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AFFINE-PERIODIC SOLUTIONS FOR
PERTURBED SYSTEMS

Xiujuan Dong1,† and Xue Yang2,1

Abstract In this paper, we try to study the existence and uniqueness of
affine-periodic solutions for the perturbed affine-periodic system. We prove
that, under certain conditions, if the coefficient of the forced term is suffi-
ciently small, then the system admits affine-periodic solutions which have the
form of z(t + T, µ) = Qz(t, µ) with some nonsingular matrix Q. Depending
on the structure of Q, they may be periodic, anti-periodic, quasi-periodic or
even unbounded spiral motions. The main tools we used are the theory of
exponential dichotomy and Banach contraction mapping principle.

Keywords Affine-periodic solutions, perturbed systems, exponential dichot-
omy, Banach contraction mapping principle.

MSC(2010) 34C25, 34C27.

1. Introduction
Periodicity is a very common phenomenon in nature. In the real world, many
phenomena show some periodicity to varying degrees. So the periodicity problem
is one of center topics in the study of dynamic system theory. But not all natural
phenomena can be described alone by periodicity, some natural phenomena often
exhibit symmetry besides time periodicity. For example, rigid body motion, spiral
wave, typhoon motion and other physical phenomena. In 2013, Li and his coauthors
[18] proposed the concept of “affine periodic solution” based on this phenomenon,
and gave a strict mathematical definition. Consider the system

ẋ = f(t, x), (1.1)

where f : R × Rn → Rn is continuous, and for some Q ∈ GLn(Rn) satisfies the
following affine symmetry:

f(t+ T, x) = Qf(t,Q−1x).

We call it a (Q,T )-affine-periodic system. For this (Q,T )-affine-periodic system,
we are concerned with the existence of (Q,T )-affine-periodic solutions x(t) with

x(t+ T ) = Qx(t) ∀t ∈ R.

It should be pointed out that when Q = I (identity matrix) or Q = −I, the solutions
are just the pure periodic solutions or antiperiodic ones; When Q is a power identity
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matrix, i.e., Qk = I for some integer k ̸= 0, this kind of solutions is subharmonic;
If Q ∈ O(n), i.e., Q is an orthogonal matrix, the solutions are a special quasi-
periodic; When Q ∈ GL(n)\O(n), an affine-periodic solution might be spiral like
(eat cosωt, eat sinωt).

In recent years, the study of affine periodic solutions has attracted great at-
tention of scholars. The existence of affine periodic solutions for different systems
was discussed and investigated in the literature [2, 7, 8, 14–16, 18]. In 2015, Li
and Huang studied Levinson’s problem on affine-periodic solutions where the sys-
tem is dissipative-repulsive [7]; In 2016, Cheng, Huang and Li proved that every
(Q,T )-affine-periodic differential equation has a (Q,T )-affine-periodic solution if
the corresponding homogeneous linear equation admits exponential dichotomy or
exponential trichotomy [2]; Wang, Yang and Li are discussed the existence of affine-
periodic solutions of systems without those conditions such as dissipativeness [14].
In 2017, Wang, Yang and Li gave the LaSalle type stationary oscillation theorems
for affine-periodic [15]; In 2018, Li, Wang and Yang studied Fink type conjecture on
affine-periodic solutions and levinson’s conjecture to newtonian systems [8]; Xing,
Yang and Li gave the existence of affine-periodic solutions for perturbed affine-
periodic systems by using the averaging method [16].

In this paper, we try to study the existence of affine-periocic solutions for the
perturbed affine-periodic system with the following type

ż = g(z) + µh(t, z, µ),

where g(z) and h(t, z, µ) are continuous functions and, µ is a small parameter. And
for some Q ∈ GLn(Rn), the following affine symmetry holds:

g(z) = Qg(Q−1z), h(t+ T, z, µ) = Qh(t,Q−1z, µ).

We will prove that, under certain conditions, the perturbed system admits affine-
periocic solutions. Our approach is based on the theory of exponential dichotomy
and Banach contraction mapping principle.

This paper is organized as follows. In Section 2, we introduce some basic con-
cepts about exponential dichotomy and affine-periodic solution. In Section 3, we
state our main result and give its proof. In Section 4, some examples are given to
illustrate the main findings.

Throughout this paper, we need the following notations.

