
105 720 105 720 1120 114

and then h(m) >0 (m € N).
On the other hand, we also have

oo

om.m) = | " glm. )it + Lg(m. 1) + / " p(t)g (m, t)dt

:Amﬂmﬁﬁ+HWL

where, H(m) is indicated as
1 o ,
H(m) = Sglm. 1)+ [ p(t)g(m. )t
1

We have obtained %g(m, 1) = 2(171@277,:1)* and

—A L= o)t —m)* ™ A(m—m)(t =)
(m—n+1t)> (m —n+t)*1

g’(m,t) =

For A € (0,3],A2 € (1,3]N(0,\), by Euler-Maclaurin summation formula (cf. [13]),
we obtain

oo L \Ap—2
—(>\+1—)\2)/1 p(t)((:n_nf])H)A

> (t —mp)*22 —(m —n1)Aa*2 2
— A t dt >
(m=m) /1 L )(m—nthV+1 12(m —n 4 1) M1

)\a/\2—2 )\az\g—l )\a/\z—Q
> — .
12(m —n+1)» + 12(m —n + 1)M1 12(m —n+1)»

dt >0,

Hence, we have

a/\271 )\GAZ?Q
2m—n+ 1N 12(m—n+1)>
(5= a4 = Hare?

2 2 12
(m—=n+1)* = (m—-n+1)>

H(m) >

>0,

and the following inequalities:

/100 g(m,t)dt < Zg(m,n) < /OC g(m,t)dt.

n=1 2

In view of the the results in the case (i), we still can obtain (2.3).
The lemma is proved. O

Lemma 2.2. We have the following reverse more accurate Hardy-Hilbert’s inequal-
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>B7 (A2, A — A2)B1 (A1, A — A1)

* {i [1 0<_1)A2>} <mm>p“—“v”+?”—1azl}

1
P

m—1 (m—m
X{Zmm)q“-“a““f”*bz} . (24)
n=1

Proof. In the same way of obtaining (2.3), for A; € [0, 2] (0, ), we still find the
following inequality of another weight coefficient:

1

(oo} )\1

m 7’]1

w(A,n) = (n—m)*M g < B(A1, A= A1) (n e N). (2.5)
o m+n—

By the reverse Hélder’s inequality (cf. [15]), we obtain

= i 3 {W - nz><*2—1>/pam} [(m )
n=1m=1 ern— (m—nl)(hfl)/q (n_n2)()\2,1)/p
1
> i = 1 (n_,r]Q))\Q—lagl P
T\ = (mt =) (m—py) 2 DED

1

(m — )M 1bg }
)

= (mtn—n) (n—np)Pe-Dlat

=

/_/L
gk
HMg

=

w(Ag,m)(m — nl)p[l_( 2 ‘*‘Aql)]_lafn}

“

3
Il
—

i

[e%e] [e%e] %
X{Z”(Alv Z”—W qll—(A21+22)]- 1bq} _
n=1 n=1

Then by (2.3) and (2.5), in view of 0 < p < 1,¢ < 0, we have (2.4).
The lemma is proved. O

Remark 2.1. By (2.4), for \; + Ao = A € (0,3],0 < A; < 3 (i = 1,2), we find
w(/\l,n) < B()\l,)\g)7

1

B(A1,A2) [1 - O(W

)] < @(A2,m) < B(A1,A2) (m,n € N),

0< Z m — nl)p(l A)= 1(1” <ooO<Z —19) Q(l A2)= 1bq < 00,

m=1 n=1

and the following reverse inequality:
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1
q

o0
Z n— )12 =1pa | (2.6)

Lemma 2.3. The constant fctor B(A1, A2) in (2.6) is the best possible.

Proof. For any 0 < € < p\1, we set
U = (m =) 57 by i= (n— )5 (m,n € N).

