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FRACTIONAL NONLINEAR
DIFFUSION-WAVE EQUATIONS WITH

INITIAL SINGULARITY∗

Emadidin Gahalla Mohmed Elmahdi1,2 and Jianfei Huang1,†

Abstract In this paper, we present an efficient linearized alternating direc-
tion implicit (ADI) scheme for two-dimensional time-space fractional nonlinear
diffusion-wave equations with initial singularity. First, the original problem
is equivalently transformed into its partial integro-differential form. Then,
for the time discretization, the Crank-Nicolson technique combined with the
midpoint formula and the second order convolution quadrature formula are
used. Meanwhile, the classical central difference formula and fractional cen-
tral difference formula are adopted to approximate the second order derivative
and the Riesz derivative in space, respectively. The unconditional stability
and convergence of the proposed scheme are proved by the energy method.
Numerical experiments support the theoretical results.
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1. Introduction
In this paper, the following two-dimensional time-space fractional nonlinear diffusion-
wave equation with homogeneous initial boundary conditions will be considered

C
0 D

α
t u(x, y, t) =

∂2u(x, y, t)

∂x2
+

∂2u(x, y, t)

∂y2
+

∂βu(x, y, t)

∂|x|β
+

∂βu(x, y, t)

∂|y|β

+ g(u(x, y, t)) + f(x, y, t), (1.1)

where (x, y) ∈ (0, Lx) × (0, Ly), t ∈ (0, T ], 1 < α, β < 2, f(x, y, t) is a known
function, g(u) is a nonlinear function of u with g(0) = 0 and satisfies the Lipschitz
condition, and C

0 D
α
t u(x, y, t) denotes the temporal Caputo derivative with order α
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defined as

C
0 D

α
t u(x, y, t) =

1

Γ(2− α)

∫ t

0

(t− s)1−α ∂
2u(x, y, s)

∂s2
ds.

And ∂βu(x,y,t)
∂|x|β is the Riesz fractional derivative of order β in x defined as

∂βu(x, y, t)

∂|x|β
= − 1

2 cos
(

πβ
2

) (RL
0 Dβ

xu(x, y, t) +
RL
x Dβ

Lx
u(x, y, t)

)
,

where RL
0 Dβ

xu(x, y, t) and RL
x Dβ

Lx
u(x, y, t) are the left and the right Riemann-

Liouville derivatives defined by

RL
0 Dβ

xu(x, y, t) =
1

Γ(2− β)

∂2

∂x2

∫ x

0

(x− z)1−βu(z, y, t)dz

and

RL
x Dβ

Lx
u(x, y, t) =

1

Γ(2− β)

∂2

∂x2

∫ Lx

x

(z − x)1−βu(z, y, t)dz,

respectively. ∂βu(x,y,t)
∂|y|β is the Riesz fractional derivative of order β in y, which can

be similarly defined.
It is possible to interpolate diffusion and wave phenomena as well as processes

with spatial non-local dependence using Eq. (1.1), which is derived from the clas-
sical diffusion or wave equation by substituting fractional derivatives of order α, β
for the second order time and space derivatives. Therefore, such models are widely
used for description of viscoelastic damping materials, diffusion images of human
brain tissues, etc. [15, 20, 27]. However, it is often difficult or impossible to solve
fractional diffusion-wave equations analytically (see [24,26] for examples), thus nu-
merical methods are necessary. As a result, interest in developing numerical meth-
ods for solving fractional diffusion-wave equations has grown, see [2,9,21,25,28] and
the references therein.

In recent years, numerous numerical methods for one-dimensional time-space
fractional diffusion-wave equations (TSFDWEs) have been developed, see [1, 3, 6,
7, 10–12, 17, 33] and the references therein. Bhrawy et al. [1] solved second and
fourth order time fractional diffusion-wave equations by using a spectral tau algo-
rithm based on Jacobi operational matrix. Using the fractional trapezoidal rule and
the generalized Newton-Gregory formula, Zeng [33] proposed second order in time
and space and conditionally stable finite difference schemes for the time fractional
diffusion-wave equation. Ebadian et al. [6] proposed triangular function (TFs) ap-
proaches for solving a class of multi-term time fractional nonlinear diffusion-wave
equations, where they deduced a fractional operational matrix of integration for the
TFs. Huang et al. [11] presented two convolution quadrature methods for fractional
nonlinear diffusion-wave equations. The stability and convergence of the methods
were rigorously proved. Huang et al. [12] proposed efficient scheme and alternating
direction implicit (ADI) schemes for solving one-dimensional and two-dimensional
nonlinear time fractional diffusion-wave equations, and then proved their uncondi-
tional stability and convergence with first order accuracy in time and second order
accuracy in space.
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On the other hand, there are still few works on the numerical methods for
solving the two-dimensional TSFDWEs, see [8, 14, 31, 34]. Wang et al. [31] con-
structed an ADI scheme for solving TSFDWEs with second order accuracy in
both space and time. Fan et al. [8] developed a fully discrete numerical technique
for two-dimensional multi-term TSFDWEs on an irregular convex domain using a
mixed difference scheme in time and an unstructured mesh finite element method
in space. The proposed numerical scheme’s stability and convergence were proved.
Zhang et al. [34] developed two numerical techniques for the one-dimensional and
two-dimensional time-space fractional vibration equations. The proposed scheme’s
convergence and unconditional stability were also extensively proved. Huang et
al. [14] extended the ADI scheme in [12] for the two-dimensional single-term time
fractional diffusion-wave equations to the two-dimensional multi term time-space
fractional ones. Then, the solvability, unconditionally stability and convergence
with first-order accuracy in time and second-order accuracy in space were proved.