Rn : n-dimensional Euclidean space,

R+ : Positive real number set,

R− : Negative real number set,

GLn(Rn) : General linear group on Rn,

I : Identity matrix,

Q−1 : Inverse of matrix Q,
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gz(z) : Jacobian matrix of function g with respect to z,

µ, δ, ε : Small parameters.

2. Preliminaries
Exponential dichotomy is one of the most basic concepts arising in the theory of
dynamical systems. It plays a central role in some complicated behaviors, such
as homoclinic, heteroclinic orbits. Now, we recall the definition of exponential
dichotomies:

Definition 2.1. Let A(t) be a real n× n matrix function, piecewise continuous on
an interval J . We consider linear system

ẋ = A(t)x,

where x ∈ Rn. We say the system admits an exponential dichotomy on interval
J ⊂ R if there exist constants K,α > 0, projection P and fundamental matrix X(t)
satisfying

|X(t)PX−1(s)| ≤ Ke−α(t−s) s ≤ t,

|X(t)(I − P )X−1(s)| ≤ Ke−α(s−t) t ≤ s,
(2.1)

for t, s ∈ J .

Besides, we also need definitions below.

Definition 2.2. We denote by GLn(Rn) the n-dimensional general linear group
over Rn and consider the system

ẋ = f(t, x), (2.2)

where f : R×Rn → Rn is continuous. If there exists Q ∈ GLn(Rn) and T > 0 such
that

f(t+ T, x) = Qf(t,Q−1x)

holds for all (t, x) ∈ R×Rn, we call the system (2.2) a (Q,T )-affine-periodic system
(APS for short).

For APS (2.2), we define its affine-periodic solutions as follows:

Definition 2.3. If x(t) is a solution of APS (2.2) on R and

x(t+ T ) = Qx(t) ∀t ∈ R,

then x(t) is said to be a (Q,T )-affine-periodic solution.

3. Main Result
In this section, we are ready to state and prove our main results.
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We consider the system of the following form:

ż = g(z) + µh(t, z, µ), (3.1)

where µ is a small parameter. Furthermore, we make the following assumptions.
(H1) Let g(z) be a twice continuously differentiable vector function defined in

Rn and gz(z) be bounded. Suppose that the system

ż = g(z) (3.2)

has a (Q,T )-affine-periodic solution ξ(t), and the variational equation

ż = gz(ξ(t))z (3.3)

has an exponential dichotomy on R with constants K,α, where Q ∈ GLn(Rn),
T > 0 is a constant.

(H2) Let h(t, z, µ) be a continuous vector function defined for t ∈ R, z ∈ Rn, |µ| <
δ(µ ∈ R), such that the partial derivative ht, hz, hµ, hzz, hzµ, hµz, are continuous in
t for each fixed z, µ and continuous in z, µ uniformly with respect to t, z, µ.

(H3) The following affine symmetry holds:

g(z) = Qg(Q−1z), h(t+ T, z, µ) = Qh(t,Q−1z, µ) (3.4)

for all (t, z) ∈ R× Rn.
(H4) For sufficiently small µ, there exist positive constants M1,M2 > 0 such

that for

K(2M1 + µM2)

α
(eαT − 1)(

+∞∑
k=1

(|Q−k|+ |Qk|)e−αkT + 2e−αT ) < 1,

where M1 = sup
z

∥gz(z)∥,M2 = max{ sup
t∈[0,T ]

|h(t, z, µ)|, sup
t∈[0,T ]

|hz(t, z, µ)|}.

Theorem 3.1. Suppose (H1) − (H4) are satisfied. Then for sufficiently small µ,
the system (3.1) has a unique affine-periodic solution z(t, µ).

Remark 3.1. For (H3), we notice that h(t, z, µ) is affine periodic, thus |h(t, z, µ)|
and |hz(t, z, µ)| may be unbounded on t ∈ R, but they can be bounded on t ∈
[0, T ], i.e., ∥h(t, z, µ)∥ := sup

t∈[0,T ]

|h(t, z, µ)|, ∥hz(t, z, µ)∥ := sup
t∈[0,T ]

|hz(t, z, µ)| can be

bounded. In our theorem, we only need |h(t, z, µ)| and |hz(t, z, µ)| to be bounded
on t ∈ [0, T ]. For details, please refer to the proof of theorem. Therefore, the
assumption about M2 in (H4) is reasonable.

