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Abstract The investigation of this research article is the development of
studying the dynamical behavior of the drinking population through the frac-
tional drinking model in the sense of Caputo-Fabrizio (CF) arbitrary order
operator along with the special non-singular kernel. The proposed system is
analyzed for existence result and uniqueness of solution by applying fixed point
theory and Picard’s technique. Also on utilizing Adams-Bashforth method
(ABM) of numerical analysis to interpret the approximate results through
plots to observe dynamical behavior corresponding to different fractional or-
der. For the mentioned simulation some real initial and parameter data are
used.
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1. Introduction
Various mathematical expressions and formulae have been tested for the dealing
of infectious diseases like the transmission of the epidemic, endemic and pandemic
[12,21]. These models have also been used for the last few decades to describe various
habits of the society, like drinking of alcohol and swine, habits of smoking, cocaine,
obesity, corruption, cooperation, ideological conflicts, dynamics of tax evasion and
radicalization phenomena, see [13,16,22,23,39,41]. The most important dealings in
this regard of Mathematical modeling and expression are of transmission of alcohol
taking and its tendency towards the population of different societies [24,35].

By Medical and biological aspects, drinking of alcohol and its taking [45] are
divided into the groups of three different individuals, non-consumer (not taking
any alcohol), seldom or the moderate user (taking alcohol for some time and not
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every time) and the last group is of high or risk users (taking a high quantity
of alcohol and every time). So, expressing communication and ensuing deviation
mathematically by making assumptions about the parameters and the population
of the society. The most beneficial and important term in formulating the drinking
of alcohol consumption by assuming that the people of society slightly increase the
rate of taking alcohol. This is not because of various social-gathering but due to
under forceful or depressing situations. The study also shows that consumption
of alcohol plays a fundamental role in depression, see [40]. This implies that a
moderate drinker becomes a high quantity drinker which may be related to the
drinker’s population density and the two individuals are involved to change it. If
anyone takes the recent globe situation because of the COVID-19, then the afore-
mentioned self-induced growing of alcohol consumption is not only up to date but
also very well see [17,18].

Mathematical models are powerful tools in this approach that help us to inves-
tigate such infectious type disease models more accurately. The drinking behavior
evolution model was studied by Nuno Crokidakis and Lucas Sigaud [19] and pre-
sented as 

dS(t)

dt
= −ζS(t)M (t)− ζS(t)R (t) + ρS(t)R (t),

dM (t)

dt
= ζS(t)M (t) + ζS(t)R (t)− ηM (t)R (t)− µM (t),

dR (t)

dt
= µM (t) + ηM (t)R (t)− ρS(t)R (t),

(1.1)

where the details of the used parameters are given below:

• S(t) (non-consumer population): People who have never taken alcohol or have
used it in the past time and then become alter of this habits. In such a
situation, we named these populations as Susceptible class or population, i.e.,
susceptible to drinking again or only at this time;

• M (t) (non-risk population): Population with continuous but with less quantity
usage. We named it Moderated takers;

• R (t) (risk Population): Population with continuous more quantity usage. We
named it Risk-takers;

• ζ: shows an “infection” chance, i.e., the chance that a user (M (t) or R (t))
classes turn a non-consumer population into the consumers of drinking;

• η: represents the chance of the moderate takers M into risk drinkers R ;
• µ: The rate of infection from M → R .
• ρ: Shows the chance of transferring the risk drinkers R into non-consumer

population S .

The area of fractional calculus has attained extreme attention in the last three
decades. Enormous scientists have provided their contribution in this aspect by
introducing different fractional operators in different articles [25, 30]. Modern cal-
culus provides more realistic result as compared to classical calculus. It describes
the dynamics of different real-world phenomena lying between two integers. Fur-
ther, the fractional operators have more degree of freedom and it generalizes the
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integer differential operators. Up to now, various researchers have published more
research articles, books and different monographs which touch the said area. The
dynamics of real-world phenomena for classical models of differentiation and inte-
gration have been investigated through the modern approach of arbitrary-order by
different systematic approaches [37].

