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1. Introduction
In this paper we study the existence of oscillatory solutions for the nonlinear frac-
tional differential equations with distributed delays

Dα
t [r(t)Φ(x

′(t))] +

∫ b

a

p(t, τ)f(x(t− τ))dτ = q(t), t ≥ t0, (1.1)

where Dα
t is Liouville fractional derivative of order α ≥ 0 on the half-axis, r ∈

C
(
[t0,∞), R+), p ∈ C

(
[t0,∞) × [a, b], R), q ∈ C

(
[t0,∞), R), f ∈ C

(
[t0,∞), R), 0 <

a < b, Φ(u) are continuously increasing real function with respect to u defined on
R, and Φ−1(u) satisfys the local Lipschitz condition.

Fractional differential equations have been widely applied in fluid science, chem-
ical physics, electronic networks, fluid mechanics, and economics. In recent years,
the research on fractional order ordinary differential equations and partial differen-
tial equations have been widely carried out and some favorable results have been
obtained in [4, 10,13].

There has been an increasing interest in oscillatory theory of differential equa-
tions, since its theoretical and practical value. So far, many authors have con-
tributed to the subject and got many results about functional differential equations
of integer order [1, 5–7,11].

Recently, Grace, Agarwal, Wong,et al. [8], Bolat [2], Duan, Wang and Fu [3],
Harikrishnan, Prakash and Nieto [9] investigated oscillation and forced oscillation
of fractional order delay differential equations.zhou et al. [16], zhou et al. [17], Sun,

†The corresponding author. Email: lyj9791@126.com(Y. Liu)
1School of Mathematics and Statistics, Shanxi Datong University Datong,
Shanxi 037009, China

∗The authors were supported by Natural Sciences Foundation of China (No.
11871314,61803241), Natural Sciences Foundation of Shanxi Province (No.
201901D111314).

http://www.jaac-online.com
http://dx.doi.org/10.11948/20210414


808 Y. Liu, H. Zhao, & S. Kang

Zhao [14], investigated the nonoscillatory theory for fractional differential equations.
However, the existence of oscillatory solutions for fractional functional differential
equations with distributed delays has been scarcely studied. Finally we will consider
this problem.

2. Preliminaries
In this section, we introduce preliminary details which are used throughout this
paper.

Definition 2.1. As usual, a solution of Equation (1.1) is a function x(t) defined
on [t0 − b,∞) such that x(t) and r(t)Φ(x′(t)) are continuously differentiable on
[t0 − b,∞). Our attention will be restricted to those solution x(t) of (1.1) which
satisfys sup |x(t)| > 0, for t ≥ T ≥ t0−b. Such a solution is said to be oscillatory if it
has a sequence of zeros tending to infinity. Otherwise, it is said to be nonoscillatory.

Definition 2.2 ( [10]). The Liouville fractional derivative on the half-axis is defined
by

D−α
t f(t) =

1

Γ(α)

∫ ∞

t

(s− t)α−1f(s)ds,

where t ∈ R and α ∈ [0,∞).

Definition 2.3 ( [10]). The Liouville fractional derivative on the half-axis is defined
by

Dα
t f(t) =

dn

dtn
(D

−(n−α)
t f(t)) =

1

Γ(n− α)

dn

dtn

∫ ∞

t

(s− t)n−α−1f(s)ds,

where n = [α] + 1, α ∈ [0,∞), [α] denotes the integer part of α and t ∈ R. In
particular, if α = n ∈ N , thenDn

t f(t) = f (n)(t), where f (n)(t) is the usual derivative
of f(t) of order n.

Property 2.1. ( [10]) For α > 0, Dα
t (D

−α
t f)(t) = f(t).

We will prove a qeneral result about equation (1.1) on the existence of oscillatory
solutions.

Here are some notations. For a constant γ > 0, θγ = max|x|≤γ |f(x)|, t ≥ t0. Lγ

denote the local Lipischitz constants of functions Φ−1(u).

3. The main results
Lemma 3.1 ( [15]). Let S ⊂ K, K ⊂ X, S be compact, K be nonvoid and convex,
and X be a locally convex space, For given a continuous map F : K → S, then there
exists x̃ ∈ S such that F (x̃) = x̃.