Remark 3.2. For (H1), we notice that the variational equation has an exponential
dichotomy on R. The reason for this assumption is that ξ(t) is an affine-periodic
solution. If ξ(t) is homoclinic or heteroclinic orbits, we only need to assume that
the variational equation has an exponential dichotomy on the both R+ and R−.

We give the following lemma, which is useful to our proof.

Lemma 3.1 (See [2]). Let Q ∈ GL(n). For a fixed µ,

CT = {y(·, µ) ∈ C(R1,Rn) : y(t+ T, µ) = Qy(t, µ), for all t ∈ R}.

Then {CT , ∥ · ∥} is a Banach space with the norm ∥y∥ = sup
t∈[0,T ]

|y(t, µ)|.
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Proof. Firstly, we need to prove that the norm is well defined.
(1)∥y∥ ≥ 0,∀y ∈ CT . If y ∈ CT such that ∥y∥ = sup

t∈[0,T ]

|y(t, µ)| = 0, then we

get that y(t, µ) is zero vector for all t ∈ [0, T ]. For any k ∈ Z, if t ∈ [kT, (k + 1)T ],
then we have y(t, µ) = Qky(t − kT, µ), which means that y(t, µ) is zero vector for
all t ∈ R.

(2)∥cy∥ = sup
t∈[0,T ]

|cy(t, µ)| = |c| sup
t∈[0,T ]

|y(t, µ)| = |c|∥y∥,∀c ∈ R, y ∈ CT .

(3)∥y1 + y2∥ = sup
t∈[0,T ]

|y1(t, µ) + y2(t, µ)| ≤ sup
t∈[0,T ]

|y1(t, µ)| + sup
t∈[0,T ]

|y2(t, µ)| =

∥y1∥+ ∥y2∥,∀y1, y2 ∈ CT .

Thus the norm is well defined.
Secondly, we prove that CT is complete.
Let {yn} be a Cauchy sequence in CT . For all n, denote by ȳn the restriction

of yn on the interval [0, T ]. Then ȳn is a Cauchy sequence in C([0, T ]), which is
a Banach space, and there exists a ȳ∗ ∈ C([0, T ]) such that lim

n→+∞
∥ȳn − ȳ∗∥ = 0.

Define a continuous (Q,T )-affine-periodic function

y∗(t, µ) =

 ȳ∗(t, µ), t ∈ [0, T ],

Qkȳ∗(t− kT, µ), t ∈ [kT, (k + 1)T ], k ∈ Z\{0}.
(3.5)

Then we have lim
n→+∞

∥yn − y∗∥ = lim
n→+∞

∥ȳn − ȳ∗∥ = 0, which means that CT is
complete. Thus {CT , ∥ · ∥} is a Banach space.

Now we prove Theorem 3.1.
Proof. Let z(t, µ) = ξ(t) + x(t, µ), then (3.1) becomes

ξ̇(t) + ẋ(t, µ) = g(ξ(t) + x(t, µ)) + µh(t, ξ(t) + x(t, µ), µ),

and

ẋ(t, µ) = g(ξ(t) + x(t, µ))− g(ξ(t)) + µh(t, ξ(t) + x(t, µ), µ)

= gz(ξ(t))x+ g(ξ(t) + x(t, µ))− g(ξ(t))− gz(ξ(t))x

+ µh(t, ξ(t) + x(t, µ), µ)

= gz(ξ(t))x+W (t, x, µ),

(3.6)

where

W (t, x, µ) = g(ξ(t) + x(t, µ))− g(ξ(t))− gz(ξ(t))x+ µh(t, ξ(t) + x(t, µ), µ).

From g(z) = Qg(Q−1z), we have gz(z) = Qgz(Q
−1z)Q−1.

Denote ĝ(t, z) = gz(ξ(t))z. Then

ĝ(t+ T, z) = gz(ξ(t+ T ))z

= gz(Qξ(t))z

= Qgz(Q
−1Qξ(t))Q−1z

= Qgz(ξ(t))Q
−1z

= Qĝ(t,Q−1z).

