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Abstract Due to the incompleteness of the space composed of Weyl almost
periodic functions, there are few results on the existence of Weyl almost pe-
riodic solutions of differential equations. In addition, as a discrete analogs of
differential equations, there is almost no result of the existence of Weyl almost
periodic solutions of difference equations. Because dynamic equations on time
scales can unify the study of differential equations and difference equations.
Therefore, in this paper, we first propose a concept of Weyl almost periodic
functions on time scales. Then, taking a Clifford-valued neural network with
time-varying delays on time scales as an example of dynamic equations on time
scales, we study the existence and stability of Weyl almost periodic solutions
of this neural network on time scales. Even when the system we consider de-
generates into a real-valued system, our results are new. A numerical example
is given to illustrate the feasibility of our results.
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1. Introduction
The concept of almost periodicity was first introduced into mathematical research
by H. Bohr [8, 9]. Since H. Bohr put forward the concept of almost periodic func-
tions, this concept has been extended by many mathematicians in various aspects,
including its discrete analogs [5, 23, 36, 39]. And studying the existence of almost
periodic solutions in various senses of differential equations and difference equations
has become an important research content of the qualitative theory of differential
and difference equations [13, 40, 41]. Weyl almost periodic concept is a generaliza-
tion of Bohr almost periodic concept and Stepanov almost periodic concept. Bohr
almost periodic function space and Stepanov almost periodic function space are
Banach spaces. However, the space composed of Weyl almost periodic functions
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is not a Banach space [23], so there are few results on the existence of Weyl al-
most periodic solutions of differential equations. There are almost no results on the
existence of Weyl almost periodic solutions of difference equations.

On the one hand, we know that time scale calculus theory is a theory proposed
by S. Hilger [17], which can unify continuous analysis and discrete analysis, and
studying the dynamic equations on time scales can unify the problems of differ-
ential equations and difference equations [1, 31]. At present, various concepts of
almost periodic functions on time scales have been proposed one after another, and
the existence of almost periodic solutions of dynamic equations on time scales has
been studied by many scholars [14–16, 19, 21, 24, 27–29, 33, 37, 38, 42, 43]. However,
there is no Weyl almost periodic concept on time scales, so it is of great theoreti-
cal significance and potential application value to propose a Weyl almost periodic
concept on time scales and study the Weyl almost periodic solutions of dynamic
equations on time scales.

On the other hand, as a generalization of real-valued neural networks, complex-
valued neural networks and quaternion-valued neural networks, Clifford-valued neu-
ral networks have been proved to have more advantages than real-valued neural net-
works in dealing with high-dimensional data and spatial transformation [10,18,32].
Nevertheless, because Clifford algebraic multiplication does not satisfy the com-
mutative law, there are few results on the dynamics of Clifford-valued neural net-
works [2–4, 12, 22, 25, 30, 34, 35]. At the same time, there are few results using the
direct method, that is, the method of not decomposing Clifford-valued systems into
real-valued systems to study the dynamics of Clifford-valued neural networks. In
addition, it is well known that almost periodic oscillation is one of the important
dynamics of neural networks. Therefore, it is an important and challenging work
to study the Weyl almost periodic oscillation of Clifford-valued neural networks by
the direct method.

Inspired by the above discussion, the main purpose of this paper is to propose a
concept of Weyl almost periodic functions on time scales, and then take the following
Clifford-valued cellular neural network with time-varying delays on time scale T:

x∆i (t) =− ai(t)xi(t) +

n∑
j=1

bij(t)fj(xj(t− τij(t)))

+

n∑
j=1

cij(t)gj(xj(t− υij(t))) + Ii(t) (1.1)

as an example of dynamic equations on time scales to study the existence and
stability of Weyl almost periodic solutions of (1.1), where i ∈ {1, 2, . . . , n} := Λ, n
corresponds to the number of units in the neural network; xi(t) ∈ A corresponds
to the state of the ith neuron at time t; ai(t) ∈ A is the self-feedback connection
weight; bij(t), cij(t) ∈ A are the delay connection weights from neuron j to neuron
i at time t; τij(t) ≥ 0 and υij(t) ≥ 0 correspond to the transmission delays at time t
and satisfy t−τij(t) and t−υij(t) ∈ T for t ∈ T; Ii(t) ∈ A denotes the external input
at time t; fj , gj : A → A denote the activation functions of signal transmission.

The main contributions of this paper are (i) We put forward a concept of Weyl
almost periodic functions on time scales. (ii) We use direct methods to study the
existence and stability of Weyl almost periodic solutions of (1.1). (iii) Even when
system (1.1) is a real-valued system, and our results are new. (iv) Our method of
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this paper can be used to study Weyl almost periodic solutions of other types of
dynamic equations on time scales.

The rest of this paper is arranged as follows. In Section 2, we introduce some
definitions and lemmas, and propose a concept of Weyl almost periodic functions
on time scales. In Section 3, we study the existence and global exponential stability
of Weyl almost periodic solutions of (1.1). In Section 4, a numerical example is
given to verify the theoretical results. This paper ends with a brief conclusion in
Section 5.