Various techniques have been applied to discuss such modern derivatives, e.g.,
the techniques applied by Akbari et al. [26] and Talaee et al. [42]. Several other
significant uses of the modern differential equation may be found in the famous
research work published in [14, 33]. In this manuscript, we have used the new
fractional CFD [15] to investigate the mathematical modeling for simulating the
transmission of drinking model (1.1). Currently, several researcher have studied and
published related work to the fractional CFD, see, [1, 2, 8, 10, 11, 20, 27, 30, 36, 43].
The notion of CFD [15] has been extensively used to investigate treated cancer
problems [3], the dynamical behavior of hepatitis B and E [28,29], effecting cancer
cell by immune system cells [32], the dynamical behavior of TB [44] and the epidemic
dengue [38]. This derivative with fractional order is applied for the investigation of
different iterative solutions of various physical phenomena, as given in [6,7,9,31,34].
The stability, existence and uniqueness of solutions for these modern mathematical
models dealing with the dynamical behavior of HBV infectious epidemic have been
cited in [28, 38]. Up to now, the novel CF fractional operator is not used to deal
with the analysis of drinking dynamical behavior.

Motivated from the above-mentioned literature, in the current work, we use the
novel fractional-order CFD to examine the drinking system in [19] for numerical
simulations and qualitative analysis. We reconsider the model described in (1.1)
under CFD of fractional order γ ∈ (0, 1) as


CFDγ

t S(t) = −ζS(t)M (t)− ζS(t)R (t) + ρS(t)R (t),

CFDγ
t M (t) = ζS(t)M (t) + ζS(t)R (t)− ηM (t)R (t)− µM (t),

CFDγ
t R (t) = µM (t) + ηM (t)R (t)− ρS(t)R (t),

(1.2)

along with the initial conditions, S(0) = S0, M (0) = M0, R (0) = R0. In this paper,
we explore an existence theory for the system (1.2) using a fixed point theory to
ensure that the considered model has at least one solution. Also, we utilize the
ABM to derive the general procedure of solution to the model (1.2) under the
CFD and traditional Caputo derivative. For the novelty of the paper we add that
fractional order mathematical model has been investigated for different fractional
order derivatives having more information as compared to integer order model.
It provides the total density for each compartment lying between 0 and 1. The
qualitative analysis of the proposed problem is derived with the help of fixed point
theory.

The structure of this manuscript is as follows. In Section 2, we present some
basic definitions and notation from the fractional calculus. In Section 3, we explain
our main work and discuss the existence, uniqueness of the solution and stability
result for the proposed model. By using a well know Adams-Bashforth method for
the approximate solution for the considered system. In Section 4, we perform the
numerical simulation by using the initial condition and the date available in the
table. Finally, we conclude our work in Section 5.
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2. Preliminaries
Let H1[0, t] = {f : f ∈ L2[0, T ] and f

′ ∈ L2[0, T ]},where L2[0, T ] is the space of
square integrable functions on the [0, T ]. For the sake of simplicity let us represent
the exponential kernel as K(t, ϱ) = exp

[
−γ t−ϱ

1−γ

]
.

Definition 2.1 ( [4]). If ζ(t) ∈ H1[0, T ], T > 0, γ ∈ (0, 1),then the CFD of ζ(t) is
defined as:

CFDγ
t [ζ(t)] =

M(γ)

1− γ

∫ t

0

ζ
′
(ϱ)K(t, ϱ)dϱ,

M(γ) represent normalization function such that M(1) = M(0) = 1. However if
ζ(t) /∈ H1[0, T ], then one has

CFDγ
t [ζ(t)] =

M(γ)

1− γ

∫ t

0

[ζ(t)− ζ(ϱ)]K(t, ϱ)dϱ.