Due to the fact that the initial singularity of the solution of the TSFDWEs
often generates a singular source, solving the equation numerically becomes more
complicated. Therefore, the majority of numerical analysis results for TSFDWEs
in the literature are valid under the smooth solution assumption. Recently, an
increasing number of scholars have focused on the singularity in time fractional
models, see [5, 13, 19, 29]. Thus, let us consider the analytical solution of Problem
(1.1) with the following regularity assumption in time, namely

∣∣∣∣∂iu(x, y, t)

∂ti

∣∣∣∣ ≤ Ctσ−i, i = 0, 1, 2, (1.2)

where 1 < σ < α is a regularity parameter, which depends on the order of the
Caputo fractional derivative α.

Remark 1.1. Applying the bound (1.2) on u(x, y, t) in the Eq. (1.1) and assuming
∂2u(x,y,t)

∂x2 + ∂2u(x,y,t)
∂y2 + ∂βu(x,y,t)

∂|x|β + ∂βu(x,y,t)
∂|y|β is bounded. Hence Eq. (1.1) gives

f(x, y, t) = O(tσ−α) which blows up at t = 0.

Herein, we propose and analyze a linearized ADI scheme for two-dimensional
time-space fractional nonlinear diffusion-wave equations with initial singularity. In
order to be more explicit, we first utilize the Riemann-Liouville integral operator to
transform Eq (1.1) into their equivalent partial integro-differential equations. Sec-
ond, we construct the linearized ADI scheme by using the Crank-Nicolson technique
combined with the second order convolution quadrature formula and the midpoint
formula in time, the classical central difference formula and the fractional central
difference formula approximations in space. Finally, the linearized ADI scheme is
proved to be unconditional stable and convergence.

The rest of this paper is organized as follows. In Section 2, the linearized ADI
finite difference scheme is constructed. In Section 3, the stability and convergence
of the linearized ADI finite difference scheme are proved. Numerical experiments
are provided to support the theoretical results in Section 4. The article ends with
a brief conclusion in Section 5.
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2. Derivation of the Linearized ADI Scheme
2.1. Preliminaries
In this subsection, we introduce some fundamental definitions, notations, and lem-
mas that will be utilized to construct a linearized ADI scheme for Problem (1.1).

In order to implement discretizations, we introduce the temporal step size τ =
T/N , tn = nτ , tn+1/2 = (n + 1/2)τ . For spatial discretizations, let hx = Lx/Mx

and hy = Ly/My for positive integers Mx and My, xi = ihx, i = 0, 1, · · · ,Mx, and
yj = jhy, j = 0, 1, · · · ,My.

Lemma 2.1. If u(t) satisfies (1.2) , then the following results

ut(tn+1/2) =
u(tn+1)− u(tn)

τ
+O(tσ−3

n+1τ
2)

= δtu
n+ 1

2 +O(tσ−3
n+1τ

2) (2.1)

and

0J
α−1
t u(tn+1/2) =

1

2

[
0J

α−1
t u(tn+1) + 0J

α−1
t u(tn)

]
+O(tσ+α−3

n+1 τ2) (2.2)

hold, where 0J
α−1
t is the Riemann-Liouville fractional integral operator defined by

0J
α−1
t u(x, y, t) =

1

Γ(α− 1)

∫ t

0

(t− s)α−2u(x, y, s)ds.

Proof. For −1 ≤ γ ≤ 1 and n = 0, 1, · · · , N − 1, one can find that by the Taylor
expansion (

tn+ 1
2

)σ−γ

=
1

2

[(
tσ−γ
n+1

)
+
(
tσ−γ
n

)]
+O

(
tσ−γ−2
n+1 τ2

)
. (2.3)

Since u(t) = O(tσ), we easily deduce that 0J
α−1
t u(tn+ 1

2
) = O

(
tσ+α−1
n+ 1

2

)
. There-

fore, (2.2) is obtained by letting γ = 1−α in (2.3). Similarly, (2.1) can be obtained
by letting γ = 1 in (2.3).

The convolution quadrature [22, 23] approximation for the Riemann-Liouville
integral is given below.

Lemma 2.2. Let 1 < σ < 2 and ω
(α−1)
k be the weights from generating function(

3/2− 2z + z2/2
)1−α, under the Assumption (1.2), then∣∣∣∣∣0Jα−1

tn+1
u(t)− τα−1

n+1∑
k=0

ω
(α−1)
n+1−ku(tk)

∣∣∣∣∣ ≤ Ctσ+α−3
n+1 τ2.

Lemma 2.3 (see Page 5 of [16]). Suppose u(t) satisfies the Assumption (1.2), then
the following approximation holds

u(tn+1) = 2u(tn)− u(tn−1) +O(tσ−2
n τ2).

Lemma 2.4 (see Lemma 1.2 in [30]). Suppose u(x) ∈ C4([xi−1, xi+1]), let ζ(s) =
u(4)(xi + shx) + u(4)(xi − shx), then

δ2xu(xi) =
u(xi−1)− 2u(xi) + u(xi+1)

h2
x

= uxx(xi) +
h2
x

24

∫ 1

0

ζ(s)(1− s)3ds.
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Lemma 2.5 (see Celik and Duman [4]). Let 1 < β < 2, u(x) ∈ C5(R) and all its
derivative up to the order five belong to L(R). If u(x) = 0 when x /∈ (0, L), then

∂βu(x)

∂|x|β
= −δβxu(x) +O(h2

x),

where

δβxu(x) :=
1

hβ
x

⌈ x
L ⌉∑

j=−⌈L−x
hx

⌉

(−1)
j
Γ(β + 1)

Γ(β/2− j + 1)Γ(β/2 + j + 1)
u(x− jhx),

where ∂βu(x)
∂|x|β is the Riesz derivative with order β.

2.2. Construction of the Linearized ADI Scheme
In this subsection, an ADI finite difference scheme for Problem (1.1) will be derived
under the Assumption (1.2).