If there exists a constant M > B(A1, A2), such that (2.6) is valid when we replace
B(A1,A2) by M, then in particular, substitution of a,, = @, and b, = b, in (2.6),
we have

“—iinww

n=1 m:l

1 P
> M m — P(l—)q)—la’p
{ )| (=) h

X [Z(”—w)qu A 154 :

n=1

By the decreasingness property of series, we obtain

=

T> M { Z:l |:1 — O(W)] (m _ 771)[)(1—)\1)—1(m _ nl)p)\l—s—p}

% [ (n _ nz)q(l—Az)—l(n _ n2)q/\2—e—q1
=1

8

-1 - 1 %
= | S - 3 o)

« [aal + i(n - ng)fll '
| [Ty tas-ow)] ot [T m )

=Y —n) —c00)

=
Q=

( a7571+a75) .

By (2.5), setting Ay := A, — £ =€ (0, 3)N(0,A) (0< No = Ao+ = < A), we find

o0 Y=gt

= Ao+ < m 771 —e—1
E[n—m S

=1

whi,n)(n—mn2) 7t < (>\1>)\2[ - 1+Z n—ip) "t
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o0
S 1~
< B(A1,A\2) {G_E_l +/ (y—m2) " ldy| = EB()\h)\z)(fa_E_l +a”%).
1

Then we have

D=

B(/):17/>:2)(5a_8_1 +a ) >M [(1 —n) "¢ — 50(1)] (ea™! + a_e)%.

For e — 0T, in view of the continuity of the beta function, we find B(A1, \2) > M.
Hence, M = B(A1, A2) is the best possible constant factor of (2.6).
The lemma is proved. O

Remark 2.2. (i) Setting A= % + %,Xz = )‘%q)‘l + % in (2.4), we find
A=A A A=A A
2+ =+ L+ 2

q q p
(if) For A — A1 — A2 € (—pA1,p(A — A1)), we obtain

X1+X2= =\

S N VD VI ¢ B ) VR
SUREAA: S B Ul ) L Y
p q p q

}\'1</\1+p()\_)\1)+):]1:)\,0<}\12:)\—3\11<)\,

207

and then we have B(A1, Xa) € Ry = (0,00).
(iii) For A — A1 — Aa € [p(A = A\ — %),p(% — A1)], we obtain \; < %
Hence, in view of (i), (ii) and (iii), we still can reduce (2.6) to the following:

n=1m=1
o . ) 1
>B(A1, A2) { 1 O(~)] (m?71)p(1)‘1)1a£n}
'rnZ:1 (m - 7]1)>\2
thn—mwlmlﬂl- (2.7)
n=1

Lemma 2.4. If the constant factor B%()\g,)\ - )\Q)B%()\l,)\ — A1) in (2.4) is the
best possible, then for

3 3

A= A1 — X2 € (—=pA1,p(A — A1) N {p(/\ — A1 — 5)3 P(i =) (O{0}), (2.8)

we have A\ + Xg = .
Proof. If the constant factor B%(AQ,A - )\Q)B%()\l,)\ — A1) in (2.4) is the best
possible, then in view of (2.8) and (2.7), we have the following inequality:
B7 (A2, A — A2)Bi (A1, A — A1) > B(Ar, Aa).
By the reverse Holder’s inequality (cf. [15]), we find

~ ~ A—A Al A=A A
B(Ai,he) = B(m—22 + 24, -+ 22)
p q q p
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)

o AZAz M A— >\2 1 >\1 1
_ / wr T / (u )(
0 (1 + U)A 0 ( ’LL
o A-Aa—1 717 oo w1 a
| ] U e
o @rap ] U Ty
:B%(A2,,\_,\2)B%(/\1,A—A1). (2.9)
Hence, we have B%()\g, A— AQ)Bé(A17 A= A1) = B(A1, A2), namely, (2.9) keeps the
form of equality.

We observe that (2.9) keeps the form of equality if and only if there exist con-
stants A and B, such that they are not both zero and (cf. [15])

Auvr 227t = gyt ae in R,

Assuming that A # 0, it follows that u*~*2~* = B/A a.e. in Ry., and then
A — )\2 - )\1 = 0, namely, )\1 + )\2 =\
The lemma is proved. O

-

3. Main results and some particular inequalities

Theorem 3.1. Inequality (2.4) is equivalent to the following inequalities:

J = {Z(n%)p(xﬁw?)_l lz (m +ilm_ 77),\] }

n= m=1

1

>B7 (Ao, A — X\2)B7 (A1, A — A1) (3.1)
- 1 . 5

1-0(——— — p\pl=( +2301-1, 7
x {mz_l { ((m—mW )} (m — 1) a?,

[e’e} A=A | Ap 50 q %

L (m_nl)Q( + q)

Jl'_{mz_:l 1= O 1! 22: CETEE

(3.2)

= _ a
>B7 (A, A = 22)B7 (0, A= A1) {Zm — ) +ifn—1b%} .

n=1

If the constant factor in (2.4) is the best possible, then, so is the constant factor in
(3.1) and (3.2).