Definition 2.2 ( [15]). The Caputo-Fabrizio fractional integral of ζ(t) is presented
as:

CF Iγt [ζ(t)] =
1− γ

M(γ)
ζ(t) +

γ

M(γ)

∫ t

0

ζ(ϱ)dϱ, t ≥ 0, γ ∈ (0, 1). (2.1)

Definition 2.3 ( [15]). Taking M(γ) = 1, we define general formula for Laplace
transform of CFD as:

L
{
CFDγ+M

t [ζ(t)]
}
=

1

1− γ
L
[
ζ(h+γ)(t)

]
L

[
exp

(
−γt

1− γ

)]
,

=
1

ν + γ(1− ν)

[
νh+1L [ζ(t)] +

h∑
i=0

νh−iζ(i)(0)

]
. (2.2)

One can be obtain the following results for h = 0, 1 respectively

L
[
CFDγ

t [ζ(t)]
]
=

νL [ζ(t)]

ν + γ(1− ν)
,

L
[
CFDγ+1

t [ζ(t)]
]
=

νL [ζ(t)] + νζ(0)− ζ
′
(0)

ν + γ(1− ν)
,

Definition 2.4 ( [5]). The Laplace transform of CDγ
t [ζ(t)] is define as:

L
[
CDγ

t [ζ(t)]
]
= νγL [ζ(t)]−

k−1∑
i=0

νk−i−1ζ(i)(0).

3. Main work
Here, Picard-Lindelof and the fixed-point approach is used for the existence and
uniqueness of the solution to the proposed model. Also, the stability of the suggested
model has been proven by using the aforesaid tools. The numerical results are
constructed by using three steps ABM. The numerical solutions are provided for
the different compartments in different fractional order.
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3.1. Existence and uniqueness results
Through fixed point approach we derive require results as:

Ξ1 (t, S ,M ,R ) = −ζS(t)M (t)− ζS(t)R (t) + ρS(t)R (t),

Ξ2 (t, S ,M ,R ) = ζS(t)M (t) + ζS(t)R (t)− ηM (t)R (t)− µM (t),

Ξ3 (t, S ,M ,R ) = µM (t) + ηM (t)R (t)− ρS(t)R (t),

so the system (1.2) becomes
CFDγ

t S(t) = Ξ1 (t, S ,M ,R ) ,
CFDγ

t M (t) = Ξ2 (t, S ,M ,R ) ,
CFDγ

t R (t) = Ξ3 (t, S ,M ,R ) ,

(3.1)

let
ηn = sup

C[d,bn]

∥Ξn (t, S ,M ,R )∥ , for n = 1, 2, 3,

with

C [d, bn] = [t− d, t+ d]× [u− cn, u+ ck] = D ×Dn, for n = 1, 2, 3.

Assume a uniform norm on C [d, bn] , for k = 1, 2, 3 as follows:

∥W ∥∞ = sup
t∈[t−d,t+d]

|W (t)| . (3.2)

Applying CF Iγt on both sides of (3.1), we have
S(t)− S(0) =CF Iγt Ξ1 (t, S ,M ,R ) ,

M (t)− M (0) =CF Iγt Ξ2 (t, S ,M ,R ) ,

R (t)− R (0) =CF Iγt Ξ3 (t, S ,M ,R ) ,

(3.3)



S(t) = S(0) +
1− γ

M(γ)
[Ξ1 (t, S ,M ,R )− Ξ1 (0, S(0),M (0),R (0))]

+
γ

M(γ)

∫ t

0

Ξ1 (ϱ, S ,M ,R ) dϱ,

M (t) = M (0) +
1− γ

M(γ)
[Ξ2 (t, S ,M ,R )− Ξ2 (0, S(0),M (0),R (0))]

+
γ

M(γ)

∫ t

0

Ξ2 (ϱ, S ,M ,R ) dϱ,

R (t) = R (0) +
1− γ

M(γ)
[Ξ3 (t, S ,M ,R )− Ξ3 (0, S(0),M (0),R (0))]

+
γ

M(γ)

∫ t

0

Ξ3 (ϱ, S ,M ,R ) dϱ.