2. Preliminaries and the concept of Weyl almost pe-
riodicity on time scales

Let A be a real Clifford algebra over Rm with e∅ = e0 = 1 and ep, p = 1, 2, . . . ,m
as its generators, where e2p = −1, p = 1, 2, . . . ,m, and epeq + eqep = 0, p 6=
q, p, q = 1, 2, . . . ,m. For convenience, we will denote the product of Clifford
generators ep1

ep2
. . . epv

as ep1p2...pv
. Let Ξ = {∅, 1, 2, . . . , A, . . . , 12 . . .m}, then

A =
{∑

A∈Ξ a
AeA, a

A ∈ R
}

. For x =
∑

A x
AeA ∈ A, we define the norm

of x by ‖x‖A = maxA∈Ξ{|xA|} and for y = (y1, y2, . . . , yn)
T ∈ An, we define

‖y‖An = maxp∈Ξ{‖yp‖A}, then (A, ‖ · ‖A) and (An, ‖ · ‖An) are two Banach spaces.
Denote by T a time scale and by R+ the collection of positive regressive functions

from T to R. For x =
∑

A x
AeA ∈ C1(T,R), we define x∆(t) =

∑
A(x

A(t))∆eA for
t ∈ T. For more information about Clifford analysis and Time scale theory, we refer
to [20] and [7], respectively.

Throughout this paper, we use (X, ‖ · ‖) to denote a Banach space.
Let L∞(T,X) be the set of all functions f : T → X that are strongly ∆-

measurable and essentially bounded [11]. Then space L∞(T,X) is a Banach space
with the norm

‖f‖∞ := inf {D ≥ 0 : ‖f(t)‖X ≤ D a.e. t ∈ T} .

Definition 2.1 ( [11,29]). For p ≥ 1, f : T → X is called locally Lp ∆-integrable if
f is ∆-measurable and for any compact ∆-measurable set E ⊂ T, the ∆-integral∫

E
‖f(s)‖pX∆s <∞.

The set of all locally Lp ∆-integrable functions is denoted by Lp
loc(T,X).

Lemma 2.1 ( [6]). Let f be ∆-integrable over R = [a1, b1) × [a2, b2) and assume
that the single integral I(t1) =

∫ a2

b2
f(t1, t2)∆2t2 exists for each t1 ∈ [a1, b1). Then

the iterated integral
∫ a1

b1
I(t1)∆1t1 exists and∫ ∫

R

f(t1, t2)∆1t1∆2t2 =

∫ a1

b1

∆1t1

∫ a2

b2

f(t1, t2)∆2t2.

Definition 2.2 ( [27]). A time scale T is called an almost periodic time scale if

Π = {τ ∈ R : τ ± t ∈ T,∀t ∈ T} 6= {0}.
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Throughout the rest of this paper, we always assume that T is an almost periodic
time scale. Let BC(T,X) be the set of all bounded continuous functions from T to
X.

Definition 2.3 ( [27]). A function f ∈ BC(T,X) is called Bohr almost periodic on
T if for any ϵ > 0, there exists a constant l(ϵ) > 0 such that in every interval of
length l(ϵ) contains at least one τ ∈ Π such that

‖f(t+ τ)− f(t)‖X < ϵ, t ∈ T.

The ζ is called an ϵ-translation number of f . We will denote by AP (T,X) the
collection of all such functions.

For f ∈ Lp
loc(T,X), we define the following seminorm:

‖f‖Wp = lim
r→+∞

sup
β∈T

(
1

r

∫ β+r

β

‖f(t)‖pX∆t
) 1

p

, r ∈ Π.

Definition 2.4. A function f ∈ Lp
loc(T,X) is said to be p-th Weyl almost periodic

(W p-almost periodic for short), if for every ϵ > 0, there exists a constant l = l(ϵ) > 0
such that in every interval of length l(ϵ) contains at least one ζ ∈ Π such that

‖f(t+ ζ)− f(t)‖Wp < ϵ.

This ζ is called an ϵ-translation number of f . The set of all such functions will be
denoted by APW p(T,X).

Remark 2.1. Obviously, we have AP (T,X) ⊂ APW p(T,X).

Similar to the proofs of the lemma on page 83 and the lemma on page 84 of [5],
one can easily prove the following lemma.

Lemma 2.2. If f ∈ APW p(T,X), then f is bounded and uniformly continuous on
T with respect to the seminorn ‖ · ‖Wp .

One can easily prove the following lemma.

Lemma 2.3. If fk ∈ APW p(T,X), k = 1, 2, . . . , n. Then, for every ϵ > 0, there
exist common ϵ-translation numbers for these functions.

Lemma 2.4 ( [26]). If −a ∈ R+ and t, s ∈ T, τ ∈ Π, then

e−a(t+ τ, σ(s+ τ))− e−a(t, σ(s))

=

∫ σ(s)

t

e−a(t, σ(θ))(a(θ + τ)− a(θ))e−a(θ + τ, σ(s+ τ))∆θ.