Firstly, we multiply 0J
α−1
t on both sides of Eq. (1.1), then Eq. (1.1) is equivalent

to the following partial integro-differential equation

∂u(x, y, t)

∂t
=0J

α−1
t

(
∂2u(x, y, t)

∂x2
+

∂2u(x, y, t)

∂y2

)
+ 0J

α−1
t

(
∂βu(x, y, t)

∂|x|β
+

∂βu(x, y, t)

∂|y|β

)
+ 0J

α−1
t g(u(x, y, t)) + F (x, y, t), (2.4)

where F (x, y, t) = 0J
α−1
t f(x, y, t).

Assume u(x, y, ·) ∈ C5,5
x,y ([0, Lx]× [0, Ly]) with u(0, ·, ·) = u(Lx, ·, ·) = u(·, 0, ·) =

u(·, Ly, ·) = 0 and consider Eq. (2.4) at the point (xi, yj , tn+1/2), that is

∂u(xi, yj , t)

∂t

∣∣∣∣
t=t

n+1
2

=0J
α−1
t
n+1

2

(
∂2u(xi, yj , t)

∂x2
+

∂2u(xi, yj , t)

∂y2

)

+ 0J
α−1
t
n+1

2

(
∂βu(xi, yj , t)

∂|x|β
+

∂βu(xi, yj , t)

∂|y|β

)
+ 0J

α−1
t
n+1

2

g(u(xi, yj , t)) + F (xi, yj , tn+ 1
2
).

The Crank-Nicolson technique and Lemma 2.1 for the above equation yield

u(xi, yj , tn+1)− u(xi, yj , tn)

τ
=
1

2
0J

α−1
tn+1

(
∂2u(xi, yj , t)

∂x2
+

∂2u(xi, yj , t)

∂y2

)
+

1

2
0J

α−1
tn

(
∂2u(xi, yj , t)

∂x2
+

∂2u(xi, yj , t)

∂y2

)
+

1

2
0J

α−1
tn+1

(
∂βu(xi, yj , t)

∂|x|β
+

∂βu(xi, yj , t)

∂|y|β

)
+

1

2
0J

α−1
tn

(
∂βu(xi, yj , t)

∂|x|β
+

∂βu(xi, yj , t)

∂|y|β

)
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+
1

2

[
0J

α−1
tn+1

g(u(xi, yj , t)) + 0J
α−1
tn g(u(xi, yj , t))

]
+ F (xi, yj , tn+ 1

2
) +O(tσ−3

n+1τ
2).

We apply Lubich’s convolution quadrature approximation of Lemma 2.2 to dis-
cretize the Riemann-Liouville integrals, apply Lemma 2.4 to discretize the second
order derivatives, and apply the fractional centered difference of Lemma 2.5 to
discretize the Riesz derivatives, it achieves that

un+1
ij − un

ij

τ
=
τα−1

2

[
n+1∑
k=0

ω
(α−1)
k

(
δ2x + δ2y

)
un+1−k
ij +

n∑
k=0

ω
(α−1)
k

(
δ2x + δ2y

)
un−k
ij

]

− τα−1

2

[
n+1∑
k=0

ω
(α−1)
k

(
δβx + δβy

)
un+1−k
ij +

n∑
k=0

ω
(α−1)
k

(
δβx + δβy

)
un−k
ij

]

+
τα−1

2

[
n+1∑
k=0

ω
(α−1)
k g(un+1−k

ij ) +

n∑
k=0

ω
(α−1)
k g(un−k

ij )

]
+ F

n+ 1
2

ij +O(tσ−3
n+1τ

2 + h2
x + h2

y), (2.5)

where un
ij = u(xi, yj , tn) and F

n+ 1
2

ij = F (xi, yj , tn+ 1
2
).

To construct the ADI scheme, a small term
(
ταω

(α−1)
0

2

)2(
δ2x − δβx

)(
δ2y − δβy

)
δtu

n+ 1
2

ij

is added to the both sides of Eq (2.5), then after multiplying τ in the both sides,
we have

un+1
ij − un

ij +

(
ταω

(α−1)
0

2

)2 (
δ2x − δβx

) (
δ2y − δβy

) (
un+1
ij − un

ij

)
=
τα

2

[
n+1∑
k=0

ω
(α−1)
k

(
δ2x − δβx

)
un+1−k
ij +

n∑
k=0

ω
(α−1)
k

(
δ2x − δβx

)
un−k
ij

]

+
τα

2

[
n+1∑
k=0

ω
(α−1)
k

(
δ2y − δβy

)
un+1−k
ij +

n∑
k=0

ω
(α−1)
k

(
δ2y − δβy

)
un−k
ij

]

+
τα

2

[
n+1∑
k=0

ω
(α−1)
k g(un+1−k

ij ) +

n∑
k=0

ω
(α−1)
k g(un−k

ij )

]
+ τF

n+ 1
2

ij +O(tσ−3
n+1τ

3 + τh2
x + τh2

y). (2.6)

It is clear that Eq. (2.6) is a nonlinear system with respect to the unknown
un+1
ij . To linearly solve Eq. (2.6), we use u1

ij = u0
ij + τ(ut)

0
ij +O

(
τ2 tσ−1

∣∣t1
t0

)
and

Lemma 2.3 to linearize Eq. (2.6) for n = 0 and 1 ≤ n ≤ N − 1, respectively, i.e.,

u1
ij − u0

ij +

(
ταω

(α−1)
0

2

)2 (
δ2x − δβx

) (
δ2y − δβy

) (
u1
ij − u0

ij

)
=
τα

2

[
1∑

k=0

ω
(α−1)
k

(
δ2x − δβx

)
u1−k
i + ω

(α−1)
0

(
δ2x − δβx

)
u0
ij

]
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+
τα

2

[
1∑

k=0

ω
(α−1)
k

(
δ2y − δβy

)
u1−k
ij + ω

(α−1)
0

(
δ2y − δβy

)
u0
ij

]