(3.4)

Define the Picard operator

Π : C (P , P1, P2, P3) → C (P , P1, P2, P3) , (3.5)
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given as follows:

Π (W (t)) = W0(t) + [Ψ (t,W (t))− Ψ0(t)]
1− γ

M(γ)
+

γ

M(γ)

∫ t

0

Ψ (ϱ,W (ϱ)) dϱ, (3.6)

where

W (t) =


S(t),

M (t),

R (t),

W0(t) =


S(0),

M (0),

R (0),

Ψ (t,W (t)) =


Ξ1 (t, S ,M ,R ) ,

Ξ2 (t, S ,M ,R ) ,

Ξ3 (t, S ,M ,R ) ,

Ψ0(t) =


Ξ1 (0, S(0),M (0),R (0)) ,

Ξ2 (0, S(0),M (0),R (0)) ,

Ξ3 (0, S(0),M (0),R (0)) .

Assume that the proposed model obeys:

∥W (t)∥∞ ≤ max{d1, d2, d3}. (3.7)

Let η = max{η1, η2, η3} and there exists t0 = max{t ∈ D}, one gets

∥ΠW − W0∥ = max
t∈[0,T ]

∣∣∣∣Ψ (t,W (t))
(1− γ)

M(γ)
+

γ

M(γ)

∫ t

0

Ψ (ϱ,W (ϱ)) dϱ

∣∣∣∣ ,
≤ (1− γ)

M(γ)
max
t∈[0,T ]

|Ψ (t,W (t))|+ γ

M(γ)
max
t∈[0,T ]

∫ t

0

|Ψ (ϱ,W (ϱ))| dϱ,

≤ (1− γ)

M(γ)
η +

γ

M(γ)
t0η,

≤ dη ≤ max{d1, d2, d3} = d′,

where d = 1+γt0
M(γ) , and satisfies d < d′

η . Also for given relation

∥ΠW1 −ΠW2∥ = sup
t∈D

|W1(t)− W2(t)| , (3.8)

using definition of Picard operator yields

∥ΠW1 −ΠW2∥ = max
t∈[0,T ]

∣∣∣∣∣ (1− γ)

M(γ)
[Ψ (t,W1(t))− Ψ (t,W2(t))]

+
γ

M(γ)

∫ t

0

[Ψ (ϱ,W1(ϱ))− Ψ (ϱ,W2(ϱ))] dϱ

∣∣∣∣∣,
≤ (1− γ)

M(γ)
max
t∈[0,T ]

ϑ |W1(t)− W2(t)|

+
γϑ

M(γ)
max
t∈[0,T ]

∫ t

0

|W1(ϱ)− W2(ϱ)| dϱ,

≤
{
(1− γ)

M(γ)
ϑ+

γϑt0
M(γ)

}
∥W1 − W2∥ ,

≤ dϑ ∥W1 − W2∥ ,

with ϑ < 1. For Π to fulfill contraction condition we must have dϑ < 1. Thus the
Picard operator Π obeys the contraction condition. Therefore, the consider model
has a unique solution.
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3.2. Stability analysis
Here, we will explore the stability of the Picard iteration by using fixed point theory.
On applying CF Iγt to both sides of (1.2), we obtain

S(t)− S(0) =
1− γ

M(γ)

[
− ζSM − ζSR + ρSR

]
+

γ

M(γ)

∫ t

0

[
− ζS(ϱ)M (ϱ)− ζS(ϱ)R (ϱ) + ρS(ϱ)R (ϱ)

]
dϱ,

M (t)− M (0) =
1− γ

M(γ)

[
ζSM +ζSR − ηMR − µM

]
+

γ

M(γ)

∫ t

0

[
ζS(ϱ)M (ϱ)+ζS(ϱ)R (ϱ)−ηM (ϱ)R (ϱ)−µM (ϱ)

]
dϱ,

R (t)− R (0) =
1− γ

M(γ)

[
µM + ηMR − ρSR

]
+

γ

M(γ)

∫ t

0

[
µM (ϱ) + ηM (ϱ)R (ϱ)− ρS(ϱ)R (ϱ)

]
dϱ.

