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STUDIES ON PULL-IN INSTABILITY OF AN
ELECTROSTATIC MEMS ACTUATOR:

DYNAMICAL SYSTEM APPROACH

Xiangshuo Liu1, Lijun Zhang1,2,† and Mingji Zhang3

Abstract The pull-in instability of an electrostatic microstructures is a com-
mon undesirable phenomenon which implies the loss of reliability of micro-
electromechanical systems. It is important to better understand its mecha-
nism and then to reduce the occurrence of such phenomenon. Our work is de-
voted to analyzing the pull-in instability of a typical electrostatic micro-electro-
mechanical-system actuators with edge effects. The pull-in phenomenon and
the dynamic threshold are examined via dynamical system approach and the
qualitative theory of differential equations. Nonlinear interplays between the
voltage and the initial positions are characterized, from which critical voltage
values are identified. Those critical voltages play crucial roles in our analy-
sis. Effects from other system parameters are also examined numerically. It
turns out that most of the parameters involved in the MEMS oscillator have
corresponding threshold values, beyond which the pull-in instability occurs.

Keywords Parallel-plate, pull-in instability, MEMS actuators, periodic so-
lutions, dynamical system approach.
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1. Introduction
Micro-electro-mechanical-systems (MEMS) are an electromechanical integrated sys-
tem, and its feature size of components and the actuating range are of the micro-
scale. Differently from traditional mechanical processing, the manufacturing of
MEMS device makes use of the semiconductor production process, which can be
compatible with an integrated circuit, and includes surface micromachining and
bulk miromachining. Thanks to the increasingly mature process technology, many
sophisticated micro structural and functional modules are currently available. Cor-
respondingly, much greater optimized performance of the device has been developed.
In particular, we would like to point out that the great advantage of electrostatic-
driven MEMS devices lies in its rapid response, lower power consumption, and inte-
grated circuit standard process compatibility (see [3, 7, 11, 19, 21] for more detailed
details).
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Because of its simplicity of design and process, as well as convenience of integra-
tion with the integrated circuit processes to form a single-chip system, very often,
the electrostatic principle is employed in sensing of MEMS or drive modules [14,15].
MEMS consists of a stationary part and a movable part connected with a voltage
source. When a voltage is applied, the movable part is deformed towards the sta-
tionary position due to the attractive forces. When the voltage between the two
plates reaches a threshold value, the system is in a critical equilibrium position.
This position is called pull-in point, and the corresponding voltage is named as
pull-in voltage. If the voltage exceeds its threshold value, the movable part touches
the fixed base (stationary part), and the microstructure is kept away from the out-
put it needs. This phenomenon is known as pull-in instability where the moving
structure snaps to the actuation electrode, which is one of the most important non-
linear phenomena in electrostatic MEMS. It depends on different parameters of the
forces that are used for actuating and deduction in the MEMS. In other words, a
microstructure actuated electrically performs in order if the applied voltage is less
than or equal to the pull-in threshold voltage, and pull-in instability occurs beyond
that threshold value. Younis [24] provided a universal definition that dynamical
pull-in was the collapse of the elastic structure toward the substrate induced by the
combined actuation of kinetic and potential energies. Elata and Bamberger [4] and
Sedighi etc [20] also agreed that dynamical pull-in belongs to the escape from the
potential well of the micro-electromechanical systems. The authors in [10] studied
pull-in dynamics of overdamped microbeams. He et al. introduced two numeri-
cal methods to find the approximate value of the pull-in voltage of a MEMS in [6].
Some studies [1,2,5,16,18,22] have addressed the pull-in phenomenon and presented
some tools to predict its location to enable designers to avoid it.

