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Abstract By means of the weight coefficients, the Euler-Maclaurin summa-
tion formula and Abel’s summation by parts formula, a new half-discrete
Hilbert-type inequality with the power function as the interval variables as
well as one multiple upper limit function and one partial sums is given. As
applications, the equivalent conditions of the best possible constant factor in a
particular inequality related to a few parameters and some particular cases are
considered. We also obtain the equivalent forms and the operator expression
in the case of m = 0.
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1. Introduction

Ifp>1,2 41 =1a,,b,>00<> af, <ocoand 0 <> 7 bl < oo, then
we have the well known Hardy-Hilbert’s inequahty with the best possible constant
factor (cf [4], Theorem 315):

5 /oo N\
ZZ;ZZ 51n7r/p Z“p z_:lb% : (1.1)

n=1m=1 m=1

In 2006, by introducing parameters \; € (0,2] (i =1,2), A1 + Ao = A € (0,4], an
extension of (1.1) was provided by [12] as follows:

S /p)

n=1m=1
[e’e] % [e'e] q
< B(A,Ag) | Y mPUmATtgr |y e ATt | (1.2)
m=1 n=1
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where, the constant factor B(A1, Az) is the best possible, and

o] tufl
B(u,v) := ———dt (u,v >0 1.3
o) i= [ gt (wv>0) (1.3)
is the beta function

For A\=1,\ = %,)\2 = %, inequality (1.2) reduces to (1.1); for p=¢ =2, =
Ay = %, (1.2) reduces to Yang’s inequality in [24]. Recently, applying (1.2) and by
the help of Abel’s summation by parts formula, Adiyasuren et al. [1] gave a new
inequality with the kernel m involving partial sums (cf. [3,7,8,10,12-14, 22,
24,25,27)).

In 1934, a half-discrete Hilbert-type inequality was given as follows (cf. [4],
Theorem 351)‘ Assuming that K(t) (t > 0) is a decreasing function, p > 1, l + l =

1,0 < ¢(s) = [, K(t)t*~1dt < o0, a,, > 0, such that 0 < > 77 | af < oo, Wehave

- n=1"n

/ xP( Z (nx)an)Pdr < ¢P (- Zap (1.4)
0 n=1

Some extensions of (1.4) were provided by [11,16,17,26,28].

In 2016, by using the techniques of real analysis, Hong et al. [7] considered some
equivalent statements of the extensions of (1.1) with the best possible constant
factor related to a few parameters. The other similar works about the extension of
(1.2) and (1.4) were given by [5,6,9,19-21,29]. In a recent papers [29,30], Yang
et al. gave a reverse half-discrete Hardy-Hilbert’s inequality as well as an extended
Hardy-Hilbert’s inequality, and dealt with their equivalent statements of the best
possible constant factor related to several parameters as applications.

In this paper, based on the way of [4,15,31], by the use of the weight coefficients,
the idea of introduced parameters, Euler-Maclaurin summation formula and Abel’s
summation by parts formula, a new half-discrete Hilbert-type inequality with the
kernel as m and one multiple upper limit function as well as one partial sums
is given. As applications, the equivalent conditions of the best possible constant
factor in a particular inequality related to a few parameters are considered, and
then some particular cases are obtained. We also provide the equivalent forms and
the operator expressions in the case of m = 0..

2. Some lemmas

In what follows, we assume that p > 1, ]% + % =1,m=0,1.2,3,4,X € (0.5 —m| #
@0 € (0,1, € (0A+1),h2 € (0,2 =1 N (0A+m), Ay = 222 4 2R, o
Ah %. We also assume that f(x) := Fy(z) is a nonnegative Lebesgue integrable

q
function in any interval (0 b) (b > 0), define a multiple upper limit function as

follows: F;(x fo i1 ( (z > 0), satisfying
F;(0) =0, Fi(x) = o(e™) (t > 0,2 — 0055 =1,--- ,m),
and for a,, > 0, the partial sums is indicated as follows:

A, ::iai (ne N:={1,2,---}),

i=1
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satisfying A,, = o(e!™") (t > 0,n — 00). For m = 0, 1.2, 3,4, we mark appointments
that

