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PLANAR INTEGRABLE NONLINEAR
OSCILLATORS HAVING A STABLE LIMIT

CYCLE∗

Li Jibin1,2 and Maoan Han1,†

Abstract In this short paper, by improving some conclusions given by [2], we
show that planar integrable nonlinear oscillators can have a stable limit cycle.
We also obtain these xact parametric representations of these limit cycles.
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1. Introduction
It is well known that if a planar polynomial Hamiltonian system has an equilibrium
point of center type at Ec(xc, 0), then there exists a period annulus of enclosing
this center. Here, a period annulus means an open set consisting of uncountably
infinitely many periodic orbits of this system. Since the divergence of a planar
Hamiltonian vector field is equivalently equal zero, it can not have any limit cycle.

For the planar integrable systems, as we well known that some artificially con-
structing models such as

dx

dt
= −y − x(x2 + y2 − a2),

dy

dt
= x− y(x2 + y2 − a2)

has a stable limit cycle x2 + y2 = a2.
Now the question arises as to whether there exists a planar integrable polynomial

oscillator, which has a limit cycle? To our knowledge, we have not found such an
example in the published literature. The aim of this short paper is to answer the
mentioned question positively.

2. A fifth-order nonlinear oscillator
The authors of [2] proved that the following nonlinear oscillatory type equation

x′′ + (k1x
2 + k2)x

′ +
k21
16

x5 +
k1k2
4

x3 + λ1x = 0 (2.1)
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(a) k1 = 3, k2 = −2.5, λ1 = 2. (b) k1 = 3, k2 = −3.5, λ1 = 5. (c) k1 = 8, k2 = −3.5, λ1 = 5.

Figure 1. Three phase portraits of system (2) for given parameter group (k1, k2, λ1)

is integrable, where k1, k2 and λ1 are arbitrary real parameters. Clearly, equation
(2.1) is equivalent to a planar dynamical system of the form

dx

dt
= y,

dy

dt
= −(k1x

2 + k2)y − x

(
k21
16

x4 +
k1k2
4

x2 + λ1

)
. (2.2)

From [1] one can see that system (2.2) has the first integrals

I±(x, y, t) = e∓ωt

(
4y + 2(k2 ± ω)x+ k1x

3

4y + 2(k2 ∓ ω)x+ k1x3

)
, (2.3)

where ω =
√
k22 − 4λ1.

Write that f(X) =
k2
1

16X
2 + k1k2

4 X + λ1. Clearly, when k1 ̸= 0, then f(X) has
two zeros at X1,2 = 1

k2
1

(
−k1k2 ∓ |k1|

√
∆
)

if ∆ = k22 − 4λ1 > 0, has only one zero
at X0 = −k2

k1
if ∆ = 0 and has no real zero if ∆ < 0.

Now we assume that k1 > 0, k2 < 0, and k22 < 4λ1, i.e., ∆ < 0. Then, system
(2.2) has a unique singular point at the origin O(0, 0) which is an unstable focus.
By using Mapple, we can draw the phase portraits of system (2.2) as shown in Fig.1.
Obviously, we see that system (2.2) has an unique stable limit cycle. The existence
and uniqueness of the limit cycle can be seen from the following discussion of the
exact solutions of system (2.2). Notice that the vector field defined by system (2.2)
is centrally symmetric and that the divergence of the vector field is

Div(2) = −(k1x
2 + k2).

Hence, the orbit of the limit cycle must intersect with the two straight lines x =

∓
√

−k2

k1
.

When ∆ > 0, the authors of [2] used the first integral (2.3) to find a general
solution of equation (1) as follows

x(t) =

(
8k2λ1(e

ωt − C1)
2

C2
1k1k2(−k2+ω)−k1k2(k2+ω)e2ωt + 8C2k2λ1e(k2+ω)t + 8C1k1λ1eωt

) 1
2

,

(2.4)
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where C1, C2 are two arbitrary constants. We can check that (2.4) satisfies equation
(2.1). Unfortunately, when ∆ < 0 the solution (100) in [2] is not correct since it
does not satisfy equation (2.1). In fact, if instead of (2.4) we take

x(t) =
(

8k2λ1(e
iω0t−C1)

2

C2
1k1k2(−k2+iω0)−k1k2(k2+iω0)e2iω0t+8C2k2λ1e(k2+iω0)t+8C1k1λ1eiω0t

) 1
2

,

(2.5)
where ω0 =

√
4λ1 − k22 =

√
−∆, then (2.5) satisfies equation (2.1).