Proof. Suppose that (3.1) is valid. By the reverse Holder’s inequality, we have

{(n - 772)%7(A_qAl +A72)bn}

oo

o0
[n_m T}
n=1 m=1 (m+n77])

J{Z (n —ny)M - (A543 1b$l} . (3.3)
(

Then by

Q=

.1), we obtain (2.4). On the other hand, assuming that (2.4) is valid, we

o0

p—1
am
L S
Z (ernn))‘]

m=1

b = (= P [
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730
If J = oo, then (3.1) is naturally valid; if J = 0, then it is impossible to make (3.1)

valid, namely, J > 0. Suppose that 0 < J < co. By (2.4), we have

> (=)

n=1

Afﬁ”%ﬂ—lbg —Jp =7

>B7 (g, A — M) B (A1, A — Ap)
> 1 (A=A A1y v _
X Z |:1_O((m771))\2 ):| (m_nl)p[l ( » ) 10/?”‘} a 1)

P

Z(n _ 772)4[1—(

=
{

J:
n=1
>B7 (A2, A — A2) B (A1, A — Ap)
> 1 A/\2 B
y 1= O(— )| = 21
{Z{ (G g?)] =)

namely, (3.1) follows, which is equivalent to (2.4)
Suppose that (3.2) is valid. By the reverse Holder’s inequality, we have

1 1 A—Ag A
57( P +Tl)am

=% [(1—0((771_771),\2));(7”—771)

o0
q
: Z
)P — m—|—n—

O_mﬁfﬁﬁ)

> {Z [1_O(W)] ( —Ul)p[l(b’ju?)]lafn} Ji. (34)

). On the other hand, assuming that (2.4) is valid, we

Then by (3.2), we obtain (2.4
A—Xg +>\71)_1 00 b q—1
T 2 X , me&N.

)t (m +n—mn)

set

(m — 1)

Ay, =
[ = Oy o
If J; = oo, then (3.2) is naturally valid; if J; = 0, then it is impossible to make

(3.2) valid, namely,.J; > 0. Suppose that 0 < J; < co By (2.4), we have

1 A— >\2 >\1

=Ji=1

1o
00 1
z@—m)qum?»lbz} ,

n=1

m=1

>BiQ%A—A@BéQhA—Agﬂ*1{

1
q

Q=

(m —m
_ k—qM +¥)]1bq}

B¥ (Ao, A — A2) B (A1, A — A1) {Z(n — )1
n=1

m=1
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namely, (3.2) follows, which is equivalent to (2.4), and then inequalities (2.4), (3.1)
and (3.2) are equivalent.

If the constant factor in (2.4) is the best possible, then so is the constant factor
n (3.1) and (3.2). Otherwise, by (3.3) (or (3.4)), we would reach a contradiction
that the constant factor in (2.4) is not the best possible.

The theorem is proved. O

Theorem 3.2. The following statements (i), (ii), (iii) and (iv) are equivalent:

(i) Both B¥ (A2, A — A2)B7 (A1, A — \y) and B(2=22 A2 2 AZA 4 22) are inde-
pendent of p, q;
(i) B¥ (A, A — A2) B (A1, A — Ap) = B(AZ22 4 A A= 4 day,

P )
(iii) B%()\g, A— AQ)B% (A1, A — A1) in (2.4) is the best possible constant factor;
(iV) if /\—/\1 —)\2 S (—p)\l,p(/\—/\l))ﬁ[p()\—)q — %),p(% —)\1)], then /\1 -‘1-)\2 =\
If the statement (iv) follows, namely, A\ + A2 = A, then we have (2.6) and the
following equivalent inequalities with the best possible constant factor B(A1, A2):