The typical and widely used electrostatic MEMS actuators are always considered
as dynamical models [9, 12,23]. A governing equation in the form

mẍ+ kx = Fe, (1.1)

is applied in [24] to model the parallel-plate capacitor in a spring-mass system (see
Fig. 1). Here m is the mass of the moving plate, k is the stiffness of the spring, Fe

given by

Fe = − d

dx
(
1

2
CV 2), (1.2)

represents the electrostatic force, where C is capacitance and V is the direct current
voltage which pulls the flexible plate towards a distance x. According to the model
for the capacitance established by Love [17], when the side length of the plate w is
greater than the gap between the plates d, Nemirovsky [13] approximates the effect
of the fringing field capacitance on the total capacitance of a square parallel-plate
actuator

C = ϵω

(
ω

d− x
+

2

π
+

2

π
ln
( 2πω

d− x

))
, (1.3)

where ϵ is the dielectric constant of air. Therefore, the model Eq. (1.1) becomes

mẍ+ kx =
πϵw2V 2 + 2ϵwV 2(d− x)

2π(d− x)2
, (1.4)

which is a second-order differential equation with singularity at x = d.
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Qualitative and bifurcation analysis theorem of differential equations is a very
effective approach to study the solutions of second-order differential equations with
parameters, which has been well applied in the study of traveling wave solutions of
nonlinear wave equations [8,25]. In this work, we will analyze the equation (1.4) via
dynamical system approach. Mathematical analysis shows that there is a unique
pull-in voltage for different parameters involved in the system. Particularly, the
interplays between the pull-in voltage and the parameters is characterized, and the
corresponding pull-in point of the system is identified. Different types of boundary
conditions are also considered, and their effects will be explored on the vibrational
behavior of MEMS.

Figure 1. A single-degree-of-freedom model of a parallel-plate capacitor in a spring-mass system

The paper is organized as follows. In Section 2, we employ the dynamical sys-
tem approach to analyze an electrostatic MEMS model with edge effect from the
capacitor under the parallel-plate assumption. In Section 3, we discuss the pull-in
instability of the electrostatic MEMS actuator from the point of more physical view.
Effects from different system parameters are also studied numerically, while Section
5 provides some concluding remarks.

2. Model analysis via dynamical system approach
In our following analysis, we rescale d as d = 1 and introduce A = ϵw2

2m , B = ϵw
πm

and β = k
m , then we have A > 0, B > 0 and β > 0 and the equation (1.4) becomes

ẍ+ βx =
A

(1− x)2
V 2 +

B

1− x
V 2. (2.1)

Let ẋ = y, then the equation (2.1) is equivalent to the following equations
dx

dt
=y,

dy

dt
=

A

(1− x)2
V 2 +

B

1− x
V 2 − βx, (2.2)

which is a Hamiltonian system. For convenience, we make a further rescaling dt =
(1− x)2dτ when 1− x ̸= 0, and the system (2.2) becomes

dx

dτ
=y(1− x)2,

dy

dτ
= −βx(1− x)2 +B(1− x)V 2 +AV 2. (2.3)

The system (2.3) is an integrable system with the first integral given by

H(x, y) =
1

2
y2 +

β

2
x2 − A

1− x
V 2 +BV 2 ln |1− x|. (2.4)
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We comment that the system (2.3) has the same topological phase portraits as that
of the system (2.2) except for the singular line x = 1.

For convenience, we introduce

g(x) = −βx(1− x)2 +B(1− x)V 2 +AV 2, (2.5)

and then we have

g′(x) = −3βx2 + 4βx− β −BV 2. (2.6)

Obviously, a point (x∗, 0) is an equilibrium of the system (2.3) if g(x∗) = 0. However,
the roots of function g(x) are parameterised by β,A,B and V . To consider the effect
of V , we will study it in the following two cases.

Case (1). 0 < V <
√

β
3B

For this case, g′(x) = 0 has two roots x± = 2
3 ± 1

3

√
1− 3B

β V 2. Let

h±(V ) = g(x±) = −βx±(1− x±)
2 +B(1− x±)V

2 +AV 2.