+
τα

2

[
ω
(α−1)
0 g(u0

ij + τ(ut)
0
ij) + ω

(α−1)
1 g(u0

ij) + ω
(α−1)
0 g(u0

ij)
]

+ τF
n+ 1

2
ij +R∗

ij (2.7)

and

un+1
ij − un

ij +

(
ταω

(α−1)
0

2

)2 (
δ2x − δβx

) (
δ2y − δβy

) (
un+1
ij − un

ij

)
=
τα

2

[
n+1∑
k=0

ω
(α−1)
k

(
δ2x − δβx

)
un+1−k
ij +

n∑
k=0

ω
(α−1)
k

(
δ2x − δβx

)
un−k
ij

]

+
τα

2

[
n+1∑
k=0

ω
(α−1)
k

(
δ2y − δβy

)
un+1−k
ij +

n∑
k=0

ω
(α−1)
k

(
δ2y − δβy

)
un−k
ij

]

+
τα

2

[
n+1∑
k=1

ω
(α−1)
k g(un+1−k

ij ) +

n∑
k=0

ω
(α−1)
k g(un−k

ij )

]

+
ταω

(α−1)
0

2
g(2un

ij − un−1
ij ) + τF

n+ 1
2

ij +R∗
ij , (2.8)

where R∗
ij = O(tσ−3

n+1τ
3 + τh2

x + τh2
y).

Noting (ut)
0
ij = 0, neglecting the truncation error term R∗

ij in both above equa-
tions, and replacing the un

ij with its numerical solution Un
ij , we deduce the following

linearized finite difference schemes for Problem (2.4)

U1
ij − U0

ij +

(
ταω

(α−1)
0

2

)2 (
δ2x − δβx

) (
δ2y − δβy

) (
U1
ij − U0

ij

)
=
τα

2

[
1∑

k=0

ω
(α−1)
k

(
δ2x − δβx

)
U1−k
ij + ω

(α−1)
0

(
δ2x − δβx

)
U0
ij

]

+
τα

2

[
1∑

k=0

ω
(α−1)
k

(
δ2y − δβy

)
U1−k
ij + ω

(α−1)
0

(
δ2y − δβy

)
U0
ij

]

+ ταω
(α−1)
0 g(U0

ij) +
τα

2
ω
(α−1)
1 g(U0

ij) + τF
n+ 1

2
ij (2.9)

and

Un+1
ij − Un

ij +

(
ταω

(α−1)
0

2

)2 (
δ2x − δβx

) (
δ2y − δβy

) (
Un+1
ij − Un

ij

)
=
τα

2

[
n+1∑
k=0

ω
(α−1)
k

(
δ2x − δβx

)
Un+1−k
ij +

n∑
k=0

ω
(α−1)
k

(
δ2x − δβx

)
Un−k
ij

]

+
τα

2

[
n+1∑
k=0

ω
(α−1)
k

(
δ2y − δβy

)
Un+1−k
ij +

n∑
k=0

ω
(α−1)
k

(
δ2y − δβy

)
Un−k
ij

]
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+
τα

2

[
n+1∑
k=1

ω
(α−1)
k g(Un+1−k

ij ) +

n∑
k=0

ω
(α−1)
k g(Un−k

ij )

]

+
ταω

(α−1)
0

2
g(2Un

ij − Un−1
ij ) + τF

n+ 1
2

ij . (2.10)

Schemes (2.9) and (2.10) can be written into more compact forms, namely[
1− ταω

(α−1)
0

2

(
δ2x − δβx

)] [
1− ταω

(α−1)
0

2

(
δ2y − δβy

)]
U1
ij = G0

ij

and [
1− ταω

(α−1)
0

2

(
δ2x − δβx

)] [
1− ταω

(α−1)
0

2

(
δ2y − δβy

)]
Un+1
ij = Gn

ij ,

respectively, where

G0
ij =

1 +(ταω
(α−1)
0

2

)2 (
δ2x − δβx

) (
δ2y − δβy

)U0
ij

+
τα

2

(
ω
(α−1)
0 + ω

(α−1)
1

) (
δ2x − δβx

)
U0
ij +

τα

2

(
ω
(α−1)
0 + ω

(α−1)
1

) (
δ2y − δβy

)
U0
ij

+ ταω
(α−1)
0 g(u0

ij) +
ταω

(α−1)
1

2
g(u0

ij) + τF
1
2
ij

and

Gn
ij =

1 +(ταω
(α−1)
0

2

)2 (
δ2x − δβx

) (
δ2y − δβy

)Un
ij

+
τα

2

[
n+1∑
k=1

ω
(α−1)
k

(
δ2x − δβx

)
Un+1−k
ij +

n∑
k=0

ω
(α−1)
k

(
δ2x − δβx

)
Un−k
ij

]

+
τα

2

[
n+1∑
k=1

ω
(α−1)
k

(
δ2y − δβy

)
Un+1−k
ij +

n∑
k=0

ω
(α−1)
k

(
δ2y − δβy

)
Un−k
ij

]

+
τα

2

[
n+1∑
k=1

ω
(α−1)
k g(Un+1−k

ij ) +

n∑
k=0

ω
(α−1)
k g(Un−k

ij )

]

+
ταω

(α−1)
0

2
g(2Un

ij − Un−1
ij ) + τF

n+ 1
2

ij .