0< / x_p(xl_m_l)_lFﬁL(x)dx < 00, and
0

0 <Y ndleGetD--1 40 « o0, (2.1)
n=1
Lemma 2.1. (7) (cf. [25], (2.2.3)) If (—1 )’U‘l:l;g() > 0,t € [n,00) (n € N) with

g () =0 (i =0,1,2,3), Pi(t), B; (i € N) are Bernoulli functions and Bernoulli
numbers of i-order, then we have

e B
/ Paa(g(t)dt = —2, 520g(n) (0 <2 <Lig=12--).  (22)
In particular, for ¢ =1, in view of By = %, we have
- —g P1 t)dt < 0; (2.3)
for q =2, in view of By = —3—10, we have
O</ Ps( dt<i() (2.4)
3( 1207 '

(ii) (cf. [25], (2.3.2)) If h(t)(> 0) € C3[m, 00), h)(c0) =0 (i =0,1,2,3), then
we have the following Euler-Maclaurin summation formulas:

/ F)dt + f / Pi(t (2.5)

/n POF @t =~ 57+ [ o 0 (26)
Lemma 2.2. For s € (0,6],s2 € (0,2]N(0,5),ks(s2) = B(s — s2,52), define the
following weight coefficient:
w(sg,x) 1= as® i_o:l m (x € Ry = (0,00)). (2.7)
We have the following inequalities:
0 < ka(s2)(1 — 0(;72)) < @(59,2) < ka(s2), (2.8)

where,

1 1 [ um!
@) = du > 0.
(@ ks<s2>/o T a

Proof. For fixed x > 0, we define the following function:

atOlSQ—l

9u(t) = (z + 1)

(t > 0).
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By using (2.5), we have

> galn) = [ aulit+ pa.0)+ [ AL,

>
—

8
S—

I

/O 9o (t)dt — ;gw(l)—/loo Pi(t) gl (t)dt.

We obtain —3g,(1) = and integration by parts, it follows that

/1 (t)de /1 tos2= 1y /1 w2 tdu 1 /1 du*>
= _— = - = — -
o o @ty Jo @ruwr sy @t

1 wu® s 1 S2du
_gi(x-l-u)sb—’—g/o (z + u)sH

1 1 s L dustt
T sy (x4 1)° + s2(s2 + 1) / (x 4+ u)st!
11 s w2t
Pt e s R pua s e e
s(s+1) !
s2(s2 +1)(x + 1)5t1 o
1 1 ] 1
S @t st D) (@)
s(s+1)
s2(s2+ 1)(s2 + 2)(x + 1)s+2’

w2t duy

CV(CVSQ _ ]_)tOtSZ*Q a28toz+o¢5272

’
_ 1) = — _
gz( ) (x+ta)s (l‘—‘rto‘)s""l
o 04(1 — OLSQ)tOéS272 0428(56 +t* — l.)ta3272
— (.T+ta)3 (I_A'_ta)erl
_afas+1—asy)t™22 alsptsr?
B (z +t)s (z + to)st1”
and for s € (0, ] (0,s) (s <6),a € (0,1], we have
o dt tos2—2
1) —[——]>0,
( ) dtz (I +ta)5]
o dt pors2—2
(=1 >0 (¢>m; i=0,1,2,3).

dti' (z + t)s+
By (2.3)-(2.6), we obtain

tovsa—2 alas+ 1 — asy)

(a5+1—o¢52)/ Pl()( +ta)sdt>7 12(x+1)s

toz52 2
— 1‘8/ P1 x+ta)s+1 —dt
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2 2 00 asg—2
t 2
_ a‘xs e xs/ PO 7 dt
12(x + 1)s+! 6 Ji (x4 t)s+l
a’zs a’rs.  tes?

> B D 720 Ha eyt

AAx+1-1)s o?(x+1)s [(s +1)(s+2)a?