Lemma 2.5. If β ∈ T, r ∈ Π, a ∈ C(T,R+),−a ∈ R+, am > 0 with amµ+ < 1
and f ∈ APW p(T,X), then

lim
r→+∞

sup
β∈T

1

r

∫ β+r

β

∫ t

−∞
e−a(t, σ(s))‖f(s)‖pX∆s∆t ≤

1

(1− amµ+)am
‖f‖pWp ,

where am := inft∈T |a(t)| and µ+ := sup
t∈T

µ(t).

Proof. From Lemma 2.1, we have

lim
r→+∞

sup
β∈T

1

r

∫ β+r

β

∫ t

−∞
e−a(t, σ(s))‖f(s)‖pX∆s∆t
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≤ 1

1− amµ+
lim

r→+∞
sup
β∈T

1

r

∫ β+r

β

∫ t

−∞
e−a(t, s)‖f(s)‖pX∆s∆t

≤ 1

1− amµ+
lim

r→+∞
sup
β∈T

1

r

∫ β+r

−∞
e−a(0, s)‖f(s)‖pX∆s

∫ β+r

s

e−a(t, 0)∆t

≤ 1

(1− amµ+)am
lim

r→+∞
sup
β∈T

1

r

∫ β+r

−∞
e−a(β + r, s)‖f(s)‖pX∆s

≤ 1

(1− amµ+)am
lim

r→+∞
sup
β∈T

1

r

∞∑
k=0

∫ β−(k−1)r

β−kr

e−a(β + r, s)‖f(s)‖pX∆s

≤ 1

(1− amµ+)am
lim

r→+∞
sup
β∈T

1

r

∞∑
k=0

e−amkr

∫ β−(k−1)r

β−kr

‖f(s)‖pX∆s

≤ 1

(1− amµ+)am
lim

r→+∞

1

1− e−amr
‖f‖pWp

≤ 1

(1− amµ+)am
‖f‖pWp .

This completes the proof.

3. Weyl almost periodic solutions to Clifford-valued
cellular neural networks on time scales

In this section, on the basis of the previous section, we will discuss the existence
and global exponential stability of Weyl almost periodic solutions of system (1.1).

About system (1.1), for i ∈ Λ, we denote ai(t) =
∑

A a
A
i (t)eA ∈ A, ǎi(t) =∑

A̸=∅ a
A
i (t)eA and a∅i (t) = ai(t)− ǎi(t). For convenience, we introduce the follow-

ing notations:

a− = min
i∈Λ

{inf
t∈T

a∅i (t)}, a
+ = max

i∈Λ
{sup
t∈T

a∅i (t)}, ǎ
+
i = sup

t∈T
‖ǎi(t)‖A, b+ij = sup

t∈T
‖bij(t)‖A,

c+ij = sup
t∈T

‖cij(t)‖A, τ+ij = sup
t∈T

{τij(t)}, υ+ij = sup
t∈T

{υij(t)}, τ̃ = max
i,j∈Λ

{
sup
t∈T

{τ∆ij (t)},

υ̃ = max
i,j∈Λ

{
sup
t∈T

{υ∆ij (t)}
}
, η = max

i,j∈Λ

{
sup
t∈T

{τij(t)}, sup
t∈T

{υij(t)}
}
.

The initial values of system (1.1) are given by

xi(s) = φi(s), s ∈ [−η, 0],

where φi ∈ C([−η, 0],A), i ∈ Λ.
In what follows, we make the following assumptions:

(H1) Functions a∅i ∈AP (T,R+) with −a∅i ∈ R+, a−>0 with a−µ+<1, ǎi, bij , cij ∈
AP (T,A), Ii∈APW p(T,A) ∩ L∞(T,A), τij and υij ∈AP (T,R+) ∩ C1(T,Π)
with τ̃ < 1 and υ̃ < 1, i, j ∈ Λ.

(H2) There exist positive constants Lf
j and Lg

j such that for all x, y ∈ A,

‖fj(x)− fj(y)‖A ≤ Lf
j ‖x− y‖A, ‖gj(x)− gj(y)‖A ≤ Lg

j‖x− y‖A,

and fj(0) = 0, gj(0) = 0, j ∈ Λ.
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(H3) max
i∈Λ

{
2
a−

(
ǎ+i +

n∑
j=1

b+ijL
f
j +

n∑
j=1

c+ijL
g
j

)}
< 1.

(H4) For p ≥ 2,

max
i∈Λ

{
12

(
1

a−

)p
1

1− a−µ+

[
(ǎ+i )

p +
2ea

−τ

1− τ̃

×
( n∑

j=1

b+ijL
f
j

)p

+
2ea

−υ

1− υ̃

( n∑
j=1

c+ijL
g
j

)p]}
< 1.

Let BUC(T,An) be the collection of bounded and uniformly continuous func-
tions from T to An. Then, BUC(T,An) with the norm ‖x‖0 = sup

t∈T
‖x(t)‖An is a

Banach space, where x ∈ BUC(T,An).
Denote ϕ0 = (ϕ01, ϕ

0
2, . . . , ϕ

0
n)

T , where

ϕ0i (t) =

∫ t

−∞
e−a∅

i
(t, σ(s))Ii(s)∆s, i ∈ Λ.