(3.7)
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Let Φ(t) = Q−1X(t+ T )X−1(T )Q, then

d(Φ(t))

dt
= Q−1 d(X(t+ T ))

d(t+ T )
X−1(T )Q

= Q−1gz(ξ(t+ T ))X(t+ T )X−1(T )Q

(3.7)
= Q−1Qgz(ξ(t))Q

−1X(t+ T )X−1(T )Q

= gz(ξ(t))Φ(t).

(3.8)

Since Φ(0) = I, by the uniqueness of solutions, we get Φ(t) = X(t).
Thus

X(t+ T ) = QX(t)Q−1X(T ).

Consider the following nonhomogeneous linear equation

ẋ(t, µ) = gz(ξ(t))x+W (t, y(t, µ), µ), (3.9)

where y(t, µ) is a continuous function.
From (H1), we know that ẋ(t, µ) = gz(ξ(t))x has an exponential dichotomy on

R, then there is a projection P and constants K,α > 0 such that

|X(t)PX−1(s)| ≤ Ke−α(t−s), s ≤ t,

|X(t)(I − P )X−1(s)| ≤ Ke−α(s−t), t ≤ s.

Then (3.9) has the following solution:

x(t, µ) =

∫ t

−∞
X(t)PX−1(s)W (s, y, µ)ds

−
∫ ∞

t

X(t)(I − P )X−1(s)W (s, y, µ)ds.

(3.10)

We show that x(t, µ) is (Q,T )-affine-periodic if y(t, µ) is (Q,T )-affine-periodic.

x(t+ T, µ) =

∫ t+T

−∞
X(t+ T )PX−1(s)W (s, y, µ)ds

−
∫ ∞

t+T

X(t+ T )(I − P )X−1(s)W (s, y, µ)ds,

where

W (t+ T, y(t+ T, µ), µ)

= g(ξ(t+ T ) + y(t+ T, µ))− g(ξ(t+ T ))− gz(ξ(t+ T ))y(t+ T, µ)

+ µh(t+ T, ξ(t+ T ) + y(t+ T, µ), µ)

= Qg(Q−1(ξ(t+ T ) + y(t+ T, µ)))−Qg(Q−1ξ(t+ T ))

−Qgz(Q
−1ξ(t+ T ))Q−1y(t+ T, µ)

+ µQh(t,Q−1(ξ(t+ T ) + y(t+ T, µ)), µ)

= Qg(ξ(t) + y(t, µ))−Qg(ξ(t))−Qgz(ξ(t))y(t, µ)

+ µQh(t, ξ(t) + y(t, µ), µ)

= QW (t, y(t, µ), µ),

(3.11)
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and
Q−1X(T )P = PQ−1X(T ), Q−1X(T )(I − P ) = (I − P )Q−1X(T ).

Let s = τ + T , we have

x(t+ T, µ) =

∫ t

−∞
X(t+ T )PX−1(τ + T )W (τ + T, y(τ + T, µ), µ)dτ

−
∫ ∞

t

X(t+ T )(I − P )X−1(τ + T )W (τ + T, y(τ + T, µ), µ)dτ

=

∫ t

−∞
QX(t)Q−1X(T )P (QX(τ)Q−1X(T ))−1QW (τ, y, µ)dτ

−
∫ ∞

t

QX(t)Q−1X(T )(I − P )(QX(τ)Q−1X(T ))−1QW (τ, y, µ)dτ

=

∫ t

−∞
QX(t)PX−1(τ)W (τ, y, µ)dτ

−
∫ ∞

t

QX(t)(I − P )X−1(τ)W (τ, y, µ)dτ

= Qx(t, µ),

which means that x(t, µ) is (Q,T)-affine-periodic.
Next, we prove that the integral (3.10) exists.

∥W (t, y, µ)∥ = ∥g(ξ + y)− g(ξ)− gz(ξ)y + µh(t, ξ + y, µ)∥
≤ ∥(gz(ξ + y′)− gz(ξ))y∥+ µ∥h(t, ξ + y, µ)∥
≤ ∥gz(ξ + y′)− gz(ξ)∥∥y∥+ µM2

≤ 2M1∥y∥+ µM2,

where M1 = sup
z

∥gz(z)∥,M2 = max{∥h∥, ∥hz∥}, which means

sup
t∈[0,T ]

|W (t, y(t, µ), µ)| ≤ 2M1 sup
t∈[0,T ]

|y(t, µ)|+ µM2 ≤ 2CM1 + µM2.