It follows that the function g(x) is decreasing on (−∞, x−) and reaches its local
minimum value h−(V ) at x = x−; it is increasing on (x−, x+) and reaches its local
maximum value h+(V ) at x = x+; and it is decreasing on (x+,∞). It is easy to see
from the formulas of x± that 1

3 < x− < 2
3 < x+ < 1 and g(1) = AV 2 > 0, so one

has h+(V ) > 0. Taking into account the limits lim
x→±∞

g(x) = ∓∞, one has

(i) if h−(V ) < 0, g(x) has three real roots, say x1, x2 and x3, and then 0 < x1 <
x− < x2 < x+ < 1 < x3.

(ii) if h−(V ) = 0, g(x) has three real roots, a root x = x− of multiplicity 2 and a
root x3 > 1.

(iii) if h−(V ) > 0, g(x) has only one real roots x3 > 1.

Direct computation gives

h′
−(V ) =

2

3
BV

(
1 +

√
1− 3B

β
V 2

)
+ 2AV.

Clearly, h′
−(V ) > 0, that implies that h−(V ) is increasing in V on (0,

√
β
3B ). Since

h−(0) = − 4β
27 < 0 and h−(

√
β
3B ) = 1

27β+AV 2 > 0, there is a unique V ∗ ∈ (0,
√

β
3B )

such that

h−(V
∗) = AV ∗2 +

BV ∗2

3
(1 +N)− β

27
(2−N) (1 +N)

2
= 0, (2.7)

where N =
√
1− 2B

β V ∗2. It results that h−(V ) > 0 for β
3B > V > V ∗ while

h−(V ) < 0 for 0 < V < V ∗.
Case (2). V ≥

√
β
3B

Clearly, g′(x) ≤ 0 and thus g(x) is decreasing on the real line. Note that g(1) > 0
and lim

x→+∞
g(x) = −∞, which indicate that g(x) has unique root in (1,+∞).

Combining the analysis above, the following result can be established directly.
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Lemma 2.1. For g(x), one has

(i) for V > V ∗, it has a unique root in (1,+∞);
(ii) for V = V ∗, it has three roots x1, x2 and x3 such that x1 = x2 = x− < 1 < x3;
(iii) for 0 < V < V ∗, it has three roots x1, x2 and x3 such that 0 < x1 < x2 < 1 <

x3.

Let M(x∗, 0) be the coefficient matrix of the linearized system of (2.3) at an
equilibrium point (x∗, 0), then, one has

M(x∗, 0) =

 0 (1− x∗)2

g′(x∗) 0

 ,

from which Tr(M(x∗, 0)) = 0 and det(M(x∗, 0)) = −(1− x∗)2g′(x∗), where g(x) is
defined in (2.5).

By the theory of dynamical systems, it is well-known that for an equilibrium
point of a planar integrable system, if det(M(x∗, 0)) < 0, it is a saddle point; if
det(M(x∗, 0)) > 0 and Tr(M(x∗, 0)) = 0, it is a center; and if det(M(x∗, 0)) = 0,
and the Poincare index of the equilibrium point is 0, then it is a cusp. Together
with Lemma 2.1 and the discussion above, the following result can be established.

Lemma 2.2. For the system (2.3), one has

(i) For V ≥ V ∗, it has a center around which there is a family of periodic orbits
to the right-hand side of the singular line x = 1; However, every orbit to the
left-hand side of the singular line approaches the singular line. In particular,
for V = V ∗, it has a cusp on the left-hand side of the singular line (see Fig.
2 (a) and (b)).

(ii) For 0 < V < V ∗, it has a saddle and two centers. There is a homoclinic
orbit to the saddle on the left-hand side of the straight line x = 1 which is
the boundary trajectory of a family of periodic orbits surrounding one center;
There is a family of periodic orbits around the center on the right-hand side
of the singular line x = 1. (see Fig. 2 (c)).
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Figure 2. Phase portraits of system (2.3)

We point out that each orbit of the system (2.3) parameterized by (x(t), y(t))
determines a unique solution of the equation (2.1) x = x(t) which is the one that we
attempt to study. In particular, a periodic orbit determines a periodic solution and a
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homoclinic orbit corresponds to a solution approaching a finite number as time goes
to infinity. However, along the orbit approaching the singular line x = 1, y(t) = x′(t)
goes to infinity, hence x(t) reaches 1 in finite time, that is, the orbit approaching
the singular line corresponds to a solution of the equation (2.1) x = x(t) reaching
1 in finite time which is called a break solution. For instance, the orbits shown
in Fig. 2 which approach the singular line all correspond break solutions of the
equation (2.1). Hence, for V ≥ V ∗, all orbits to the left-hand side of the singular
line correspond to break solutions except for the equilibrium point for V = V ∗;
nevertheless, for 0 < V < V ∗, the orbits outside homoclinic orbit correspond to
break solutions.