According to the Peaceman-Rachford strategy, the intermediate variables U∗
ij =(

1− ταω
(α−1)
0

2

(
δ2y − δβy

))
Un+1
ij can be introduced. Then, the numerical solutions

of Eq. (2.9) and (2.10) are obtained by solving two independent sets of one-
dimensional linear systems. Thus, the ADI scheme is described as follows. For
fixed j ∈ {1, 2, · · · ,My −1}, we can solve the following systems to obtain blue{U∗

ij}
for 1 ≤ i ≤ Mx − 1,

(
1− ταω

(α−1)
0

2

(
δ2x − δβx

))
U∗
ij = Gn

ij , 0 ≤ n ≤ N − 1,

U∗
0j = 0, U∗

Mxj
= 0.

(2.11)
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Once {U∗
ij} is available, we alternate the spatial direction to solve the following

system for fixed i ∈ {1, 2, · · · ,Mx − 1},
(
1− ταω

(α−1)
0

2

(
δ2y − δβy

))
Un+1
ij = U∗

ij , 0 ≤ n ≤ N − 1,

Un+1
i0 = 0, Un+1

iMy
= 0.

(2.12)

3. Analysis of the Linearized ADI Scheme
In this section, the convergence and stability of the proposed ADI Schemes (2.9)
and (2.10) will be proved.

3.1. Convergence
In this subsection, we shall consider the convergence of the linearized ADI Schemes
(2.9) and (2.10). We first define a grid function space

Θh = {vnij |0 ≤ n ≤ N, 0 ≤ i ≤ Mx, 0 ≤ j ≤ My, bluev
n
0j = vnMxj = vni0 = vniMy

= 0}.

For two vectors un
ij , v

n
ij ∈ Θh, we define the following inner product and norm, that

is,

⟨un, vn⟩ =hxhy

Mx−1∑
i=1

My−1∑
j=1

un
ijv

n
ij , ||un||2 = ⟨un, un⟩.

Lemma 3.1 (see Lemma 3.4 in [32]). For 1 < β < 2 and the operators δβx and δβy

definied in Lemma 2.5, there exist linear difference operators, denoted by δ
β/2
x and

δ
β/2
y , such that

⟨δβxun, vn⟩ = ⟨δβ/2x un, δβ/2x vn⟩

and

⟨δβyun, vn⟩ = ⟨δβ/2y un, δβ/2y vn⟩,

where un
ij , vnij ∈ Θhred.

Lemma 3.2 (see Lemma 4.2.2 in [18]). For any grid function un
ij , vnij ∈ Θh, it

holds

⟨δ2xun, vn⟩ = −⟨δxun, δxv
n⟩ and ⟨δ2yun, vn⟩ = −⟨δyun, δyv

n⟩.

Lemma 3.3 (see Lemma 2.5 in [11]). Let {ω(α−1)
j }∞j=0 be the weights defined in

Lemma 2.2. Then, for any positive integer K and any real vector (V1, blueV2, · · · , VK),
the inequlality

K−1∑
n=0

 n∑
j=0

blueω
(α−1)
j Vn+1−j

Vn+1 ≥ 0

holds.
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We now proceed to prove the convergence of Schemes (2.9) and (2.10) under the
regularity Assumption (1.2).

Theorem 3.1. Assume u(·, ·, t)=O(tσ) and u(0, ·, ·)=u(Lx, ·, ·), u(·, 0, ·), u(·, Ly, ·)=
0. And let u(x, y, t) and {Un

ij | 0 ≤ i ≤ Mx, 0 ≤ j ≤ My, 1 ≤ n ≤ N} be the ex-
act solution of Eq. (1.1) and the numerical solution of Schemes (2.9) and (2.10),
respectively. Then, for 1 ≤ n ≤ N , it holds that

∥Un − un∥ ≤ C
(
τσ + h2

x + h2
y

)
.

Proof. Let us start by analyzing the error of (2.10). Subtracting Eq. (2.10) from
Eq. (2.8), we have

en+1
ij − enij +

(
ταω

(α−1)
0

2

)2 (
δ2x − δβx

) (
δ2y − δβy

) (
en+1
ij − enij

)
=
τα

2

[
n+1∑
k=0

ω
(α−1)
k

(
δ2x + δ2y

)
en+1−k
ij +

n∑
k=0

ω
(α−1)
k

(
δ2x + δ2y

)
en−k
ij

]

− τα

2

[
n+1∑
k=0

ω
(α−1)
k

(
δβx + δβy

)
en+1−k
ij +

n∑
k=0

ω
(α−1)
k

(
δβx + δβy

)
en−k
ij

]

+
τα

2

n∑
k=0

(
ω
(α−1)
k+1 + ω

(α−1)
k

) [
g(un−k

ij )− g(Un−k
ij )

]
+

ταω
(α−1)
0

2

[
g(2un

ij − un−1
ij )− g(2Un

ij − Un−1
ij )

]
+R∗,

where enij = un
ij − Un

ij . Multiplying the both sides of the above equation by
hxhy(e

n+1
ij + enij) and summing over 1 ≤ i ≤ Mx − 1, 1 ≤ j ≤ My − 1, we have

∥en+1∥2 − ∥en∥2 +

(
ταω

(α−1)
0

2

)2

⟨
(
δ2x − δβx

) (
δ2y − δβy

) (
en+1 − en

)
, en+1 + en⟩

=
τα

2

n∑
k=0

ω
(α−1)
k ⟨

(
δ2x + δ2y

) (
en+1−k + en−k

)
, en+1 + en⟩

− τα

2

n∑
k=0

ω
(α−1)
k ⟨

(
δβx + δβy

) (
en+1−k + en−k

)
, en+1 + en⟩

+
τα

2

[
ω
(α−1)
n+1 ⟨

(
δ2x + δ2y

)
e0, en+1 + en⟩ − ω

(α−1)
n+1 ⟨

(
δβx + δβy

)
e0, en+1 + en⟩

]
+

τα

2

n∑
k=0

(
ω
(α−1)
k+1 + ω

(α−1)
k

)
⟨g(un−k)− g(Un−k), en+1 + en⟩

+
ταω

(α−1)
0

2
⟨g(2un − un−1)− g(2Un − Un−1), en+1 + en⟩+ ⟨R∗, en+1 + en⟩.