(3.9)
Let S0(t) = S(0), M0(t) = M (0) and R0(t) = R (0), then the Picard iteration is
defined as:

Si+1(t) =
1− γ

M(γ)

[
− ζSiMi − ζSiRi + ρSiRi

]
+

γ

M(γ)

∫ t

0

[
− ζSi(ϱ)Mi(ϱ)− ζSi(ϱ)Ri(ϱ) + ρSi(ϱ)Ri(ϱ)

]
dϱ,

Mi+1(t) =
1− γ

M(γ)

[
ζSiMi + ζSiRi − ηMiRi − µMi

]
+

γ

M(γ)

∫ t

0

[
ζSi(ϱ)Mi(ϱ) + ζSi(ϱ)Ri(ϱ)− ηMi(ϱ)Ri(ϱ)− µMi(ϱ)

]
dϱ,

Ri+1(t) =
1− γ

M(γ)

[
µMi + ηMiRi − ρSiRi

]
+

γ

M(γ)

∫ t

0

[
µMi(ϱ) + ηMi(ϱ)Ri(ϱ)− ρSi(ϱ)Ri(ϱ)

]
dϱ.

(3.10)

Theorem 3.1. Let (B, ∥.∥) be a Banach space and Π self mapping of B satisfying

∥Πx −Πy∥ ≤ L ∥x−Πx∥+ l ∥x− y∥ ,

∀ x, y ∈ B,where L ≥ 0 and 0 ≤ l ≤ 1. Then Π is Picard Π−stable.

Now, suppose the recursive formula for the proposed system (1.2) as follows:

Si+1(t) = Si + L−1

[
ν + γ(1− ν)

ν
L

[
− ζSM − ζSR + ρSR

]]
,

Mi+1(t) = Mi + L−1

[
ν + γ(1− ν)

ν
L

[
ζSM + ζSR − ηMR − µM

]]
,

Ri+1(t) = Ri + L−1

[
ν + γ(1− ν)

ν
L

[
µM + ηMR − ρSR

]]
.

(3.11)
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Theorem 3.2. If Π be a self mapping such that

Π(Si(t)) = Si+1(t) = Si + L−1

[
ν + γ(1− ν)

ν
L [−ζSM − ζSR + ρSR ]

]
,

Π(Mi(t)) = Mi+1(t) = Mi + L−1

[
ν + γ(1− ν)

ν
L [ζSM + ζSR − ηMR − µM ]

]
,

Π(Ri(t)) = Ri+1(t) = Ri + L−1

[
ν + γ(1− ν)

ν
L [µM + ηMR − ρSR ]

]
.

(3.12)
Then the iteration (3.12) is Π−stable if the following conditions are received

(1 + ζΥ1 + (ζ − ρ)C2Υ2) < 1,

(1 + 2ζC2Υ3 − ρC4Υ4 − µΥ5) < 1,

(1 + µΥ6 + ρC5Υ7 − ηC2Υ8) < 1.

(3.13)

Proof. First, we need to show that Π has a fixed point. Thus, we compute
Π(Si)−Π(Sj) for all (i, j) ∈ N ×N as follows:

Π(Si)−Π(Sj) = Si − Sj + L−1

[
ν + γ(1− ν)

ν
L [−ζSiMi − ζSiRi + ρSiRi]

]
,

−L−1

[
ν + γ(1− ν)

ν
L [−ζSjMj − ζSjRj + ρSjRj ]

]
,

= Si − Sj + L−1

[
ν + γ(1− ν)

ν
L

[
− ζSiMi − ζSiRi + ρSiRi

+ζSjMj + ζSjRj − ρSjRj

]]
,

= Si − Sj + L−1

[
ν + γ(1− ν)

ν
L

[
ζ (SjMj − SiMi)

+ζ (SjRj − SiRi)− ρ (SjRj − SiRi)