For a given MEMS, it is supposed to be modeled by the equation (2.1) with
initial values which are always given by the initial position of the movable plate,
say x(0) = x0 and x′(0) = 0. Therefore, we now investigate the solution of the
initial value problem (IVP): the equation (2.1) and the initial values x(0) = x0 and
x′(0) = 0, which corresponds to the orbit of the system (2.3) passing through the
pint (x0, 0). Therefore, one can investigate the solutions by examining the orbits
passing through the point (x0, 0). Taking into account the physical background, we
will not consider the case when x0 ≥ 1.

Lemma 2.3. For the equation (1.4) subject to the initial values x(0) = x0 (x0 < 1)
and x′(0) = 0, one has

(i) For V > V ∗, independent of the initial conditions, it has a break solution.
(ii) For V = V ∗, it has a break solution provided that x0 ̸= x−, however, it has a

constant solution x = x0 if x0 = 2
3 − 1

3

√
1− 3B

β V ∗2.

(iii) For 0 < V < V ∗, assuming that the homoclinic orbit intersects with y = 0 at
(xt, 0), then xt < x2 is determined implicitly by

1

2
β(x2

2 − x2
t ) +AV 2

(
1

1− xt
− 1

1− x2

)
+BV 2 ln

(
1− x2

1− xt

)
= 0. (2.8)

For the equation (1.4), one has
(iii1) when x0 = xc or x0 = x2, it has a constant solution.
(iii2) when x0 > x2 or x0 < xt, it has a break solution.
(iii3) when xt < x0 < x2, it has a periodic solution.

Proof. The statements (i) and (ii) are derived directly from the first statement
in Lemma 2.2.

For 0 < V < V ∗, since the point (xt, 0) is on the homoclinic orbit to the saddle
(x2, 0), we have H(xt, 0) = H(x2, 0). It follows directly from the equation (2.4) that
xt is determined implicitly by (2.8). The other statements follow directly form the
second statement in Lemma 2.2.

The trajectories of the system (2.3) subject to initial conditions x(0) = x0 and
x′(0) = 0 and the corresponding solution curves with physical parameters w = 1,
m = k = ϵ

π and V = 1 are shown in Fig. 3. Note that x0 is confined by x0 < 1
in above Lemma, however, it is of physical interest only when x0 ∈ (0, 1). So the
solution curves with x0 < 0 lost their physical meaning, for instance, the solution
curve determined by x0 = −0.3 only makes mathematical sense. So we have to do
more detailed analysis on xt.
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Figure 3. Phase portrait and corresponding solution curves with physical parameters w = 1, m = k =
ϵ
π and V = 1.

Lemma 2.4. For xt determined by the equation (2.8), there exists a critical volatge
Vc ∈ (0, V ∗) such that xt < 0 when 0 < V < Vc; xt = 0 when V = Vc; and xt > 0
when Vc < V < V ∗.

Proof. For the case when 0 < V < V ∗, the system (2.3) has a saddle (x2, 0),
where x2 = x2(V ) is determined implicitly by (see the discussion below (2.6))

g(x2) = −βx2(1− x2)
2 +B(1− x2)V

2 +AV 2 = 0. (2.9)

Let F (V ) = H(x2, 0)−H(0, 0) for 0 < V < V ∗, namely,

F (V ) =
β

2
x2
2 −

A

1− x2
V 2 +B ln(1− x2)V

2 +AV 2

=
β

2
x2
2 + ln(1− x2)BV 2 − x2

1− x2
AV 2.