Since e0ij = 0 for 0 ≤ i ≤ Mx and 0 ≤ j ≤ My, sum the above equation over n from
1 to J − 1 and use Lemmas 3.1 and 3.2, we get

∥eJ∥2 − ∥e1∥2 +

(
ταω

(α−1)
0

2

)2

∥η1∥2
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≤− τα

2

J−1∑
n=1

n∑
k=0

ω
(α−1)
k ⟨(δx + δy)

(
en+1−k + en−k

)
, (δx + δy)

(
en+1 + en

)
⟩

− τα

2

J−1∑
n=1

n∑
k=0

ω
(α−1)
k ⟨

(
δβ/2x +δβ/2y

) (
en+1−k+en−k

)
,
(
δβ/2x +δβ/2y

) (
en+1+en

)
⟩

+
τα

2

J−1∑
n=1

n∑
k=0

(
ω
(α−1)
k+1 + ω

(α−1)
k

)
⟨g(un−k)− g(Un−k), en+1 + en⟩

+
ταω

(α−1)
0

2

J−1∑
n=1

⟨g(2un − un−1)− g(2Un − Un−1), en+1 + en⟩

+

J−1∑
n=1

⟨R∗, en+1 + en⟩, (3.1)

where

∥η1∥2 =∥δxδyeJ∥2 + ∥δxδβ/2y eJ∥2 + ∥δβ/2x δye
J∥2 + ∥δβ/2x δβ/2y eJ∥2

− ∥δxδye1∥2 − ∥δxδβ/2y e1∥2 − ∥δβ/2x δye
1∥2 − ∥δβ/2x δβ/2y e1∥2.

Now, we turn to analyze ∥e1∥. Subtracting Eq. (2.9) from Eq. (2.7) and using
the same deductions as above, we can derive that

∥e1∥2 =

(
ταω

(α−1)
0

2

)2

∥η2∥2 −
ταω

(α−1)
0

2
∥ (δx + δy) e

1∥2

− ταω
(α−1)
0

2
∥
(
δβ/2x + δβ/2y

)
e1∥2 + ταω

(α−1)
0 ⟨g(u0)− g(U0), e1⟩

+
ταω

(α−1)
1

2
⟨g(u0)− g(U0), e1⟩+ ⟨R∗, e1⟩, (3.2)

where

∥η2∥2 = ∥δxδye1∥2 + ∥δxδβ/2y e1∥2 + ∥δβ/2x δye
1∥2 + ∥δβ/2x δβ/2y e1∥2.

Sum (3.1) and (3.2) and use Lemma 3.3, it deduces that

∥eJ∥2 ≤−

(
ταω

(α−1)
0

2

)2

∥η3∥2

+
τα

2

J−1∑
n=1

n∑
k=0

(
ω
(α−1)
k+1 + ω

(α−1)
k

)
⟨g(un−k)− g(Un−k), en+1 + en⟩

+
ταω

(α−1)
0

2

J−1∑
n=1

⟨g(2un − un−1)− g(2Un − Un−1), en+1 + en⟩

+ ταω
(α−1)
0 ⟨g(u0)− g(U0), e1⟩+ ταω

(α−1)
1

2
⟨g(u0)− g(U0), e1⟩

+

J−1∑
n=1

⟨R∗, en+1 + en⟩, (3.3)
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where

∥η3∥2 = ∥δxδyeJ∥2 + ∥δxδβ/2y eJ∥2 + ∥δβ/2x δye
J∥2 + ∥δβ/2x δβ/2y eJ∥2.

Using the blueLipschitz condition of g and exchanging the order of the two blue-
summations in the second term in the right-hand side of the above inequlaity, we
obtain

∥eJ∥2 ≤−

(
ταω

(α−1)
0

2

)2

∥η3∥2+Cτα
J−1∑
k=0

J−1∑
n=k

(
w

(α−1)
n+1−k+w

(α−1)
n−k

)
∥ek∥∥en+1+en∥

+ Cτα
J−1∑
n=1

∥en∥∥en+1 + en∥+ C

J−1∑
n=1

R∗∥en+1 + en∥.

Due to −
(

ταω
(α−1)
0

2

)2

∥η3∥2 is negative, τα
∑J−1

n=k

(
ω
(α−1)
n+1−k + ω

(α−1)
n−k

)
is bounded

and assume that ∥eP ∥ = max0≤J≤N ∥eJ∥, then it holds

∥eP ∥ ≤C

P−1∑
n=0

(
tσ−3
n+1τ

3 + τh2
x + τh2

y

)
≤C

(
P−1∑
n=0

(n+ 1)σ−3τσ + h2
x + h2

y

)
.

Since
∑P−1

n=0 (n+ 1)σ−3 is bounded, we obtain that

∥eP ∥ ≤ C
(
τσ + h2

x + h2
y

)
.

The proof is completed.

Remark 3.1. Although Theorem 3.1 shows the linearized ADI Schemes (2.9) and
(2.10) have temporal accuracy O (τσ). However, the global truncation error in the
temporal direction of Eq. (2.5) is O

(
tσ−3
n+1τ

2
)
, but if t is far away from t0, the global

truncation error in the temporal direction can be O
(
τ2
)
. The results of numerical

experiments in Section 4 are consistent with this remark. Thus, t = t0, linearized
ADI Schemes (2.9) and (2.10) have a temporal accuracy O (τσ) and become O

(
τ2
)

when tn+1 is far away from t0.

3.2. Stability
We can derive the stability of the linearized ADI Schemes (2.9) and (2.10) as simi-
larly as proving Theorem 3.1.