12(z + 1)*+1 720 (z +1)°+3
als+1)(b—a—2as2) (2—as2)(3 — asa)]
(x+1)s+2 (x +1)st1
. afs a’s s [(s+1)(s+2)a”
S 12(x 1) 12(x+1)stL 720 (z + 1)s+2
al(s+1)(5b—a—2ass) (2—as2)(3—ass)]
(z +1)sH+1 (x+1)s ’
and then we have
hl Sh2 5(8 + 1)h3

h
() > (z + 1)° + (z + 1)51 (z + 1)5+2
where, h; (i =1,2,3) are indicated as

1 o a-—a?sy  a?s(2—as)(3— ass)

=TT T 720 ’
hy = 1 _0172_oz?’(er1)(5—04—20452)7 and
(521 1) 12 720
. 1 B at(s+2)
5 sa(s2+ 1)(s2+2) 720

We obtain h; > 792(82;, where, we indicate g(co) (o € (0, 2]) as follows:

g(0) := 720 — (420cx + 6502)0 + (600 + 5sa’)o? — sato?.

We obtain that for a € (0,1], s € (0, 6],
g (0) = —(420a + 6sa?) + 2(60a” + 5sa®)o — 3ato?
< —420c — 650 + 2(60a2 + 53043)%
= (l4sa — 180)ax < 0,
and then it follows that
g(s2) _ 9(2/a) 1

> =—>0.
— T20s9 — T720s9 659
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Hence, we have h(z) > 0, and then setting t = z'/*u!/*, it follows that
oo o]
w(sg,x) = %2 ng(n) < ms_82/ gz (t)dt
n=1 0

s oo pasa—lgy w21y
= ox —_— —_— = kS(SQ).
o (x4t¥)s o (14u)s

On the other hand, by (2.5), we also have

> gul) = [ aul)it+ 5.0+ [ P 0

~ [ wtvie+ 1)
1
1 oo
H@) = 0.0+ [ AOGO@
1
We have obtained that 1g,(1) = sy and
alas+1 — asy)t*272  a2spts2—2
g;(t):_ a\s + a)s+1°
(x +t9) (x +t)
For s € (0,2]N(0,s) (s € (0,6]), by (2.3), we find
[es} sz —2
— 1- Py (t)———dt > 0, d
alas + asg) /1 1 ( )(x i) an

oo ta5272 7042%5 70[2£E5
2
P (t dt > > ’
« SQS‘/1 1( )<$+t0‘)s+1 12(33 + 1)s+1 12($ + 1)5

Hence, we have

le} a?s o 2«

H@) > o " Rer) 221y REsir

>0

and then we obtain

w(s2,2) =72 Y ga(n) > 2°7 / 9= (t)dt
n=1 1

oo 1
= g% / g (t)dt — 2752 / gz (t)dt
0 0

1 l/w sz—ld
:m@m———f/ urduy oy,
0

ks(s2) (14 u)®
where, we set O(-;) = k.(ls2) Ol/x “(12;;)615“, satisfying

1/11 U8271 1/:17 1
0< / ——du < / w2 ldu = .
o (1+u) 0 521°2

Therefore, inequalities (2.8) follow.
The lemma is proved. O
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Lemma 2.3. For s € (0,6],s1 € (0,5),52 € (0,2] N (0,5),ks(s;) = B(s — s;,5;)
(i = 1,2), we have the following half-discrete Hardy Hilbert’s inequality with the
internal variable:

anf z) 1 1
/ +na .sd S (akS(SQ))p(ks(sl))

1o i
y {/ - (“2+5;>]1fp(t)dt}” {an[l<sil+?>]1a%} . (2.9)
n=1

0

Q=

Proof. For s; € (0,s), setting u = x/n®, we obtain the following next weight
coefficient:

e <] s1—1 o0 51 —1
— pals—s1) BT ds :/ wrdu N 2.10
wals1,m) =1 / e = | ey SR meN). @10)

By Holder’s inequality (cf. [14]), we obtain
z(1=s0/a(qpe—1)1/p

= /OOO nij:l (z —|—1n")s { no(l=s2)/p f(x)}

no(l=s2)/pg
dx
_(1;(1—51)/‘1(0”7}1_1)1/?

IA

oo (1—s1)(p—1),,a—1
Z a x n 17 () dz
0 (x + no)s no(l—s2)
1
o peo pe(1=52)(g—1) a
dzal
/ w (s, an)xp[l*(kzns2 +Sql)l]f”(a:)das}
0

[ oo g
n=1

Then by (2.8) and (2.10), we have (2.9).