We next separate the real part and imaginary part of x(t) given by (2.5). Write
that

f1(t)=−C2
1k1k

2
2−k1k

2
2 cos(2ω0t)+k1k2ω0 sin(2ω0t)+8λ1(C2k2e

k2t+C1k1) cos(ω0t),

f2(t)=C2
1k1k2ω0−k1k

2
2 sin(2ω0t)−k1k2ω0 cos(2ω0t)+8λ1(C2k2e

k2t+C1k1) sin(ω0t).

Then, (2.5) can be rewritten as

x(t) =
−2
√
2|k2|λ1(sin(ω0t) + i(C1 − cos(ω0t))√

f1(t) + if2(t)
. (2.6)

Notice that

1√
f1(t) + if2(t)

=

(
2√

f2
1 (t) + f2

2 (t)
+

2f1(t)

f2
1 (t) + f2

2 (t)

) 1
2

∓ i

(
2√

f2
1 (t) + f2

2 (t)
− 2f1(t)

f2
1 (t) + f2

2 (t)

) 1
2

. (2.7)

Therefore, we can derive the general solutions of system (2.2) when ∆ < 0. Because
the formula is too long, we omit it.

Gonzalez and Piro [3] cited the result given by Bellman’s book [1] that when
∆ < 0, equation (2.1) has the exact general solution depending on two arbitrary
constants as follows:

x(t) =
cos(ω0t+ C2)√

Q(t)
, (2.8)

where

Q(t) = C1e
k2t − k1ω

2
0

k2(4ω2
0 + k22)

[
1 +

k22
2ω2

0

cos2(ω0t+ C2)−
k2
2ω0

sin 2(ω0t+ C2)

]
,

(2.9)
where ω0 = 1

2

√
4λ1 − k22, C1 and C2 are two arbitrary constants. It is easy to check

that the function (2.8) satisfies equation (2.1).
Because of k2 < 0, in the term ek2t of (2.8), taking t → ∞, we obtain the exact

solution of the limit cycle about x−component as follows:

L(t) =

√
−k2(4ω2

0 + k22) cos(ω0t+ C2)

√
k1ω0

[
1− k2

2ω0
cos(ω0t+ C2)

(
− k2

ω0
cos(ω0t+ C2) + 2 sin(ω0t+ C2)

)] 1
2

,

(2.10)
which satisfies equation (2.1). Thus, system (2.2) has the exact parametric rep-
resentation of the limit cycle given by (L(t), L′(t)). From the above global exact
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(a) (b) (c)

Figure 2. Three graphs of x(t) and L(t) of system (2.2) for given parameter group (k1, k2, λ1)

solutions, we now the existence and uniqueness of the stable limit cycle of system
(2.2).

By taking k1 = 3, k2 = −2.5, λ1 = 2 in (2.8), (2.9) and (2.10) to draw graphs of
L(t), we obtain Fig.2 (a), (b) and (c).

Parameter group (k1, k2, λ1) = (3,−2.5, 2).
(a) The graph of x(t) given by (2.8), C1 = 3, C2 = −5.
(b) The graph of x(t) given by (2.8), C1 = −13, C2 = 15.
(c) The graph of limit cycle given by L(t) in (3.2), C2 = −5.

Obviously, the initial value of Fig.2 (a) is taken inside of limit cycle, while the
initial value of Fig.2 (b) is taken outside of limit cycle. The α−limt set of two orbits
are zero and −∞, respectively.

To sum up, we have the following conclusion.

Theorem 2.1. When ∆ = k22 − 4λ1 < 0, k2 < 0, k1 > 0, λ1 > 0, depending on the
change of the parameter group (k1, k2, λ1), planar nonlinear oscillator (2.1) has a
family of stable limit cycles for which the x−component has the exact parametric
representation given by (2.10).