Theorem 3.2. Let {Un
ij |0 ≤ i ≤ Mx, 0 ≤ j ≤ My, 0 ≤ n ≤ N} be the numerical

solution of Schemes (2.9) and (2.10) for Problem (2.4). Then for 1 ≤ K ≤ N , it
holds

∥UK∥ ≤ C

(
max

0≤n≤N
∥g(Un)∥+ max

0≤n≤N−1
∥Fn+ 1

2 ∥
)
.
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Proof. Multiplying Eq. (2.10) by hxhy(U
n+1
ij + Un

ij) and summing over 1 ≤ i ≤
Mx − 1, 1 ≤ j ≤ My − 1, we have

∥Un+1∥2 − ∥Un∥2 +

(
ταω

(α−1)
0

2

)2

× ⟨
(
δ2x − δβx

) (
δ2y − δβy

) (
Un+1 − Un

)
, Un+1 + Un⟩

=
τα

2

n∑
k=0

ω
(α−1)
k ⟨

(
δ2x + δ2y

) (
Un+1−k + Un−k

)
, Un+1 + Un⟩

− τα

2

n∑
k=0

ω
(α−1)
k ⟨

(
δβx + δβy

) (
Un+1−k + Un−k

)
, Un+1 + Un⟩

+
τα

2

[
ω
(α−1)
n+1 ⟨

(
δ2x + δ2y

)
U0, Un+1 + Un⟩ − ω

(α−1)
n+1 ⟨

(
δβx + δβy

)
U0, Un+1 + Un⟩

]
+

τα

2

n∑
k=0

(
ω
(α−1)
k+1 + ω

(α−1)
k

)
⟨g(Un−k), Un+1 + Un⟩

+
ταω

(α−1)
0

2
⟨g(2Un − Un−1), Un+1 + Un⟩+ τ⟨Fn+ 1

2 , Un+1 + Un⟩.

Note that Eq. (1.1) is equipped with the homogeneous initial conditions, thus it
deduces

∥Un+1∥2 − ∥Un∥2 +

(
ταω

(α−1)
0

2

)2

× ⟨
(
δ2x − δβx

) (
δ2y − δβy

) (
Un+1 − Un

)
, Un+1 + Un⟩

=
τα

2

n∑
k=0

ω
(α−1)
k ⟨

(
δ2x + δ2y

) (
Un+1−k + Un−k

)
, Un+1 + Un⟩

− τα

2

n∑
k=0

ω
(α−1)
k ⟨

(
δβx + δβy

) (
Un+1−k + Un−k

)
, Un+1 + Un⟩

+
τα

2

n∑
k=0

(
ω
(α−1)
k+1 + ω

(α−1)
k

)
⟨g(Un−k), Un+1 + Un⟩

+
ταω

(α−1)
0

2
⟨g(2Un − Un−1), Un+1 + Un⟩+ τ⟨Fn+ 1

2 , Un+1 + Un⟩.

Applying the similar deductions to get Eq. (3.3), it achieves that

∥UJ∥2 ≤−

(
ταω

(α−1)
0

2

)2

∥η3∥2 + Cτ

J−1∑
k=0

∥g(Uk)∥
(
∥Un+1∥+ ∥Un∥

)
+

ταω
(α−1)
0

2

J−1∑
n=1

∥g(2Un − Un−1)∥
(
∥Un+1∥+ ∥Un∥

)
+ Cτ

J−1∑
n=1

∥Fn+ 1
2 ∥
(
∥Un+1∥+ ∥Un∥

)
. (3.4)
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One can estimate ∥g(2Un − Un−1)∥ as following

∥g(2Un − Un−1)∥ =∥g(2Un − Un−1)− g(Un) + g(Un)∥
≤∥g(2Un − Un−1)− g(Un)∥+ ∥g(Un)∥
≤C(∥Un∥+ ∥Un−1∥) + ∥g(Un)∥. (3.5)

Substituting Eq. (3.5) into (3.4), omitting the non-positive terms and using Young’s
inequality, then we have

∥UJ∥2 ≤ Cτ

J−1∑
n=0

∥Un∥2 + C max
0≤n≤N

∥g(Un)∥2 + C max
0≤n≤N−1

∥Fn+ 1
2 ∥2. (3.6)

By applying the Gronwall inequality to (3.6), it becomes

∥UJ∥2 ≤ C

(
max

0≤n≤N
∥g(Un)∥2 + max

0≤n≤N−1
∥Fn+ 1

2 ∥2
)
,

and thus completes the proof.

4. Numerical Experiments
In this section, we carry out numerical experiments for our linearized ADI finite
difference scheme.

Example 4.1. Consider the following problem with exact solution u(x, y, t) =
tσx2(1− x)2y2(1− y)2.

C
0 D

α
t u(x, y, t) =

∂2u(x, y, t)

∂x2
+

∂2u(x, y, t)

∂y2
+

∂βu(x, y, t)

∂|x|β
+

∂βu(x, y, t)

∂|y|β
+ g(u)

+ f(x, y, t),

where T = 1, (x, y) ∈ (0, 1) × (0, 1), 0 < t ≤ T , and 1 < σ < α. The nonlinear
function g(u) = u2 and f(x, y, t) is

f(x, y, t) =
Γ(σ + 1)

Γ(σ − α+ 1)
tσ−αx2(1− x)2y2(1− y)2

− tσy2(1− y)2
(
12x2 − 12x+ 2

)
− tσx2(1− x)2(12y2 − 12y + 2)

+
tσ

2 cos
(

βπ
2

)Γ(5− β) [h(y, x, β)+h(x, y, β)]−t2σx4(1−x)4y4(1−y)4,

where

h(v, w, β) =v2
(
1− v2

) [
12
(
w4−β + (1− w)4−β

)
− 6 (4− β)

(
w3−β + (1− w)

3−β
)

+ (4− β) (3− β)
(
w2−β + (1− w)

2−β
)]

.