Take a positive constant κ ≥ ‖ϕ0‖0. Define

Ω =
{
ϕ ∈ BUC(T,An) : ‖ϕ− ϕ0‖0 ≤ κ

}
.

Then, for ϕ ∈ Ω, one has

‖ϕ‖0 ≤ ‖ϕ− ϕ0‖0 + ‖ϕ0‖0 ≤ 2κ.

Theorem 3.1. Assume (H1)-(H4) hold. Then system (1.1) has a unique W p-
almost periodic solution in the region Ω.

Proof. It is easy to see that if x = (x1, x2, . . . , xn)
T ∈ Ω is a solution of the

integral equation

xi(t) =

∫ t

−∞
e−a∅

i
(t, σ(s))

(
− ǎi(s)xi(s) +

n∑
j=1

bij(s)fj(xj(s− τij(s)))

+

n∑
j=1

cij(s)gj(xj(s− υij(s))) + Ii(s)

)
∆s, i ∈ Λ, (3.1)

then x is a solution of system (1.1).
Define a nonlinear operator T : Ω → An, ϕ 7→ Tϕ = (T1ϕ, T2ϕ, . . . , Tnϕ)

T ,
where

(Tiϕ)(t) =

∫ t

−∞
e−a∅

i
(t, σ(s))

(
− ǎi(s)ϕi(s) +

n∑
j=1

bij(s)fj(ϕj(s− τij(s)))

+

n∑
j=1

cij(s)gj(ϕj(s− υij(s))) + Ii(s)

)
∆s, i ∈ Λ.

Next, we will prove that Tϕ is well defined. Indeed, we have

‖(Tiϕ)(t)‖A
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≤
∥∥∥∥∫ t

−∞
e−a∅

i
(t, σ(s))

(
− ǎi(s)ϕi(s) +

n∑
j=1

bij(s)fj(ϕj(s− τij(s)))

+

n∑
j=1

cij(s)gj(ϕj(s− υij(s))

)
∆s

∥∥∥∥
A
+

∥∥∥∥∫ t

−∞
e−a∅

i
(t, σ(s))Ii(s)∆s

∥∥∥∥
A

≤ 1

a−

(
ǎ+i +

n∑
j=1

b+ijL
f
j +

n∑
j=1

c+ijL
g
j

)
‖ϕ‖0 +

1

a−
‖Ii‖∞

<+∞, j ∈ Λ. (3.2)

That is, Tϕ is well defined.
We will divide the rest of the proof into four steps.
Step 1, we will prove that Tϕ ∈ BUC(T,An) for every ϕ ∈ Ω.
In fact, from (3.2), we see that Tϕ is bounded on T. So, we only need to show

that Tϕ is uniformly continuous on T. Noticing that

‖(Tiϕ)∆(t)‖A ≤
(
1 +

a+

a−

)[(
ǎ+i +

n∑
j=1

b+ijL
f
j +

n∑
j=1

c+ijL
g
j

)
‖ϕ‖0 + ‖Ii‖∞

]
, i ∈ Λ.

According to Corollary 1.68 in [7], we deduce that (Tiϕ) is uniformly continuous on
T, i ∈ Λ. Therefore, Tϕ ∈ BUC(T,An).

Step 2, we prove that mapping T is a self-mapping from Ω to Ω.
In fact, for arbitrary ϕ ∈ Ω, by (H1)-(H3), we have

‖Tϕ− ϕ0‖0

≤ sup
t∈R

{
max
i∈Λ

∥∥∥∥ ∫ t

−∞
e−a∅

i
(t, σ(s))

(
− ǎi(s)ϕi(s) +

n∑
j=1

bij(s)fj(ϕj(s− τij(s)))

+

n∑
j=1

cij(s)gj(ϕj(s− υij(s)))∆u

)
∆s

∥∥∥∥
A

}

≤max
i∈Λ

{
1

a−

(
ǎ+i +

n∑
j=1

b+ijL
f
j +

n∑
j=1

c+ijL
g
j

)}
‖ϕ‖0 ≤ κ,

which implies that Tϕ ∈ Ω. Consequently, T is self-mapping from Ω to Ω.
Step 3, we will prove that T is contraction mapping.
As a matter of fact, in view of (H1)-(H3), for any ϕ, ν ∈ Ω, we have

‖Tϕ− Tν‖0 ≤ sup
t∈R

{
max
i∈Λ

[ ∫ t

−∞
e−a∅

i
(t, σ(s))

∥∥∥∥− ǎi(s)(ϕi(s)− νi(s))

+

n∑
j=1

bij(s)
(
fj(ϕj(s− τij(s)))− fj(νj(s− τij(s)))

)
+

n∑
j=1

cij(s)
(
gj(ϕj(s− υij(s)))− gj(νj(s− υij(s)))

)∥∥∥∥
A
∆s

]}

≤max
i∈Λ

{
1

a−

(
ǎ+i +

n∑
j=1

b+ijL
f
j +

n∑
j=1

c+ijL
g
j

)}
‖ϕ− ν‖0.
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Hence, it follows from this and (H3) that

||Tϕ− Tν||∞ ≤ 1

2
‖ϕ− ν‖0.