3. 2q + 1-order oscillators (q > 2)
Chandrasekar, et, al. [2] also stated that the following high-order nonlinear oscilla-
tory type equation

x′′ + ((q + 2)k1x
q + k2)x

′ + k21x
2q+1 + k1k2x

q+1 + λ1x = 0 (3.1)

is integrable, where k1, k2 and λ1 are arbitrary real parameters. Equation (3.1) is
equivalent to planar dynamical system

dx

dt
= y,

dy

dt
= −((q + 2)k1x

q + k2)y − x
(
k21x

2q + k1k2x
q + λ1

)
. (3.2)

System (3.2) has the first integral

I(x, y, t) = e∓ωt

(
y − 1

2 (−k2 ∓ ω)x+ k1

q+2x
q+1

y + 1
2 (−k2 ± ω)x+ k1

q+2x
q+1

)
, (3.3)

where ω =
√
k22 − 4λ1.
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(a) k1 = 3, k2 = −2.5, λ1 = 4. (b) k1 = 3, k2 = −5, λ1 = 8.5. (c) k1 = 7, k2 = −12, λ1 = 36.5.

Figure 3. Three phase portraits of system (3.2) for given parameter group (k1, k2, λ1)

Clearly, when ∆ = k22−4λ1 < 0, system (3.4) has only one singular point O(0, 0).
It is unstable focus.

In 1961, Smith [5] obtained the following exact general solution of equation (3.1):

x(t) =
cos(ω0t+ C2)

(Qq(t))
1
q

, (3.4)

where
Qq(t) = e

1
2k2qt

(
C1 + qk1

∫
e−

1
2k2qs cosq(ω0s+ C2)ds

)
(3.5)

and ω0 = 1
2

√
4λ1 − k22, C1 and C2 are two arbitrary constants. We remark that the

formula (126) given by Chandrasekar, et, al., [2] is incorrect.
By using the recursion formulas∫
eat cosq(bt)dt=

eat cosq−1(bt)

a2+q2b2
(a cos(bt)+qb sin(bt))+

q(q−1)b2

a2+b2q2

∫
eat cosq−2(bt)dt,

(3.6)
we can calculate (3.5). Thus, when ∆ = k22 − 4λ1 < 0, k2 < 0, k1 > 0, λ1 > 0 and
q = 2m is an even number, we can obtain the parametric representations of the
limit cycles of system (3.2).

For an example, taking q = 4, we have the phase portraits of system (3.2) as
following Fig. 3.

In addition, notice that λ1 = 1
4 (k

2
2 + 4ω2

0), by calculating (3.7), we obitain
following result:

Q4(t) =C1e
2k2t +

k1
4λ1

[
− 2k2 cos

2(ω0t+ C2)

(
cos2(ω0t+ C2) +

3ω2
0

k22 + ω2
0

)
+ ω0 sin 2(ω0t+ C2)

(
2 cos2(ω0t+ C2) +

3ω2
0

k22 + ω2
0

)
− 3ω4

0

k2(k22 + ω2
0)

]
.

(3.7)

Thus, the limit cycle of system (3.4) has the parametric representation (L4(t), L
′
4(t)),

where
L4(t) =

cos(ω0t+ C2)

(Q04(t))
1
4

(3.8)
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(a) k1=3, k2=−2.5, λ1 = 4. (b) k1=3, k2=−5, λ1 = 8.5. (c) k1=7, k2=−12, λ1 = 36.5.

Figure 4. Three graphs of the x−component L4(t) of the limit cycles for system (12)

and

Q04(t) =
k1
4λ1

[
− 2k2 cos

2(ω0t+ C2)

(
cos2(ω0t+ C2) +

3ω2
0

k22 + ω2
0

)
+ ω0 sin 2(ω0t+ C2)

(
2 cos2(ω0t+ C2) +

3ω2
0

k22 + ω2
0

)
− 3ω4

0

k2(k22 + ω2
0)

]
.

(3.9)

By using (3.8) to draw the graphs for the x−component L4(t), corresponding to
the phase portraits in Fig. 3, we obtain Fig. 4.

Thus, the following conclusion holds.

Theorem 3.1. When ∆ = k22 − 4λ1 < 0, k2 < 0, k1 > 0, λ1 > 0, q = 2m, depending
on the change of the parameter group (k1, k2, λ1), planar integrable system (3.2) has
a family of stable limit cycles which has the exact parametric representation given
by the limit orbit of (3.2) (for example, when q = 4, the x−component is given by
(3.8).
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