]]
. (3.14)

Taking maximum of both sides (3.14), we get

∥Π(Si)−Π(Sj)∥ ≤ ∥Si − Sj∥+
∥∥∥∥L−1

[
ν + γ(1− ν)

ν
L

[
ζ
(

SjMj − SiMi

)
+ζ

(
SjRj − SiRi

)
− ρ

(
Sj(t)Rj − SiRi

)]]∥∥∥∥,
≤ ∥Si − Sj∥+ L−1

[
ν + γ(1− ν)

ν
L

[
ζ∥SjMj − SiMi∥

+ζ∥SjRj − SiRi∥ − ρ∥SiRi − SjRj∥
]]

,

≤ ∥Si − Sj∥+ L−1

[
ν + γ(1− ν)

ν
L

[
ζ∥SjMj − SiMi∥

+(ζ − ρ)∥SjRj − SiRi∥
]]

. (3.15)

Both of solutions have the same role so we assume that

∥Π(Si)−Π(Sj)∥ ∼= ∥Π(Mi)−Π(Mj)∥ ∼= ∥Π(Ri)−Π(Rj)∥. (3.16)
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From equations (3.15) and (3.16), we get

∥Π(Si(t))−Π(Sj(t))∥ ≤ ∥Si − Sj∥+ L−1

[
ν + γ(1− ν)

ν
L

[
ζ∥Mj∥∥Sj − Si∥

+(ζ − ρ)∥Rj∥∥Sj − Si∥
]]

. (3.17)

Since Si, Sj ,Ri ,Rj , Mi and Mj are convergent sequences, so they are bounded, there
exists constants C1, C2,C3,C4, C5 and C6 for all t such that

∥Si∥ ≤ C1, ∥Sj∥ ≤ C2, ∥Ri∥ ≤ C3, ∥Rj∥ ≤ C4, ∥Mi∥ ≤ C5, ∥Mj∥ ≤ C6.

Thus (3.17) becomes

∥Π(Si)−Π(Sj)∥ ≤ {1 + ζΥ1 + (ζ − ρ)C2Υ2} ∥Si − Sj∥ . (3.18)

Similarly, we have

∥Π(Mi)−Π(Mj)∥ ≤ {1 + 2ζC2Υ3 − ρC4Υ4 − µΥ5} ∥Mi − Mj∥, (3.19)
∥Π(Ri)−Π(Rj)∥ ≤ ∥Ri − Rj∥. (3.20)

Where Υm for m = 1, 2, · · · , 8, are functions obtained from L−1
[
ν+γ(1−ν)

ν L [∗]
]
.

Now under the condition
(1 + ζΥ1 + (ζ − ρ)C2Υ2) < 1,

(1 + 2ζC2Υ3 − ρC4Υ4 − µΥ5) < 1,

(1 + µΥ6 + ρC5Υ7 − ηC2Υ8) < 1,

(3.21)

the self map Π is contraction, so Π posses a fixed point.
Next, we will show that Π fulfill the required conditions. To do so, we assume

that

L = (0, 0, 0), l =


(1 + ζΥ1 + (ζ − ρ)C2Υ2) ,

(1 + 2ζC2Υ3 − ρC4Υ4 − µΥ5) ,

(1 + µΥ6 + ρC5Υ7 − ηC2Υ8) .

Then all conditions are satisfied; hence, Π is Picardie Π−stable.

3.3. Numerical results and simulations
In this part, we use three steps ABM to derive general numerical solution of the
model (1.2). Consider the first equation of system (3.1) as{

CFDγ
t S(t) = Ξ1 (t, S ,M ,R ) ,

S(0) = S0.
(3.22)

Apply fractional integral in sense of Caputo-Fabrizio, we have

S(t)− S(0) =
1− γ

M(γ)
Ξ1 (t, S ,M ,R ) +

γ

M(γ)

∫ t

0

Ξ1 (τ, S ,M ,R ) dτ. (3.23)
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Now, we descriptive the interval [0, t] by taking the step size l such that t0 = 0,
tk+1 = tk + l, k = 0, 1, 2, · · · , n− 1. Replace t = tk+1 and t = tk in equation (3.23)
and take the difference of the resulting equations, we get


S(tk+1)− S(tk) =

1− γ

M(γ)
[Ξ1 (tk+1, S ,M ,R )− Ξ1 (tk, S ,M ,R )]

+
γ

M(γ)

∫ tk+1

tk

Ξ1 (τ, S ,M ,R ) dτ.