That is, T is a contraction mapping. Consequently, system (1.1) has a solution in
the region Ω.

Step 4, we show that the solution x ∈ Ω is W p-almost periodic.
Indeed, since x = (x1, x2 . . . , xn)

T ∈ Ω, x is bounded and uniformly continuous.
Hence, for every ϵ > 0, there exists a δ ∈ (0, ϵ) such that for any t1, t2 ∈ T with
|t1 − t2| < δ and i ∈ Λ, we have

‖xi(t1)− xi(t2)‖A < ϵ. (3.3)

Also, for this δ, in view of (H1) and Lemma 2.3, we see that there exists a common
δ-translation number ζ such that

lim
r→+∞

sup
β∈R

(
1

r

∫ β+r

β

‖Ii(t+ ζ)− Ii(t)‖pA∆t
) 1

p

< ϵ, (3.4)

‖bij(t+ ζ)− bij(t)‖A < ϵ, (3.5)
‖cij(t+ ζ)− cij(t)‖A < ϵ, (3.6)
|a∅i (t+ ζ)− a∅i (t)| < ϵ, ‖ǎi(t+ ζ)− ǎi(t)‖A < ϵ (3.7)
|τij(t+ ζ)− τij(t)| < δ, |υij(t+ ζ)− υij(t)| < δ, (3.8)

where i ∈ Λ. Consequently, from (3.3) and (3.8), we get‖xi(t− τij(t+ ζ))− xi(t− τij(t))‖A < ϵ,

‖xi(t− υij(t+ ζ))− xi(t− υij(t))‖A < ϵ,
(3.9)

where i ∈ Λ. Since x is a solution of system (1.1), by (3.1), for i ∈ Λ, we have

‖xi(t+ ζ)− xi(t)‖A

≤
∥∥∥∥ ∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))(ǎi(s+ ζ)xi(s+ ζ)− ǎi(s)xi(s))∆s

∥∥∥∥
A

+

∥∥∥∥∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

n∑
j=1

(
bij(s+ ζ)fj(xj(s+ ζ − τij(s+ ζ)))

− bij(s)fj(xj(s− τij(s)))
)
∆s

∥∥∥∥
A
+

∥∥∥∥∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

n∑
j=1

(
cij(s+ ζ)

× gj(xj((xj(s+ ζ − υij(s+ ζ)))))− cij(s)gj(xj((xj(s− υij(s)))))

)
∆s

∥∥∥∥
A

+

∥∥∥∥∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))(Ii(s+ ζ)− Ii(s))∆s

∥∥∥∥
A

+

∥∥∥∥∫ t

−∞

(
e−a∅

i
(t+ ζ, σ(s+ ζ))− e−a∅

i
(t, σ(s))

)
×
(
ǎi(s)xi(s) +

n∑
j=1

bij(s)fj(xj(s− τij(s))) +

n∑
j=1

cij(s)
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× gj(xj((xj(s− υij(s)))))

)
∆s

∥∥∥∥
A
+

∥∥∥∥∫ t

−∞

(
e−a∅

i
(t+ ζ, σ(s+ ζ))

− e−a∅
i
(t, σ(s))

)
Ii(s)∆s

∥∥∥∥
A

:=

6∑
l=1

Fli(t). (3.10)

For p > 2, it follows from Hölder’s inequality and (H2) that

F2i(t) ≤
∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

n∑
j=1

∥∥bij(s+ ζ)(fj(xj(s+ ζ − τij(s+ ζ)))

− fj(xj(s− τij(s))))
∥∥
A∆s+

∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

n∑
j=1

∥∥(bij(s+ ζ)

− bij(s))fj(xj(s− τij(s)))
∥∥
A∆s

≤
(∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))∆s

) p−2
p
[ ∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

×
( n∑

j=1

b+ij
∥∥fj(xj(s+ ζ − τij(s+ ζ)))− fj(xj(s− τij(s)))

∥∥
A

) p
2

∆s

] 2
p

+

(∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))∆s

) p−2
p
[ ∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

×
( n∑

j=1

2Lf
j κ

∥∥bij(s+ ζ)− bij(s)
∥∥
A

) p
2

∆s

] 2
p

≤
(

1

a−

) p−2
p

{[(∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))∆s

) 1
2
(∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

×
( n∑

j=1

b+ij
∥∥fj(xj(s+ ζ − τij(s+ ζ)))− fj(xj(s− τij(s)))

∥∥
A

)p

∆s

) 1
2
] 2

p

+

[(∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))∆s

) 1
2
(∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

×
( n∑

j=1

2Lf
j κ

∥∥bij(s+ ζ)− bij(s)
∥∥
A

)p

∆s

) 1
2
] 2

p

}

≤
(

1

a−

) p−1
p

{[∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

( n∑
j=1

b+ijL
f
j

∥∥xj(s+ ζ − τij(s+ ζ))