Theorem 3.1. Assume there exists γ > 0,

1

r(t)

∫ ∞

t

sα−1q(s)ds is integrable on [t0,∞), (3.1)

1

r(t)

∫ ∞

t

sα−1

∫ b

a

p(s, τ)dτds is integrable on [t0,∞), (3.2)
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moreover, there exist two increasing divergent sequences {tn} and {sn}, tn, sn such
that∫ ∞

tn

Φ−1

(
1

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(q(u) + θγ

∫ b

a

p(u, τ)dτ)du

)
ds < 0, (3.3)

∫ ∞

sn

Φ−1

(
1

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(q(u)− θγ

∫ b

a

p(u, τ)dτ)du

)
ds > 0, (3.4)

then equation (1.1) has an oscillatory solution x(t) defined on [t0,∞) with |x| ≤ γ,
and lim

t→∞
x(t) = 0.

Proof. The proof is based on an application of the well known Schauder-Tychonoff
fixed point theorem.

From (3.1)and (3.2), for any γ > 0 we choose a large Tγ ≥ T such that for all
t ≥ Tγ ,∫ ∞

t

Φ−1

(
1

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(q(u) + θγ

∫ b

a

p(u, τ)dτ)du

)
ds ≤ γ, (3.5)

∫ ∞

t

Φ−1

(
1

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(q(u)− θγ

∫ b

a

p(u, τ)dτ)du

)
ds ≥ −γ. (3.6)

Let C[t0 − b,∞) denote the locally convex space of all continuous functions with
topology of uniform convergence on compact subsets of [t0 − b,∞). Let S = {x ∈
C[t0 − b,∞), |x(t)| ≤ γ}. Clearly, S is a close convex subset of C[t0 − b,∞).

Introduce an operator F by,

(Fx)(t) =



∫ ∞

t

Φ−1

(
1

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(q(u)

+

∫ b

a

p(u, τ)f(x(u− τ))dτ)du

)
ds, t > Tγ ,

(Fx)(Tγ), t0 − b ≤ t ≤ Tγ .

It is easy to see that for any x ∈ S, (Fx)(t) is continuous and well defined on
[t0 − b,∞). From (3.5) and (3.6) we obtain

(Fx)(t) ≤
∫ ∞

t

Φ−1

(
1

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(q(u) + θγ

∫ b

a

p(u, τ)dτ)du

)
ds

≤ γ, t ≥ t0 − b,

and

(Fx)(t) ≥
∫ ∞

t

Φ−1

(
1

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(q(u)− θγ

∫ b

a

p(u, τ)dτ)du

)
ds

≥ −γ, t ≥ t0 − b.

Since |(Fx)(t)| ≤ γ, we have FS ⊂ S and Fx is uniformly bounded on S.
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Let T1 be large constant with T1 > T , for any ϵ > 0 such that∫ ∞

T1

1

Γ(α)r(s)

(∫ ∞

s

(s− t)α−1

∫ b

a

p(s, τ)dτdu

)
ds <

ϵ

3θγLγ
. (3.7)

Let{xn}∞n=1 ∈ S be any sequence and x0 ∈ S with lim
n→∞

xn = x0. From the com-
pactness of the domain of f , there exist a large number N(ϵ) > 0 and a constant
δ(ϵ) > 0. Let t ∈ [t0 − b, T1] and n ≥ N , when |xn − x0| < δ(ϵ),

max
t0−b≤t≤T1

{|f(xn(t− τ))− f(x0(t− τ))|} ≤ ϵ

3MLγ
, (3.8)

where M =
∫ T1

t0−b
(s−t0+b)α−1

Γ(α)r(s)

∫ b

a
p(s, τ)dτds. By virtue of (1.1), (3.1)-(3.8), we have

that for any t ≥ t0 − b and |xn − x0| < δ,

|(Fxn)(t)− (Fx0)(t)|

=|
∫ ∞

t

Φ−1[
1

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(q(u) +

∫ b

a

p(u, τ)f(xn(u− τ))dτ)du]ds

−
∫ ∞

t

Φ−1[
1

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(q(u) +

∫ b

a

p(u, τ)f(x0(u− τ))dτ)du]ds|

≤
∫ ∞

t

|Φ−1[
1

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(q(u) +

∫ b

a

p(u, τ)f(xn(u− τ))dτ)du]