=

Q=

The lemma is proved. O
Remark 2.1. For s=A+m+1€ (m+ 1,6, € (() 5—m]# ®(m=0,1,2,3),
s1=XA+me (k,s),A\ € (0,A+1), s0=Xa+1€(1,2), A€ (0,2 -1]N(0, A\ +m)
n (2.9), replacing f(x) (resp. a,) by F,(x) (resp. A ) in view of (2.1,) we have

Q=

- OO F(z)da 1
IO - / + na (7 L o\ fm+1l — ( k)‘+m+1(>\2 + 1))p (k>\+m+1(>‘1 +m))

nl

1 r o
x{/ﬂ (>‘1+m1)1F£L(a:)dz] [an[a(’\ﬁl)l]l/l% . (2.11)

n=1

Lemma 2.4. Fort > 0, we have the following expression and inequality:

/ e " f(x)dr = t”L/ e " F,(z)dz (m=0,1,2,3,4), (2.12)
0 0
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Z e ", <t Z et A, (2.13)

= n=1
Proof. Form = 0, since f(z) = Fy(z), (2 12) is valid; for m = 1, 2, 3, 4, integration
by parts, in view of F;(0) = 0, F;(z) = o(e'®) (t > 0,2 — 0051 —1 , k), it follows

that
/ e*tIFi_l(x)dx:/ e dF(z) = e " Fy(x )\8"7/ Fy(x)de™ ™
0 0 0

= lim efmFi(:c)—Ft/ eit“"Fi(z)dxzt/ e " Fy(z)dz,
0 0

r—00

and then substitution of i = 1,--- ,m, (2.12) follows.
In view of A,e~*"" = o(1) (n — o), by Abel’s summation by parts formula, we
obtain

00 00
Zeft ay = hm Ane” tn® Z —tn® _ €7t(n+1)a]An

n=1
_ Z —tn® _ —t(n+1)® ]An

n=1
Since 1 —e™* < ¢ (¢t > 0) and for « € (0,1],
ot )T 5 —t(n®+1)
cos et o] g
<=>n+D*=n*—1=an+60,)"" =1 (0, €(0,1)),

we have
oo o o0
S, € 3 e, 2 (1 )3 e A,
n=1 :1 n=1
o0

| /\

Z —tn® An7

namely, (2.13) follows.
The lemma is proved. O

3. Main results and applications

In the following, for m = 0, we define Hi"!ol(c +i)=1(c>0).
Theorem 3.1. We have the following Hilbert-type inequality:

/ anf _anf(z)
T+ n)A
/\+m+1)

T(\)

><[/Oox_p(xﬁm_l)_lFf,’l(x)dm] [Zn_‘ﬂa(iﬁl)_l]_l/l% . (3.1)
0

n=1

Q=

(~Fxsms1 (2 + )7 (Bsms1 (A1 +m))

=
Q=
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In particular, for A; + A2 = A (A1 € (0,A), A2 € (0,2 —1]N (0, A)), we have

0< /00 g PAAM=D=1EP (1) < 00, 0 < Zn_Q[“(’\2+1)_11_1A% < 00,
0

n=1

and the following inequality:

m—1
/ anf(@) jjp [T O+ DB )
=0

(x + no)>

X [/ g PQtm— 1)_1F§1(x)d33
0

Proof. Since we have

1
P [Z n_q[a()\2+1)—1]—1A$L ) (3.2)

n=1

1 L% a1 —(einoy
= t Tt
(@ +no)> m)/o ‘ ’

by (2.12) and (2.13), it follows that

0 1
1 /DO A+m —at - —n"t
< — e " Fn(z)dx e " A, dt
k", 2
1 oo 00
— A, F,, t()\+m+1)—1 —(m+na)tdtd
w2 (””/o ‘ ’
F()\+m+1 / F,(z)dz 7F()\+m+1)l
x—l—n“ PEmET T ()
Then by (2.11), we have (3.1).
The theorem is proved. O

Remark 3.1. For a =1, € (0,A+1),X2 € (0,1] N (0, A +m) in (3.1), we have
the following half- discrete Hilbert-type inequality:

anf F'A+m+1)
/ OV

Q=

(Ftmr1(A2 + 1)) 7 (a1 (A +m))

.(3.3)

1T oo H
X x_p(xﬁm_l)_lFr’,’l(m)dx} ’ n_qulA?l
J 2

Theorem 3.2. If A\; + Aa = A (€ (0,5 —m)]), (A1 € (0,A), A2 € (0,1] N (0, N)), then
the constant factor
T(A+m+1)
I'(A)
in (3.3) is the best possible. On the other hand, if the same constant factor in (3.3)
is the best possible and A — Ay < 1, then A1 + Ao = A (€ (0,5 — m]).