(2.10)

It follows from the equation (2.9) that

dx2

dV
= −

2V
(
B(1− x2) +A

)
−3βx2

2 + 4βx2 −BV 2 − β
. (2.11)

Note that 2V
(
B(1 − x2) + A

)
> 0 and −3βx2

2 + 4βx2 − BV 2 − β > 0 since 1
3 <

x− < x2 < x+ < 1 for 0 < V < V ∗. One has dx2

dV < 0.
Direct calculation gives

F ′(V ) = − g(x2)

(1− x2)2
x′
2 −

2A

1− x2
V + 2AV = −2AV x2

1− x2
< 0, (2.12)

which indicates that F (V ) is decreasing in V on (0, V ∗).
Recall that x− < x2 < x+. It is easy to see that lim

V→0+
x− = 1

3 . From the

equation (2.9), we have lim
V→0+

x2(V ) = 1. And hence lim
V→0+

F (V ) =
β

2
> 0.

Note that for V = V ∗, x2(V
∗) is an equilibrium point with multiplicity two.

One has g(x2(V
∗)) = 0 and g′(x2(V

∗)) = 0. It follows from (2.5) and (2.6) that

− 3βx2
2 + 4βx2 − β −BV ∗2 = 0,

− βx2(1− x2)
2 +B(1− x2)V

∗2 +AV ∗2 = 0,
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which gives

BV ∗2 = β(1− x2)(3x2 − 1) and AV ∗2 = β(1− x2)
2(1− 2x2).

Therefore,

lim
V→V ∗−

F (V ) =
β

2
x2(−4x2

2 + 5x2 − 2) + β(1− x2)(3x2 − 1) ln(1− x2) < 0 (2.13)

since x2 = x2(V
∗) = 2

3 − 1
3

√
1− 3BV ∗2

β > 1
3 .

By the Intermediate Value Theorem for F (V ) and the fact that F (V ) is decreas-
ing on (0, V ∗), there is a unique Vc ∈ (0, V ∗) such that F (Vc) = 0, F (V ) > 0 for
0 < V < Vc and F (V ) < 0 for Vc < V < V ∗. It follows that H(x2, 0) = H(0, 0) at
V = Vc, and hence xt = 0; H(x2, 0) > H(0, 0) for 0 < V < Vc, and hence xt < 0;
and H(x2, 0) < H(0, 0) for Vc < V < V ∗, and hence xt > 0.

We comment that it is of physical interest only for 0 ≤ x0 < 1. Correspondingly,
in our following discussion, we further assume that 0 ≤ x0 < 1. From Lemma 2.3
and Lemma 2.4, one has

Theorem 2.1. For the equation (1.4) subject to the initial conditions x(0) =
x0 (0 ≤ x0 < 1) and x′(0) = 0, together with the critical voltages V ∗ identified
in (2.7) and Vc identified in Lemma 2.4, one has

(i) For V > V ∗, it has a break solution for arbitrary x0.
(ii) For V = V ∗, it has a break solution provided that x0 ̸= x2, however, it has a

constant solution x = x0 if x0 = x2 = 2
3 − 1

3

√
1− 3B

β V ∗2.

(iii) For Vc < V < V ∗,
(iii1) when x0 > x2 or 0 < x0 < xt, it has a break solution.
(iii2) when x0 = xc or x0 = x2, it has a constant solution.
(iii3) when xt < x0 < x2, it has a periodic solution.
(iii4) when x0 = xt, it has a solution approaching x2 as t goes to infinity.

(iv) For V = Vc,
(iv1) when x0 > x2, it has a break solution.
(iv2) when x0 = xc or x0 = x2, it has a constant solution.
(iv3) when 0 < x0 < x2, it has a periodic solution.
(iv4) when x0 = 0, it has a solution approaching x2 as t goes to infinity.

(v) For 0 < V < Vc,
(v1) when x0 > x2, it has a break solution.
(v2) when x0 = xc or x0 = x2, it has a constant solution.
(v3) when 0 ≤ x0 < x2, it has a periodic solution.