It is worth noting that the exact solution satisfies the smoothness condition in
Theorem 3.1. At t = 0, the right-hand side source function f(x, y, t) is singular.
In Figure 1, we compare the exact solution with numerical solution of linearized
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ADI finite difference Schemes (2.9) and (2.10). We can see from Figure 2 that
the errors are small and hence our numerical solutions can approximate the exact
solutions well. Theorem 3.1 shows that the temporal numerical convergence order
is σ. To verify this, we set h = 0.01, a value is small enough such that the spatial
discretization errors are negligible as compared with the temporal errors, and choose
different time step size. In Table 1, we fix β = 1.5, α = 1.8, and present the errors at
t1 and time convergence order. In Table 2, we fix β = 1.5, σ = 1.3, and present the
errors at t1 and time convergence order. We conclude that the temporal numerical
convergence order approach to σ. To verify Remark 3.1, we compute the L2-errors
and the temporal numerical convergence orders at the final tN for h = 0.01 and
β = 1.5 in Tables 3 and 4. It is clearly visible that at tN , the numerical convergence
is close to 2.

On other hand, Table 5 shows the L2-errors, space convergence order with
σ = 1.4 and α = 1.6. We set τ = 0.01, a value is small enough such that the
temporal discretization errors are negligible as compared with the spatial errors,
and choose different space step size. From all scenarios, we conclude that the spa-
tial convergence order is 2. This is consistent with the theoretical analysis.
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Figure 1. Numrical solution (left column) and exact solution (right column) when τ = 1/16, h = 1/20,
σ = 1.4, α = 1.6, and β = 1.5.

Table 1. The errors for different σ and temporal numerical convergence orders for Schemes (2.9) and
(2.10) at t1, h = 0.01, β = 1.5, and α = 1.8.

τ
σ = 1.3 σ = 1.5 σ = 1.7

error order error order error order
1/64 3.6383× 10−7 1.7160× 10−7 5.5330× 10−8

1/128 1.5762× 10−7 1.2069 6.4760× 10−8 1.4058 1.8619× 10−8 1.5713

1/256 6.5212× 10−8 1.2732 2.3330× 10−8 1.4729 5.8797× 10−9 1.6630

1/512 2.6626× 10−8 1.2923 8.2930× 10−9 1.4922 1.8231× 10−9 1.6894
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Figure 2. The error surface between numerical solutions and exact solutions for τ = 1/16, h = 1/20,
σ = 1.4, α = 1.6, and β = 1.5.

Table 2. The errors for different α and temporal numerical convergence orders for Schemes (2.9) and
(2.10) at t1, h = 0.01, β = 1.5, and σ = 1.3.

τ
α = 1.4 α = 1.6 α = 1.9

error order error order error order
1/64 2.6765× 10−7 3.2750× 10−7 3.7487× 10−7

1/128 1.3896× 10−7 0.9470 1.5165× 10−8 1.1108 1.5916× 10−7 1.2359

1/256 6.2023× 10−8 1.1638 6.4313× 10−8 1.2375 6.5416× 10−8 1.2828

1/512 2.6106× 10−8 1.2481 2.6496× 10−9 1.2794 2.6652× 10−8 1.2954

Table 3. The errors for different σ and temporal numerical convergence orders for Schemes (2.9) and
(2.10) at tN , h = 0.01, β = 1.5, and α = 1.8.

τ
σ = 1.3 σ = 1.5 σ = 1.7

error order error order error order
1/5 9.2221× 10−5 2.9769× 10−5 9.3783× 10−5

1/10 2.5085× 10−5 1.8783 2.4008× 10−5 1.9027 2.3030× 10−5 2.0258

1/20 6.6822× 10−6 1.9084 6.2278× 10−6 1.9467 5.7155× 10−6 2.0106

1/40 1.7526× 10−6 1.9308 1.5729× 10−6 1.9853 1.3939× 10−6 2.0358

5. Conclusion
In this paper, we blueconstruct a linearized ADI scheme for two-dimensional time-
space fractional nonlinear diffusion-wave equations with initial singularity. To re-
duce the smoothness requirement in time, the proposed scheme is constructed based
on the equivalent partial integro-differential equations. Then, the Crank-Nicolson
technique, the midpoint formula, the second order convolution formula, the clas-
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Table 4. The errors for different α and temporal numerical convergence orders for Schemes (2.9) and
(2.10) at tN , h = 0.01, β = 1.5, and σ = 1.3.

τ
α = 1.4 α = 1.6 α = 1.9

error order error order error order
1/5 1.5173× 10−4 8.9262× 10−5 9.3689× 10−5

1/10 4.4183× 10−5 1.7799 2.2582× 10−5 1.9829 2.7237× 10−5 1.7823

1/20 1.2255× 10−5 1.8501 5.6456× 10−6 2.0000 7.4858× 10−6 1.8634

1/40 3.1356× 10−6 1.9666 1.4212× 10−6 1.9900 2.0115× 10−6 1.8959

Table 5. The errors for different β and spatial numerical convergence orders of Schemes (2.9) and (2.10)
for τ = 0.01, σ = 1.4, and α = 1.6.

h
β = 1.3 β = 1.5 β = 1.7

error order error order error order
1/8 8.9601× 10−5 9.0426× 10−5 9.4047× 10−5

1/16 2.2120× 10−5 2.0182 2.2181× 10−5 2.0274 2.2984× 10−5 2.0328

1/32 5.4113× 10−6 2.0313 5.3863× 10−6 2.0419 5.5482× 10−6 2.0505

sical central difference formula, and the fractional central difference formula were
applied to construct the proposed scheme. Theoretically, the convergence and the
unconditional stability of the proposed scheme are proved and discussed. All of the
numerical experiments support our theoretical results.
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