− xj(s− τij(s))
∥∥
A

)p

∆s

] 1
p

+

[ ∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

×
( n∑

j=1

2Lf
j κ

∥∥bij(s+ ζ)− bij(s)
∥∥
A

)p

∆s

] 1
p

}
, (3.11)
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for i ∈ Λ. In a similar way, for i ∈ Λ, by Hölder’s inequality and (H2), one has

F1i(t) ≤
(

1

a−

) p−1
p

{
ǎ+i

[ ∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))‖xi(s+ σ)− xi(s)‖pA∆s

] 1
p

+ 2κ

[ ∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))‖ǎi(s+ σ)− ǎi(s)‖pA∆s

] 1
p

}
,

(3.12)

F3i(t) ≤
(

1

a−

) p−1
p

{[∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

( n∑
j=1

c+ijL
g
j

∥∥xj(s+ ζ − υij(s+ ζ))

− xj(s− υij(s))
∥∥
A

)p

∆s

] 1
p

+

[ ∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

×
( n∑

j=1

2Lg
jκ

∥∥cij(s+ ζ)− cij(s)
∥∥
A

)p

∆s

] 1
p

}
(3.13)

and

F4i(t) ≤
(

1

a−

) p−1
p
(∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))‖Ii(s+ ζ)− Ii(s)‖pA∆s

) 1
p

. (3.14)

Moreover, by Lemma 2.4, (3.7), (H1) and (H2), for i ∈ Λ, we derive that

F5i(t) ≤
(
ǎ+i +

n∑
j=1

2b+ijL
f
j κ+

n∑
j=1

2c+ijL
g
jκ

)∫ t

−∞

∣∣∣∣ ∫ σ(s)

t

e−a∅
i
(t, σ(θ))

× (a∅i (θ + ζ)− a∅i (θ))e−a∅
i
(θ + ζ, σ(s+ ζ))∆θ

∣∣∣∣∆s
≤
(
ǎ+i +

n∑
j=1

2b+ijL
f
j κ+

n∑
j=1

2c+ijL
g
jκ

)∫ t

−∞

∣∣∣∣ ∫ σ(s)

t

e−a∅
i
(t, σ(θ))(a∅i (θ + ζ)

− a∅i (θ))∆θ

∣∣∣∣∆s
≤ ϵ

(a−)2

(
ǎ+i +

n∑
j=1

2b+ijL
f
j κ+

n∑
j=1

2c+ijL
g
jκ

)
(3.15)

and

F6i(t) ≤
∫ t

−∞

∣∣∣∣ ∫ σ(s)

t

e−a∅
i
(t, σ(θ))(a∅i (θ + ζ)− a∅i (θ))

× e−a∅
i
(θ + ζ, σ(s+ ζ))∆θ

∣∣∣∣‖Ii(s)‖A∆s
≤
∫ t

−∞

∣∣∣∣ ∫ σ(s)

t

e−a∅
i
(t, σ(θ))(a∅i (θ + ζ)− a∅i (θ))∆θ

∣∣∣∣‖Ii(s)‖A∆s
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≤ ϵ

(a−)2
‖Ii‖∞. (3.16)

Therefore, together with Lemma 2.5, (3.7) and (3.12), we deduce that

lim
r→+∞

sup
β∈T

1

r

∫ β+r

β

F p
1i(t)∆t

≤
(

1

a−

)p−1

lim
r→+∞

sup
β∈T

1

r

∫ β+r

β

[
ǎ+i

(∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))‖xi(s+ σ)

− xi(s)‖pA∆s
) 1

p

+ 2κ

(∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

× ‖ǎi(s+ σ)− ǎi(s)‖pA∆s
) 1

p

]p

∆t

≤2

(
1

a−

)p−1[
(ǎ+i )

p

(
lim

r→+∞
sup
β∈T

1

r

∫ β+r

β

∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))‖xi(s+ σ)

− xi(s)‖pA∆s∆t
)
+ (2κ)p

(
lim

r→+∞
sup
β∈T

1

r

∫ β+r

β

∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

× ‖ǎi(s+ σ)− ǎi(s)‖pA∆s∆t
)]

≤2

(
1

a−

)p−1[
(ǎ+i )

p

(
lim

r→+∞
sup
β∈T

1

r

∫ β+r

β

∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))‖x(s+ σ)

− x(s)‖pAn∆s

)
+

1

a−
(2κϵ)p

]
≤2

(
1

a−

)p
(ǎ+i )

p

(1− a−µ+)
‖x(t+ σ)− x(t)‖pWp + ρ1i, (3.17)

where ρ1i := 2

(
1
a−

)p

(2κϵ)p. By Lemma 2.5, (3.5), (3.9) and (3.11), we derive that

lim
r→+∞

sup
β∈T

1

r

∫ β+r

β

F p
2i(t)∆t

≤
(

1

a−

)p−1
{

lim
r→+∞

sup
β∈T

1

r

∫ β+r

β

[(∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

( n∑
j=1

b+ijL
f
j

×
∥∥xj(s+ ζ − τij(s+ ζ))− xj(s− τij(s))