The trajectories of the system (1.4) and its corresponding solution curves with
different values of V for fixed w = 1 and m = k = ϵ

π and x0 = 0 are shown in
Figure 3, which provides more intuitive illustration of our analytical results.

To end this section, we remark that the identification of the critical voltages
V ∗ and Vc are crucial in our analysis, and their roles played in our study are
characterized in details. This provides better understanding of the dynamics of
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Figure 4. Trajectories and corresponding solution curves with x0 = 0 and w = 1 and m = k = ϵ
π .

Under the specific setup, one has Vc = 0.4180909 and V ∗ = 0.6764614. We also point out that once the
value of V is fixed, the corresponding values for x2, xc and xt can be uniquely determined.

the MEMS, particularly the pull-in instability phenomena. Meanwhile, it provides
efficient ways to control the voltage applied to the system to avoid the pull-in
instability phenomena. We would also like to point out that the results obtained in
this section are based on rigorous mathematical analysis and non-intuitive.

3. Pull-in instability for MEMS
For a given MEMS, the motion of the plate caused by voltage is nonlinear, which is
further illustrated by Theorem 2.1, particularly, the dependence of the dynamical
behaviors of the moving plate on both the voltage and the initial position. To
further illustrate our mathematical results from the point of more physical review,
we establish the following result in terms of the terminology pull-in instability.

Theorem 3.1. For a parallel-plate electrostatic MEMS actuator, suppose that the
position of the fixed plate is at x = 1, and the initial position of the movable plate
is at x = x0 with 0 ≤ x0 < 1, and the initial speed is zero. Then, there exist two
critical voltages Vc and V ∗ with 0 < Vc < V ∗ and V ∗ being determined by (2.7)
such that

(i) If V > V ∗, independent of the initial position, the pull-in occurs.
(ii) If V = V ∗, the movable plate remains static for x0 = x2, while pull-in occurs

for any other x0.
(iii) If Vc ≤ V < V ∗, the movable plate oscillates periodically for xt < x0 < x2;

the pull-in occurs for either x2 < x0 < 1 or 0 < x0 < xt; the movable
plate remains static for either x0 = x1 or x0 = x2; while the movable plate
approaches the equilibrium position slowly as t → ∞ for x0 = xt.

(iv) If 0 < V < Vc, the movable plate oscillates periodically for 0 ≤ x0 < x2; the
pull-in occurs for x2 < x0 < 1; while the movable plate remains static for
either x0 = x1 or x0 = x2.

We comment that so far we mainly focus on the study of the effects from the
voltage and initial positions while other system parameters are fixed. To better un-
derstand the system, particularly, the critical roles played by the system parameters
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involved in the system, we next conduct some numerical experiments examining the
effects from other system parameters w, k and m, respectively for fixed ϵ and volt-
age V (see Figure 5).

Taking the most left figure in Figure 5 for example, one observes that there
exists a unique critical value w∗ for fixed other system parameters such that for
w > w∗, the pull-in phenomenon occurs. furthermore, for w < w∗, the amplitude
of the solution increases in w. Similar phenomena are observed for the parameters
k and m from the middle figure and the most right one in Figure 5, respectively.
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Figure 5. The solution curves of the equation 1.4 with ϵ = 1 and V = 0.1 for different setups: (a)
m = 1 and k = 1, (b) m = 1 and w = 1, (c) w = 1 and k = 1.
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5. Concluding remarks
In this work, we analyze typical electrostatic MEMS actuators via dynamical sys-
tem approach. Critical voltages are identified, and they splits the voltage range
into different subranges, over which distinct and rich dynamics of the system are
observed, particularly, the pull-in in stability phenomena are characterized further
depending on the nonlinear interplays among other system parameters. The effects
from different system parameters are examined both analytically (such as the volt-
age and initial positions) and numerically (such as the parameters w, k and m). The
detailed analysis provides some efficient ways to control the dynamical behavior of
the system so that one is able to avoid the occurrence of the pull-in instability.
Together, this provides better understanding of the system and could stimulate
further studies of related topics.
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