(3.24)

Now, we approximate the integral on the right side of equation (3.24) by considering
the Lagrangian interpolation polynomial of degree two passing through the points

(tk−2,Ξ1 (tk−2, S ,M ,R )) , (tk−1,Ξ1 (tk−1, S ,M ,R )) ,

and

(tk,Ξ1 (tk, S ,M ,R )) .

The Lagrangian interpolation polynomial Q2(τ) of degree two is given by

Q2(τ) =

2∑
i=0

Ξ1 (tk−i, S ,M ,R )Hi(τ),

where the Hi(τ) are the Lagrange polynomials on the points tk−2, tk−1,and tk. Let
Sk = S(tk), now, to approximate the integral

∫ tk+1

tk
Ξ1 (τ, S ,M ,R ) dτ , we substitute

r = tk+1−τ
l in the Lagrange base polynomial and the integration, we get

∫ tk+1

tk

Ξ1 (τ, S ,M ,R ) dτ =l

∫ 1

0

Ξ1 (τk, Sk,Mk,Rk)
(r − 2) (r − 3)

(1− 2) (1− 3)
,

+ Ξ1 (τk−1, Sk−1,Mk−1,Rk−1)
(r − 1) (r − 3)

(2− 1) (2− 3)

+ Ξ1 (τk−2, Sk−2,Mk−2,Rk−2)
(r − 2) (r − 1)

(3− 2) (3− 1)
dτ,

=
23l

12
Ξ1 (τk, Sk,Mk,Rk)−

16l

12
Ξ1 (τk−1, Sk−1,Mk−1,Rk−1)

+
5l

12
Ξ1 (τk−2, Sk−2,Mk−2,Rk−2) .

Then equation (3.24) becomes

S(tk+1) =S(tk) +

(
1− γ

M(γ)
+

23γl

12M(γ)

)
Ξ1 (τk, Sk,Mk,Rk)

−
(
1− γ

M(γ)
+

16γl

12M(γ)

)
Ξ1 (τk−1, Sk−1,Mk−1,Rk−1)

+
5γl

12M(γ)
Ξ1 (τk−2, Sk−2,Mk−2,Rk−2) .

(3.25)
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The iterative scheme for the remaining two compartments are given below

M (tk+1) =M (tk) +

(
1− γ

M(γ)
+

23γl

12M(γ)

)
Ξ2 (τk, Sk,Mk,Rk)

−
(
1− γ

M(γ)
+

16γl

12M(γ)

)
Ξ2 (τk−1, Sk−1,Mk−1,Rk−1)

+
5γl

12M(γ)
Ξ2 (τk−2, Sk−2,Mk−2,Rk−2) ,

(3.26)



R (tk+1) =R (tk) +

(
1− γ

M(γ)
+

23γl

12M(γ)

)
Ξ3 (τk, Sk,Mk,Rk)

−
(
1− γ

M(γ)
+

16γl

12M(γ)

)
Ξ3 (τk−1, Sk−1,Mk−1,Rk−1)

+
5γl

12M(γ)
Ξ3 (τk−2, Sk−2,Mk−2,Rk−2) .

(3.27)

4. Numerical interpretation and discussion
For the numerical simulations, we use the numerical values given in the Table 1,
and the initial conditions S(0) = 0.99, M (0) = 0.01, R (0) = 0.