(amer (A2 + 1)F (kaman (M +m))
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(0,5—m]), (A1 € (0,X), Ay € (0,1]N (0, X)), then we find
= B()\l +m, Ay + 1)

m—1

AT (A1)T(A2) .
T\ +m+1) g(Al +9),

If)\1+>\2:)\(€

Extm+1(A2 +1) = kxpmi1 (A +m)
P +m)P(Aa+1)

Proof.

'A+m+1)
and then (3.3) reduces to
[y e
(S — 1
m— o 5
<AaB(A1, A2) H (A1+1) {/ x_p()‘ﬁm_l)_lFﬁl(m)daj} lZn_‘p‘"’ L Aq (3.4)
=0 =1
For any 0 < & < min{pA1, gA2}, we set
~ 0, O0<x<l, _ Ao £ 1
Foy =4 T = (e N).
x’\rﬁfl, x> 1,
Then it follows that
—~ 0 _ 0, O<z<l,
F](I) ::/O Fj_1($)d$ S I)\lJrj,é,l -1
Moiuti-z)’ =75
(.7 = 17 : am)a
o= Ya=y mict< [Tmica
i=1 i=1 0
v (n € N)
q
Y(Ap +1), such that (3.4) is

If there exists a positive constant M < /\QB()\l, M) T
valid when we replace AaB(A1, A2) [Tie, YA +1) by M, then in particular, we have

[ 5 E
s —1A¢ %. (3.5)

o |:/oo x_p()‘1+m_1)_1ﬁ£1(1‘)d$] [Z n—2—1 44
0 n=1

(3.5) and the decreasingness property of series, we obtain

By
M 1

M a+i—2) e — 5
1

5 [e'S)
§ : n—qAQ—lnqAQ—s
n=1

1<

Q=

o
% (/ x—p()\l—&-m—l)—lxph-i-pm—p Edl‘)
1
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M 1 0 v > g
= m—1 A (/ l‘_s_ldaj> (1 + Z n_l_e)
[T2 a+i—2)re =5\ =2

M 1 0 % o0 q
A ; z (/ $_€_1d$> <1+/ y‘l‘sdy>
elliZg (M +i—£5)re— 5 \i 1

_ M
e [T, ()\1+z—f))\2*5

(5—1—1)%

By (2.10) (for a = 1), setting A\; = A; — = €(0,A) (0< Xa = As + = <A), we
find

0 [e'e] ()\175)71 oo
T _ Ao+ £ z P —e—1 __ 3y —e—1
I = a [n P / M\dx] n = ;W()\l,n)n
A() Z N )\1)/ y " ldy
n=1 1

7B(/\1 — *,/\2 + *).
p p

Then in view of the above results, we have

M 1

e ()\14_@_7))\275(5—1-1)5

BOu— S+ S)<el<
p p

For ¢ — 0T, in view of the continuity of the beta function, we obtain

m—1

A2B(A1,A2) [ (A +1) < M.
=0

Hence, M = Ay B(A1, A\2) H "(A1 41) is the best possible constant factor in (3.4).
On the other hand, for /\1 =2 ph + ’\ql,)\ =2 qM + Ap?, we find

A=do A A=A A
e -+ 2

X1+X2: =,
q q p
-1 1 P
)\2§*+*:1,0<)\1,>\2<)\,
p q

and )\2 (/\17 /\2) H ()\1 + ’L) S R+
If the constant factor
F(A+m+1)

0 (kams1 (A2 + 1)) 7 (kbagmr1 (M +m)) 7

n (3.3) is the best possible, then by (3.4) (for A\; = Niyi = 1,2), we have the
following inequality:

F'(A+m+1)
'(\)

Q=

(Extmat 2+ 1)7 (kapmsr (A1 +m))
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-~ < T +m+t1)

which follows that

Fatmet Oz +1) > (Exgmar (A2 + 1)F (kagpmes (A1 +m))7. (3.6)
By Hoélder’s inequality with weight, we obtain

A2 A—A
0 < Eagmae1(o 4+ 1) = kxpman( p2 + !