∥∥
A

)p

∆s

) 1
p

+

(∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

( n∑
j=1

2Lf
j κ

∥∥bij(s+ ζ)− bij(s)
∥∥
A

)p

∆s

) 1
p
]p
∆t

}

≤2

(
1

a−

)p−1[
lim

r→+∞
sup
β∈T

1

r

∫ β+r

β

∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

×
( n∑

j=1

b+ijL
f
j

∥∥xj(s+ ζ − τij(s+ ζ))− xj(s− τij(s))
∥∥
A

)p

∆s∆t
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+ lim
r→+∞

sup
β∈T

1

r

∫ β+r

β

∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

×
( n∑

j=1

2Lf
j κ

∥∥bij(s+ ζ)− bij(s)
∥∥
A

)p

∆s∆t

]

≤2

(
1

a−

)p−1
{

lim
r→+∞

sup
β∈T

1

r

∫ β+r

β

[
2

∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

×
( n∑

j=1

b+ijL
f
j

∥∥xj(s+ ζ − τij(s+ ζ))− xj(s− τij(s+ ζ))‖A
)p

∆s

+ 2

∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

×
( n∑

j=1

b+ijL
f
j ‖xj(s− τij(s+ ζ))− xj(s− τkl(s))‖A

)p

∆s

]
∆t

+ lim
r→+∞

sup
β∈T

1

r

∫ β+r

β

∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

( n∑
j=1

2Lf
j κϵ

)p

∆s∆t

}

≤2

(
1

a−

)p−1{
lim

r→+∞
sup
β∈T

1

r

∫ β+r

β

[
2

1− τ̃

∫ t−τij(t+ζ)

−∞
e−a∅

i
(t+ ζ, σ(u+ τ + ζ))

×
( n∑

j=1

b+ijL
f
j ‖xj(u+ ζ)− xj(u)‖A

)p

∆u+ 2

∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))

×
( n∑

j=1

b+ijL
f
j ϵ

)p

∆s

]
∆t+

1

a−

( n∑
j=1

2Lf
j κϵ

)p}

≤2

(
1

a−

)p−1{
lim

r→+∞
sup
β∈T

1

r

∫ β+r

β

[
2ea

−τ

1− τ̃

∫ t

−∞
e−a∅

i
(t+ ζ, σ(u+ ζ))

( n∑
j=1

b+ijL
f
j

× ‖xj(s+ ζ)− xj(s)‖A
)p

∆s

]
∆t+

2

a−

( n∑
j=1

b+ijL
f
j ϵ

)p

+
1

a−

( n∑
j=1

2Lf
j κϵ

)p}

≤2

(
1

a−

)p−1
[
2ea

−τ

1− τ̃

( n∑
j=1

b+ijL
f
j

)p(
lim

r→+∞
sup
β∈T

1

r

∫ β+r

β

∫ t

−∞
e−a∅

i
(t+ ζ, σ(u+ ζ))

× ‖x(s+ ζ)− x(s)‖pAn∆s∆t

)
+

2

a−

( n∑
j=1

b+ijL
f
j ϵ

)p

+
1

a−

( n∑
j=1

Lf
j ϵ

)p
]

≤
(

1

a−

)p
4ea

−τ

(1− τ̃)(1− a−µ+)

( n∑
j=1

b+ijL
f
j

)p

‖x(t+ ζ)− x(t)‖pWp + ρ2i, (3.18)

where

ρ2i := 2

(
1

a−

)p[
2

( n∑
j=1

b+ijL
f
j

)p

+

( n∑
j=1

2Lf
j κ

)p]
ϵp.
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Similarly, by Lemma 2.5, (3.13) and (3.6), we can get

lim
r→+∞

sup
β∈T

1

r

∫ β+r

β

F p
3i(t)∆t

≤
(

1

a−

)p
4ea

−υ

(1− υ̃)(1− a−µ+)

( n∑
j=1

c+ijL
g
j

)p

‖x(t+ ζ)− x(t)‖pWp + ρ3i, (3.19)

where

ρ3i := 2

(
1

a−

)p[
2

( n∑
j=1

c+ijL
g
j

)p

+

( n∑
j=1

2Lg
jκ

)p]
ϵp.

Based on Lemma 2.5, (3.4), (3.7), (3.16), (3.14) and (3.15), for i ∈ Λ, we can obtain

lim
r→+∞

sup
β∈T

1

r

∫ β+r

β

F p
4i(t)dt

≤
(

1

a−

)p−1

lim
r→+∞

sup
β∈T

1

r

∫ β+r

β

∫ t

−∞
e−a∅

i
(t+ ζ, σ(s+ ζ))‖Ii(s+ σ)− Ii(s)‖pA∆t∆s

≤
(

1

a−

)p
1

1− a−µ+
ϵpi := ρ4i,

(3.20)

lim
r→+∞

sup
β∈T

1

r

∫ β+r

β

F p
5i(t)∆t ≤

(
1

a−

)2p(
ǎ+i +

n∑
j=1

2b+ijL
f
j κ+

n∑
j=1

2c+ijL
g
jκ

)p

ϵp := ρ5i

(3.21)

and

lim
r→+∞

sup
β∈T

1

r

∫ β+r

β

F p
6i(t)∆t ≤

(
1

a−

)2p

‖Ii‖p∞ϵp := ρi6. (3.22)