Define a map H : CT → CT by

H(y)(t, µ) =

∫ t

−∞
X(t)PX−1(s)W (s, y, µ)ds

−
∫ ∞

t

X(t)(I − P )X−1(s)W (s, y, µ)ds.

Note that H is well defined. For y(t, µ) ∈ CT , we have

|H(y)(t, µ)| = |
∫ t

−∞
X(t)PX−1(s)W (s, y(s, µ), µ)ds

−
∫ ∞

t

X(t)(I − P )X−1(s)W (s, y(s, µ), µ)ds|

≤
∫ t

−∞
|X(t)PX−1(s)| · |W (s, y(s, µ), µ)|ds
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+

∫ ∞

t

|X(t)(I − P )X−1(s)| · |W (s, y(s, µ), µ)|ds

≤ K{
∫ t

−∞
e−α(t−s)|W (s, y(s, µ), µ)|ds

+

∫ ∞

t

e−α(s−t)|W (s, y(s, µ), µ)|ds}.

For a fixed t, if t ∈ [0, T ], the first term as follows∫ t

−∞
e−α(t−s)|W (s, y(s, µ), µ)|ds

=

−∞∑
k=−1

∫ (k+1)T

kT

e−α(t−s)|W (s, y(s, µ), µ)|ds+
∫ t

0

e−α(t−s)|W (s, y(s, µ), µ)|ds

≤

( −∞∑
k=−1

|Qk|
∫ T

0

e−α(t−s−kT )ds+

∫ t

0

e−α(t−s)ds

)
∥W (s, y(s, µ), µ)∥

≤ (2CM1 + µM2)

( −∞∑
k=−1

|Qk|
∫ T

0

e−α(t−s−kT )ds+

∫ t

0

e−α(t−s)ds

)

=
2CM1 + µM2

α

( −∞∑
k=−1

|Qk|eαkT−αt(eαT − 1) + 1− e−αt

)
.

(3.12)

Furthemore,∫ +∞

t

e−α(s−t)|W (s, y(s, µ), µ)|ds

=

+∞∑
k=1

∫ (k+1)T

kT

e−α(s−t) · |W (s, y(s, µ), µ)|ds+
∫ T

t

e−α(s−t)|W (s, y(s, µ), µ)|ds

≤

(
+∞∑
k=1

|Qk|
∫ T

0

e−α(s−t+kT )ds+

∫ T

t

e−α(s−t)ds

)
∥W (s, y(s, µ), µ)∥

≤ (2CM1 + µM2)

(
+∞∑
k=1

|Qk|
∫ T

0

e−α(s−t+kT )ds+

∫ T

t

e−α(s−t)ds

)

=
2CM1 + µM2

α
(

+∞∑
k=1

|Qk|eα(t−kT )(1− e−αT ) + 1− eα(t−T )).

(3.13)

Thus

|H(y)(t, µ)|

≤ K(2CM1 + µM2)

α
(

−∞∑
k=−1

|Qk|eαkT−αt(eαT − 1)

+

+∞∑
k=1

|Qk|eα(t−kT )(1− e−αT ) + 2− e−αt − eα(t−T ))
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≤ K(2CM1 + µM2)

α
sup

t∈[0,T ]

(

−∞∑
k=−1

|Qk|eαkT−αt(eαT − 1)

+

+∞∑
k=1

|Qk|eα(t−kT )(1− e−αT ) + 2− e−αt − eα(t−T ))

=
K(2CM1 + µM2)

α
(

−∞∑
k=−1

|Qk|eαkT (eαT − 1)

+

+∞∑
k=1

|Qk|eα(T−kT )(1− e−αT ) + 2− 2e−αT )

=
K(2CM1 + µM2)

α
(eαT − 1)(

+∞∑
k=1

(|Q−k|+ |Qk|)e−αkT + 2e−αT ).

H4
< ∞.