Table 1. “Parametric values for the numerical simulation”

Parameters values
µ 0.03
η 0.07
ζ 0.07
ρ 0.10

Now in this part, we have to draw the graphical representation of all the three
classes namely as S(t), M (t), and R (t) for the considered model via ABM under
CFD of fractional order. We take the starting values as S(0) = 0.98, M (0) = 0.015
and R (0) = 0. Four cases are investigated in which some parameters are fixed and
some are changed from one case to another. In all the cases we have obtained the
stable and convergent simulation.

Case-I In this case d = 0.07 and a = 0.03, we will have varied the parameters ζ
and γ in all cases. In this case γ = 0.01 ζ = 0.07, figures 1 to 3 is the representation
for S(t), M (t) and R (t) respectively. The first three Figures 1, 2 and 3 are the
simulation for case-I at different fractional order. We see that the growing of γ
results the growth of S(t) and the decrease of M (t) and R (t). Notice that γ models
the persuasion of non-consumers S(t) in the society interactions with alcohol takers
on high level R (t), i.e., the social force of peoples that do not use alcohol over their
contacts (friends, relatives, etc) that consume too much alcohol.

Figure 4 represents all the three agents of the proposed problem in one figure at
different fractional order providing the applicability of fractional order derivatives.

Case-II In the case-II we take γ = 0.15 and ζ = 0.07, while the remaining
parameters does not change.

This time in figure 5 up and down showed by all the agents as compared to
Case-I. R (t) is declines while S(t) is increased.
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Figure 1. Plot of the approximate solution for S(t) of the considered system (1.2) for the non-integer
order γ between 0 and 1
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Figure 2. Plot of the approximate solution for M (t) of the considered system (1.2) for the non-integer
order γ between 0 and 1
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Figure 3. Plot of the approximate solution for R (t) of the considered system (1.2) for the non-integer
order γ between 0 and 1
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Figure 4. Combine Dynamical behavior of the approximate solution for all the three agents of the
considered system (1.2) for the non-integer order γ between 0 and 1 for data of Case-I

Figure 5. Dynamical representation of the approximate solution for all the three agents S(t), M (t), R (t)
of the system (1.2) for the non-integer order γ between 0 and 1 having parameters values of Case-II

Case-III: In the third case ζ = 0.07 and γ = 0.30, while the remaining param-
eters are fixed.

In figure 6 all the three agents are graphed at different fractional order. Here
the fractional representation is an one graph. In the graph we can observe that S(t)
and M (t) intersect each other at the same convergent point on the 100th day. R (t)
in the said case declines up to 0.1.

Case-IV: In the fourth case ζ = 0.20, γ = 0.15 while the rest of the parameters
are unchanged.

Figure 7 shows combine graph for all the three compartmental agents at different
fractional order. In the said situation, we can observe that S(t) is rapidly declining
while R (t) is rapidly growing. This time M (t) increases and then become stable.

5. Conclusion
The analyzed manuscript has been treated for the drinking behaviors of various
individuals through the fractional drinking problem. On applying Picard’s iterative
tool along with fixed point results, we have developed the theoretical analysis of
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Figure 6. Dynamical behavior of the approximate solution for all the three compartments
S(t), M (t), R (t) of the considered system (1.2) for the non-integer order γ between 0 and 1 having
parameters values of Case-III

Figure 7. Dynamical behavior of the approximate solution for all the three agents S(t), M (t), R (t) of
the considered system (1.2) for the non-integer order γ between 0 and 1 having parameters values of
Case-IV

a solution for a model addressing the drinking behavior. Also, numerical results
have been derived via ABM of the numerical side. The concerned model has been
investigated under CFD with fractional order. The whole analysis has been demon-
strated via plots against various fractional-order values. We have chosen different
fractional orders for the simulation of the proposed problem to test the behavior of
each compartmental agent lying between 0 and 1. The advantage of choosing such
various fractional orders is to find the whole continuous spectrum and density from
0 to 1 for every agent of the said problem. Hence CFD of fractional order can also
be nicely applied to study dynamical analysis of many real-world problems.
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