0 P o q
_ / Uidu: / (@) =),
o (L +upmsl o (L +upmsl
o0 e P A M
<[/ <1+u>A+m+ld“} [/ (1+u>k+m+1d”]

0o, (et)-1 B utm)—1 3
([ s [ it
o (L+uprmt o (T+uvprems
= (kxsmr1 (2 + 1))7 (kxgmer (A +m))7. (3.7)

By (3.6), we observe that (3.7) keeps the form of equality. Then there exist
constants A and B, such that they are not both zero satisfying (cf. [14]) Au?z =
Bu*~*t g.e. in. Ry Assuming that A # 0, we have u*2~*M = B/A a.e. in. Ry,
and then Ay — XA+ A\; = 0, namely, A\; + Ay = A (€ (0,5 — k]).

The theorem is proved. O

Remark 3.2. (1) For m =4 in (3.4), we have X € (0,1] and

[3e0

Q=

3 00 % oo %
<XoB(A1, A2) H (A1 +1 [/ x_p()‘ﬁ?’)_lFf(a?)dx} [Z n_qAQ_lA% (3.8)
i= 0 n=1
(ii) For m = 1 in (3.4), we have X € (0, 3] and
/ Z an.f
(x+mn)

L 1

) ? oo q
<MA2B(A1, A2) U x_p’\l_lF,f(w)dac] [Z n~2=1 A9 (3.9)

0 n=1

In particular, for A =1, A\ = %7 Ao = % (< %), we have the following Hilbert-type

inequality with the best possible constant factor m.

4. Equivalent form and operator expressions

For m = 0 in (3.3), we have A € (0,5],A\1 € (0,A+ 1), A2 € (0,1] N (0, ), and the
following inequality:

/ Z aZ:er n)
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T(A+1)
L'(A)

X [/000 a?p(ill)lfp(x)dx} ’ <Z nqleA‘}L> q . (4.1)

1Az 4+ 1))7 (ka1 (M)

n=1

Theorem 4.1. For A € (0,5],A\1 € (0,A+ 1),y € (0,1] N (0, ), we have the
following inequality equivalent to (4.1):
1
q }q

J::{/ g 1[2
(Exs1(h2 +1))7 (kas1(A))

Q=

T(A+1)
=TTy

(Z n_qXQ_lA‘TJL) L (4.2
n=1
In particular, for Ay + X2 = A(€ (0,5]) (A1 € (0,A), A2 € (0,1] N (0, \)), we have
0< / PR D=L P (Y de < 0,0 < Zn_q/\z_lA% < o0,
0

n=1

and the following equivalent inequalities:

[yl

<XaB(A1, A2) [ / aP=A)-1 fp(x)da:]p (an*21A%> , (4.3)
0 n=1
- o q 7
gA1—1 n —qX2—1 pq
{/O x L; CEEoL dm} < XaB(A1, \2) <Zn A) . (4.4)

Proof. Suppose that (4.2) is valid. By Holder’s inequality (cf. [14]), we have

I = ~ %_/Xl 771—"_/)\\1 70”’74 d
/0 x f(x)lx Z(m—i—n)’\ x

n=1

1

< UOOO xp(l_xl)_lfp(x)dx] " (4.5)

Then by (4.2), we have (4.1).
On the other hand, assuming that (4.1) is valid, we set

fla) =t 1[2

q—1
, x>0.

We have J¢ = [ 2P0~ M)=1¢p(z)dz. If J = 0, then (4.2) is naturally valid; if
J = oo, then it is impossible that makes (4.2) valid, i.e. J < oco. Suppose that
0 < J < oo. By (4.1), we have

0< / xp(l_xl)_lfp(x)dx =Ji=1
0
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_ T+

oy (B O +1)7 (kg () <Z WirlAZ) ’

n=1

J < F(I)‘\(;I\_)l)(k)‘+1()‘2+1>);(k/\+1()\1))é (gn—QXQ—lA%> .