If t < 0,

|H(y)(t, µ)| = |
∫ t

−∞
X(t)PX−1(s)W (s, y(s, µ), µ)ds

−
∫ ∞

t

X(t)(I − P )X−1(s)W (s, y(s, µ), µ)ds|

≤
∫ t

−∞
|X(t)PX−1(s)| · |W (s, y(s, µ), µ)|ds

+

∫ ∞

t

|X(t)(I − P )X−1(s)| · |W (s, y(s, µ), µ)|ds

=

∫ t

−∞
|X(t)PX−1(s)| · |W (s, y(s, µ), µ)|ds

+

∫ 0

t

|X(t)(I − P )X−1(s)| · |W (s, y(s, µ), µ)|

+

∫ ∞

0

|X(t)(I − P )X−1(s)| · |W (s, y(s, µ), µ)|ds

≤
∫ 0

−∞
|X(t)PX−1(s)| · |W (s, y(s, µ), µ)|ds

+

∫ 0

t

|X(t)(I − P )X−1(s)| · |W (s, y(s, µ), µ)|

+

∫ ∞

0

|X(t)(I − P )X−1(s)| · |W (s, y(s, µ), µ)|ds

< ∞.

If t > T ,

|H(y)(t, µ)| = |
∫ t

−∞
X(t)PX−1(s)W (s, y(s, µ), µ)ds

−
∫ ∞

t

X(t)(I − P )X−1(s)W (s, y(s, µ), µ)ds|
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≤
∫ t

−∞
|X(t)PX−1(s)| · |W (s, y(s, µ), µ)|ds

+

∫ ∞

t

|X(t)(I − P )X−1(s)| · |W (s, y(s, µ), µ)|ds

=

∫ T

−∞
|X(t)PX−1(s)| · |W (s, y(s, µ), µ)|ds

+

∫ t

T

|X(t)PX−1(s)| · |W (s, y(s, µ), µ)|

+

∫ ∞

t

|X(t)(I − P )X−1(s)| · |W (s, y(s, µ), µ)|ds

≤
∫ T

−∞
|X(t)PX−1(s)| · |W (s, y(s, µ), µ)|ds

+

∫ t

T

|X(t)(I − P )X−1(s)| · |W (s, y(s, µ), µ)|

+

∫ ∞

T

|X(t)(I − P )X−1(s)| · |W (s, y(s, µ), µ)|ds

< ∞.

From the above discussion, we get the integral (3.10) exsists.
In order to prove the existence of (Q,T )-affine-periodic solutions of equation

(3.6), we only need to prove that there exists a fixed point of H in CT . For any
y1, y2 ∈ CT ,

∥H(y1)(·)−H(y2)(·)∥

= sup
t∈[0,T ]

|
∫ t

−∞
X(t)PX−1(s)(W (s, y1, µ)−W (s, y2, µ))ds

−
∫ ∞

t

X(t)(I − P )X−1(s)(W (s, y1, µ)−W (s, y2, µ))ds|,

≤ sup
t∈[0,T ]

{
∫ t

−∞
|X(t)PX−1(s)| · |W (s, y1, µ)−W (s, y2, µ)|ds

+

∫ ∞

t

|X(t)(I − P )X−1(s)| · |W (s, y1, µ)−W (s, y2, µ)|ds},

and

∥W (s, y1, µ)−W (s, y2, µ)∥
= ∥g(ξ + y1)− g(ξ)− gz(ξ)y1 + µh(t, ξ + y1, µ)

− (g(ξ + y2)− g(ξ)− gz(ξ)y2 + µh(t, ξ + y2, µ))∥
= ∥g(ξ + y1)− g(ξ + y2)− gz(ξ)y1 + gz(ξ)y2

+ µh(t, ξ + y1, µ)− µh(t, ξ + y2, µ))∥
≤ ∥(gz(ξ + y0)− gz(ξ))(y1 − y2)∥+ µ∥hz(t, ξ + ŷ, µ)(y1 − y2)∥
≤ (∥gz(ξ + y0)− gz(ξ)∥+ µ∥hz(t, ξ + ŷ)∥) · ∥y1 − y2∥
≤ (2M1 + µM2)∥y1 − y2∥.
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Firstly,∫ t

−∞
|X(t)PX−1(s)| · |W (s, y1, µ)−W (s, y2, µ)|ds

≤ K

∫ t

−∞
e−α(t−s)|W (s, y1, µ)−W (s, y2, µ)|ds

= K{
−∞∑
k=−1

∫ (k+1)T

kT

e−α(t−s)|W (s, y1, µ)−W (s, y2, µ)|ds

+

∫ t

0

e−α(t−s)|W (s, y1, µ)−W (s, y2, µ)|ds} (3.14)

≤ K(

−∞∑
k=−1

|Qk|
∫ T

0

e−α(t−s−kT )ds+

∫ t

0

e−α(t−s)ds)∥W (s, y1, µ)−W (s, y2, µ)∥

≤ K(2M1 + µM2)(

−∞∑
k=−1

|Qk|
∫ T

0

e−α(t−s−kT )ds+

∫ t

0

e−α(t−s)ds)∥y1 − y2∥

=
K(2M1 + µM2)

α

( −∞∑
k=−1

|Qk|eαkT−αt(eαT − 1) + 1− e−αt

)
∥y1 − y2∥.