{Z(n—nz)”“_l lz (m+71n_ n))\‘| }

n=1 m=1

N (3.5)
S — # m — n, )PA—A1)=1,p ’
>B<A1,A2>{mz_l[1 Ot )| tm =) m},
SR S o l H
{mz-:l [t = Oy 1™ Z:: “Z*”_ m* (3.6)
B(A1,)2) [Z(n - 772)(1(1_)\2)_1[)?1]

Proof. (i) => (ii). By (i), in view of the continuity of the beta function, we have

B? (Ao, A — X2)B7 (A1, A — A1)
= lim lm B%a, A —A2)B7(A, A — A1) = B(Aa, A — \y),

p—1—q——o0

A=X AL A=A A

B( +—, + =)
p q q p
A=Xy A A=A A
= lim lim B( 242 L 22y = B(As, A — A1),
p—17 ¢—= =0 p q q p

namely, BF (Aa, A — A2)B1 (A1, A — Ay) = B(222 4 A A= day
(it) => (). By (ii), (2.9) keeps the form of equality. In view of the proof of
Lemma 2.4, it follows that Ay + Ao = .

(iv) => (7). If Ay + A2 = A, then

Br (A2, A — A2)B1 (A1, A — Ap)

A—Xa M A=A A
= B( 242 L+ 22y = B(A, A),
p e’ q p

which is independent of p,¢q. Hence, (i) <=> (i7) <=> (iv).
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(#91) => (iv). By Lemma 2.4, we have Ay + Ay = A.
(iv) => (i13). By Lemma 2.3, for A\; + A = A,

B? (A2, A — A2)B1 (A1, A — A1) (= B(A1, A2))

is the best possible constant factor of (2.4). Therefore, we have (iii) <=> (iv).
Hence, the statements (i), (ii), (iii) and (iv) are equivalent.
The theorem is proved. O

Remark 3.1. (i) Forn; = 0,\; = 3 € (0,2] (i =1,2;0 < A < 3) in (2.6), (3.5) and

(3.6), we have the following equivalent inequalities with the best possible constant
factor B(%, %)

. L (37
AL & 1 N = A !
>B(77 7) Z 1- O( >\/2) mp(lii)ilaﬁz Z nq(lii)ilb% )
2°2 m=1 m n=1
o0 o0 Py b
p2—1 Am,
= St |

=

>B(%7 g) {Z [1 - O(m/l\/z )] mp(l_g)_lafn} )

[e’e} mqé*l e ] bn q %
{mZ 1= O lZ (m + n)> } 5
>B(;\7 %) [i nq(lz)lbq] q
n=1

(i) For ;; = 1,0 = 3 € (0,3] (i = 1,2;0 < A < 3) in (2.6), (3.5) and (3.6),
we have the following revere more accurate equivalent inequalities with the best

possible constant factor B(3, 3):
W
n=1m=1 (m +n— %)A
A 1 1o,a a '
2z — — 2yp(A=5)=1,p
>B(2.2) {Z 1 O] (m = 0 am}
m=1 4
= 1,02 ‘
« Z(n _ Z)q(lfa)*lbgl , (3.10)
n=1
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5 (m— )72 P '
= 1 - O(G )l (m+n—3)>

n=1

Q=

>B(i, é) li(n _ i)q(lé)lb%] ’ ) (3.12)

n=1

In particular, for A = 3, we have the following equivalent inequalities with the best
possible constant factor %:

—N—
[“]e
| —
—
\
S
—~
E)
|
—
N
Q=
w
~
¥
S~—
.
El
\
N
S~—
|
|
—
S
3"3
—
=

X [Z:l(n— i)élbg] : (3.13)

)
> (- ? 3‘”)%] N (3.15)

4. Conclusions

In this paper, by means of the weight coefficients, the idea of introduced parameters,
Hermite-Hadamard’s inequality and Euler-Maclaurin summation formula, a reverse
more accurate Hardy-Hilbert’s inequality as well as the equivalent forms are given
in Lemma 2.2 and Theorem 3.1. The equivalent statements of the best possible
constant factor related to several parameters are considered in Theorem 3.2, and
some particular reverse inequalities are obtained in Remark 3.1. The lemmas and
theorems provide an extensive account of this type of inequalities.
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