− Φ−1[
1

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(q(u) +

∫ b

a

p(u, τ)f(x0(u− τ))dτ)du]|ds

≤
∫ ∞

t

| Lγ

Γ(α)r(s)
|
∫ ∞

s

(u−t)α−1(

∫ b

a

|p(u, τ)||f(xn(u−τ))−f(x0(u−τ))|dτ)duds

≤
∫ T1

t0−b
| Lγ

Γ(α)r(s)
|
∫ ∞

s

(u−t)α−1(

∫ b

a

|p(u, τ)||f(xn(u−τ))−f(x0(u−τ))|dτ)duds

+

∫ ∞

T1

| Lγ

Γ(α)r(s)
|
∫ ∞

s

(u−vt)α−1(

∫ b

a

|p(u, τ)||f(xn(u−τ))−f(x0(u−τ))|dτ)duds

≤
∫ T1

t0−b

Lγ(s− t0 + b)α−1

Γ(α)r(s)
(

∫ b

a

|p(u, τ)||f(xn(u− τ))− f(x0(u− τ))|dτ)ds

+ 2θγ

∫ ∞

T1

Lγ

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(

∫ b

a

|p(u, τ)|dτ)duds

<
ϵ

3
+

2ϵ

3
= ϵ,

which means F is contious on S. Moreover, for all t2, t1 > t0 − b,

(Fx)(t2)− (Fx)(t1)

=

∫ t2

t1

Φ−1[
1

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(q(u) +

∫ b

a

p(u, τ)f(x(u− τ))dτ)du]ds

≤
∫ t2

t1

Φ−1[
1

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(q(u) + θγ

∫ b

a

p(u, τ)dτ)du]ds

≤α(t2 − t1),
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where α = supt≥t0 Φ
−1[ 1

Γ(α)r(s)

∫∞
s

(u− t)α−1(q(u) + θγ
∫ b

a
p(u, τ)dτ)du], and

(Fx)(t2)− (Fx)(t1)

=

∫ ∞

t

Φ−1[
1

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(q(u) +

∫ b

a

p(u, τ)f(x(u− τ))dτ)du]ds

≥
∫ t2

t1

Φ−1[
1

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(q(u)− θγ

∫ b

a

p(u, τ)dτ)du]ds

≥β(t2 − t1),

where β = inft≥t0 Φ
−1[ 1

Γ(α)r(s)

∫∞
s

(u− t)α−1(q(u) + θγ
∫ b

a
p(u, τ)dτ)du].

We get
|(Fx)(t2)− (Fx)(t1)| ≤ M |t2 − t1|,

where M = max{|α|, |β|}. This implies Fx is equicontinuous. Hence by the Ascoli-
Arzela Theorem the operator is a completely continuous on S.

By Lemma, there exists x̃ ∈ S satisfying

x̃(t) = (Fx̃)(t)

=


∫ ∞

t

Φ−1[
1

Γ(α)r(s)

∫ ∞

s

(u−t)α−1(q(u)+

∫ b

a

p(u, τ)f(x̃(u−τ))dτ)du]ds, t>Tγ ,

(Fx̃)(Tγ), t0 − b ≤ t < Tγ .

On the other hand, from (3.3) and (3.4), we find

x̃(tn) ≤
∫ ∞

tn

Φ−1(
1

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(q(u) + θγ

∫ b

a

p(u, τ)dτ)du)ds < 0,

and

x̃(sn) ≥
∫ ∞

sn

Φ−1(
1

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(q(u)− θγ

∫ b

a

p(u, τ)dτ)du)ds > 0,

which implies that x̃(t) is a bounded oscillatory solution of equation (1.1) and
lim
t→∞

x̃(t) = 0. The proof is completed.

Corollary 3.1. Assume that (3.1) and (3.2) of Theorem hold. Specially, Φ(u) =
uα, for α ≥ 1 is the ratio of two positive odd integers, and there exist two increasing
divergent sequences {tn} and {sn}, such that

∫ ∞

tn

(
1

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(q(u) + θγ

∫ b

a

p(u, τ)dτ)du

) 1
α

ds < 0,

and ∫ ∞

sn

(
1

Γ(α)r(s)

∫ ∞

s

(u− t)α−1(q(u)− θγ

∫ b

a

p(u, τ)dτ)du

) 1
α

ds > 0.

Then equation (1.1) has an oscillatory solution x(t) defined on [t0,∞) for |x| ≤ γ,
and lim

t→∞
x(t) = 0.
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4. Remark
We consider the existence of oscillatory solutions of equation (1.1) for any order
α> 0. Especially, for α=1 the equation (1.1) reduces to equation (1) of reference
[12].
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