Secondly,∫ t

−∞
|X(t)(I − P )X−1(s)| · |W (s, y1, µ)−W (s, y2, µ)|ds

≤ K

∫ +∞

t

e−α(s−t)|W (s, y1, µ)−W (s, y2, µ)|ds

= K(

+∞∑
k=1

∫ (k+1)T

kT

e−α(s−t) · |W (s, y1, µ)−W (s, y2, µ)|ds

+

∫ T

t

e−α(s−t)|W (s, y1, µ)−W (s, y2, µ)|ds) (3.15)

≤ K(

+∞∑
k=1

|Qk|
∫ T

0

e−α(s−t+kT )ds+

∫ T

t

e−α(s−t)ds)∥W (s, y1, µ)−W (s, y2, µ)∥

≤ K(2M1 + µM2)(

+∞∑
k=1

|Qk|
∫ T

0

e−α(s−t+kT )ds+

∫ T

t

e−α(s−t)ds)∥y1 − y2∥

=
K(2M1 + µM2)

α
(

+∞∑
k=1

|Qk|eα(t−kT )(1− e−αT ) + 1− eα(t−T ))∥y1 − y2∥.

Thus

∥H(y1)(·)−H(y2)(·)∥
(3.14)
(3.15)
≤ K(2M1 + µM2)

α
sup

t∈[0,T ]

{(
−∞∑
k=−1

|Qk|eαkT−αt(eαT − 1) + 1− e−αt)
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+

+∞∑
k=1

|Qk|eα(t−kT )(1− e−αT ) + 1− eα(t−T ))}∥y1 − y2∥

≤ K(2M1 + µM2)

α
{

−∞∑
k=−1

|Qk|eαkT (eαT − 1)

+

+∞∑
k=1

|Qk|eα(T−kT )(1− e−αT ) + 2− 2e−αT }∥y1 − y2∥

≤ K(2M1 + µM2)

α
{
+∞∑
k=1

|Q−k|e−αkT (eαT − 1)

+

+∞∑
k=1

|Qk|e−αkT (eαT − 1) + 2(eαT − 1)e−αT }∥y1 − y2∥

≤ K(2M1 + µM2)

α
(eαT − 1)(

+∞∑
k=1

(|Q−k|+ |Qk|)e−αkT + 2e−αT )∥y1 − y2∥.

From H4, for sufficiently small µ, H(y) is a contraction mapping on CT . From
Banach Fixed Point Theorem, it follows that H admits a unique fixed point x(t, µ) ∈
CT which is the unique (Q,T )-affine-periodic solution of equation (3.6) and z(t, µ)
is the unique (Q,T )-affine-periodic solution of equation (3.1).

4. Examples
In this section, we will show two examples and prove the existence of affine-periodic
solutions.

Example 4.1. Consider the system

x
′
= −εx+ µe−

ε
2 t,

y
′
= εy,

(4.1)

where ε ≪ 1.
Let z = (x, y)T , we have g(z) = (−εx, εy)T , h(t, z, µ) = (e−

ε
2 t, 0)T .

We will verify the assumptions of Theorem 3.1 hold.
(H1) g(z) be a twice continuously differentiable vector function on Rn. And

gz(z) =

−ε 0

0 ε


is bounded. Furthemore, ż = g(z) has a solution ξ(t) = (0, 0)T . The eigenvalues
of gz(ξ(t)) are ±ε, so the variational equation ż = gz(ξ(t))z has an exponential
dichotomy on R with K = 1, α = ε.

(H2) is obviously true.
(H3)Put

Q =

 e−επ 0

0 1

 ,



766 X. Dong & X. Yang

T = 2π.

Thus we have

ξ(t+ 2π) = Qξ(t),

Q−1 =

 eεπ 0

0 1

 ,

Q−1z = (eεπx, y)T .