Hence, (4.2) is valid, which is equivalent to (4.1).

The theorem is proved. ]
Theorem 4.2. If Ay + A2 = A € (0,5] (A1 € (0,A), A2 € (0,1] N (0, A), then the
constant factor

F(A+1)
I'(A)
in (4.2) is the best possible. On the other hand, if the same constant factor in (4.2)
is the best possible and A — A1 < 1, then we have A1 + Ao = X (€ (0, 5]).

Proof. If A\; + X2 = A € (0,5] (A1 € (0,A), A2 € (0,1] N (0, A)), then the constant
factor

(kas1(ha + 1) 7 (kagr (A1)

F(A+1)
I'(A)
in (4.1) is the best possible. By (4.5), we can show that the same constant factor in
(4.2) is the best possible. On the other hand, if the same constant factor in (4.2) is
the best possible, then by the equivalency of (4.2) and (4.1), in view of J9 = I, we
can show that the same constant factor in (4.1) is the best possible. By Theorem
3.2, since A — A1 < 1, we have Ay + A2 = A (€ (0, 5]).
The theorem is proved. ~ ~ O
We set functions ¢(z) := 2zP0=2)=1 4(n) := n=9*2~1 where from

(kas1(hg + 1) 7 (kagr (M)

e (z) = qul_l(l‘ €eR;,neN).

We also define the following normed spaces:

Lpo(Ry) = {f = f(2); ]|/l

o " @) f@)Pdald < oo},

lg = {a = {an}nly;|lal

g = > b(n)|ay|%da]s < oo},
n=1

Lgpr-a(Ry) :={g = 9(@); llglg.p1-2 = [/OOo '~ (@)]g(@)|*da] T < oo}.

Assuming that a € I, 4, A € l4,y, setting

g=g(x),g(x) =Y

n=1

2%
m,$€R+a

we can rewrite (3.3) as follows:

I'(A+1 1 1
19| q.o1-0 < (P()\))(kxﬂ()@ + 1)) 7 (kxr1(M1)) 7 |[All gy < 00,

namely, g € Ly ,1-a(R4).
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Definition 4.1. Define a half-discrete Hilbert-type operator T : Iy ¢, — Lg ,1-a(R4)
as follows: For any a € [, 4, there exists a unique representation ¢ = Ta €
Ly 41-4(Ry ), such that for any x € Ry, Ta(x) = g(x). Define the formal inner
product of Ta and f € Ly, ,(R) and the norm of T as follows:

(Ta, f) : / a"f A -y

Ta -
IT|| == sup 7” oo,
a(#0)€lg, ||al |q7w

By Theorem 3.2, Theorem 4.1 and Theorem 4.2, we have

Theorem 4.3. If f(>0) € L, ,(R1),a(>0) € lg, || fllp.o > 0,llallgy > 0, then
we have the following equivalent inequalities:

T(A+1)

(Ta,f) < =55 (rsn Oz + )7 (s (W) 71|l (4.6)
F()\ + 1) 1 1
allg oo < =55 (basa (e 17 (oasn ) 7l Al g - (4.7)

Moreover, for \y + A2 = A, the constant factor )E+1)(k)\+1(>\2 + 1))%(k,\+1(/\1))%
in (4.6) and (4.7) is the best possible, namely. ||T|| = A2B(A1,A2). On the other
hand, if the constant factor in (4.6) (or (4.7)) is the best possible and A — A\ < 1,
then we have A1 + Ao = A.

5. Conclusions

In this paper, based on the way of [1,7,12], by means of the weight coefficients,
the idea of introduced parameters, Euler-Maclaurin summation formula and Abel’s
summation by parts formula, a new half-discrete Hilbert-type inequality with the
kernel as m and one multiple upper limit function as well as one partial sums
is given in Theorem 3.1. As applications, the equivalent conditions of the best
possible constant factor in a particular inequality for the parameter a = 1, related
to a few parameters are considered in Theorem 3.2, and then some particular cases
are obtained in Remark 3.3. We also provided the equivalent forms and the operator
expressions in the case of m = 0 in Theorems 4.1-4.3. The lemmas and theorems
provide an extensive account of this type of inequalities.
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