Furthermore,

Qg(Q−1z) =

 e−επ 0

0 1

−εeεπx

εy


=

−εx

εy


= g(z).

Qh(t,Q−1z, µ) =

 e−επ 0

0 1

 e−
ε
2 t

0


=

 e−
ε
2 (t+2π)

0


= h(t+ 2π, z, µ).

(H4) We can get

M1 = sup ∥gz(z)∥ =
√
2ε,

M2 = max{ sup
t∈[0,2π]

|h(t, z, µ)|, sup
t∈[0,2π]

|hz(t, z, µ)|} = 1.

Thus

K(2M1 + µM2)

α
(eαT − 1)(

+∞∑
k=1

(|Q−k|+ |Qk|)e−αkT + 2e−αT )

=
2
√
2ε+ µ

ε
(e2επ − 1)(

+∞∑
k=1

((e2kεπ + 1)
1
2 + (e−2kεπ + 1)

1
2 )e−2kεπ + 2e−2επ)

= (2
√
2 +

µ

ε
)(e2επ − 1)(

+∞∑
k=1

((e2kεπ + 1)
1
2 + (e−2kεπ + 1)

1
2 )e−2kεπ + 2e−2επ)

< 1, if µ is sufficiently small.

because of

e2επ − 1 → 0, ε → 0,



Affine-periodic solutions for perturbed systems 767

µ

ε
(e2επ − 1) → 2πµ, ε → 0,

+∞∑
k=1

((e2kεπ + 1)
1
2 + (e−2kεπ + 1)

1
2 )e−2kεπ + 2e−2επ < ∞.

By Theorem 3.1, for sufficiently small µ, the system (4.1) admits a unique affine-
periodic solution.

Example 4.2. Consider the system

x
′
= εx+ εy + µ sin t,

y
′
= −εx+ εy + µ cos t,

(4.2)

where ε ≪ 1. Let z = (x, y)T , we have g(z) = (εx + εy,−εx + εy)T , h(t, z, µ) =
(sin t, cos t)T .

(H1) g(z) be a twice continuously differentiable vector function on Rn. ż = g(z)
has a solution ξ(t) = (0, 0)T . The real part of eigenvalues of gz(ξ(t)) is ε, so
the variational equation ż = gz(ξ(t))z has an exponential dichotomy on R with
K = 1, α = ε. And

gz(z) =

 ε ε

−ε ε


is bounded.

(H2) is obviously true.
(H3) Put

Q =

 cosβ sinβ

− sinβ cosβ

 ,

T = β.

Thus we have

ξ(t+ β) = Qξ(t),

Q−1 =

 cosβ − sinβ

sinβ cosβ

 ,

Q−1z = (x cosβ − y sinβ, x sinβ + y cosβ)T .

And there exist constant C such that |Q−k|+ |Qk| < C.
Furthermore,

Qg(Q−1z) =

 cosβ sinβ

− sinβ cosβ


×

 ε(x cosβ − y sinβ) + ε(x sinβ + y cosβ)

−ε(x cosβ − y sinβ) + ε(x sinβ + y cosβ)


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=

 εx+ εy

−εx+ εy


= g(z).

Qh(t,Q−1z, µ) =

 cosβ sinβ

− sinβ cosβ

 sin t

cos t


=

 sin(t+ β)

cos(t+ β)


= h(t+ β, z, µ).

(H4)We can get

M1 = sup ∥gz(z)∥ = 2ε,

M2 = max{ sup
t∈[0,2π]

|h(t, z, µ)|, sup
t∈[0,2π]

|hz(t, z, µ)|} =
√
2.

Thus

K(2M1 + µM2)

α
(eαT − 1)(

+∞∑
k=1

(|Q−k|+ |Qk|)e−αkT + 2e−αT )

= (4 +

√
2µ

ε
)(eεβ − 1)(

+∞∑
k=1

Ce−kεβ + 2e−εβ)

< 1, if µ is sufficiently small.

because of

eεβ − 1 → 0, ε → 0,
√
2µ

ε
(eεβ − 1) →

√
2µβ, ε → 0,

+∞∑
k=1

Ce−kεβ + 2e−εβ < ∞.

By Theorem 3.1, for sufficiently small µ, the system (4.2) admits a unique affine-
periodic solution.
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