Consequently, from (3.10) and (3.17)-(3.22) it follows that

‖x(t+ ζ)− x(t)‖pWp ≤max
i∈Λ

{
6

6∑
l=1

(
lim

r→+∞
sup
β∈T

1

r

∫ β+r

β

F p
6i(t)∆t

)}
≤ρ+ γ‖x(t+ ζ)− x(t)‖pWp ,

where

ρ =6

6∑
l=1

max
i∈Λ

{ρli}

=max
i∈Λ

{
6

(
1

a−

)p[
2(2κ)p + 4

( n∑
j=1

b+ijL
f
j

)p

+ 2

( n∑
j=1

2Lf
j κ

)p

+ 4

( n∑
j=1

c+ijL
g
j

)p

+ 2

( n∑
j=1

2Lg
jκ

)p

+
1

1− a−µ+
+

(
1

a−

)p(
ǎ+i +

n∑
j=1

2b+ijL
f
j κ+

n∑
j=1

2c+ijL
g
jκ

)p
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+

(
1

a−

)p
1

1− a−µ+
‖Ii‖p∞

]}
ϵp

and

γ =max
i∈Λ

{
12

(
1

a−

)p
1

1− a−µ+

[
(ǎ+i )

p +
2ea

−τ

1− τ̃

( n∑
j=1

b+ijL
f
j

)p

+
2ea

−υ

1− υ̃

( n∑
j=1

c+ijL
g
j

)p]}
.

By (H4), we have γ < 1. Thus, one has

‖x(t+ ζ)− x(t)‖pWp ≤ ρ

1− γ
.

Consequently, x ∈W p(T,An).
For p = 2, similar to the proof of the case of p > 2, one can obtain

‖x(t+ ζ)− x(t)‖2Wp ≤ ρ̃+ γ̃‖x(t+ ζ)− x(t)‖2Wp ,

where

ρ̃ =6

6∑
l=1

max
i∈Λ

{ρ̃li}

=max
i∈Λ

{
6

(
1

a−

)2[
8κ2 + 4

( n∑
j=1

b+ijL
f
j

)2

+ 2

( n∑
j=1

2Lf
j κ

)2

+ 4

( n∑
j=1

c+ijL
g
j

)2

+ 2

( n∑
j=1

2Lg
jκ

)2

+
1

1− a−µ+
+

(
1

a−

)2(
ǎ+i +

n∑
j=1

2b+ijL
f
j κ+

n∑
j=1

2c+ijL
g
jκ

)2

+

(
1

a−

)2
1

1− a−µ+
‖Ii‖2∞

]}
ϵ2

and

γ̃ =max
i∈Λ

{
12

(
1

a−

)2
1

1− a−µ+

[
(ǎ+i )

2 +
2ea

−τ

1− τ̃

( n∑
j=1

b+ijL
f
j

)2

+
2ea

−υ

1− υ̃

( n∑
j=1

c+ijL
g
j

)2]}
.

By (H4), we have γ̃ < 1. Thus, one has

‖x(t+ ζ)− x(t)‖2W 2 ≤ ρ̃

1− γ̃
.

Hence, x ∈W 2(T,An). The proof is complete.
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Definition 3.1 ( [26]). Let x be a solution of system (1.1) with initial value φ and
y be an arbitrary solution of system (1.1) with initial value ψ, respectively. If there
exist positive constants λ and M such that

‖x(t)− y(t)‖An ≤Me⊖λ(t, 0)‖φ− ψ‖τ , t ∈ [0,+∞)T,

where ‖φ− ψ‖τ = sup
t∈[−τ,0]T

‖φ(t)− ψ(t)‖An . Then the solution x of system (1.1) is

said to be globally exponentially stable.

Using the same proof method as Theorem 2 in [26], one can prove that

Theorem 3.2. Assume that (H1)-(H3) hold, then every solution of system (1.1) is
globally exponentially stable.

As a direct result of Theorems 3.1 and 3.2, we have

Corollary 3.1. Assume that (H1)-(H4) hold, then system (1.1) has a unique W p-
almost periodic solution that is globally exponentially stable.

4. A numerical example
Example 4.1. In system (1.1), let m = 3, n = 2 and take the coefficients as follows:

fj(x) =
1

75
e0 sin(x

0 + 2x1) +
1

60
e1 sin(x

1 + x2 − x12)

+
2

131
e2 sin(x

0 + 2x2) +
1

80
e12 sin(3x

1),

gj(x) =
3

100
e0 sin(x

0 − x2) +
2

121
e1 sin(x

1 − x12)

+
2

117
e2 sin(x

0 − x2) +
6

201
e12 sin(x

1 − x3),

a1(t) = e0
1

2
| sin(2t)|+

√
3

100
e1 sin

2(4t) +
3

100
e2| cos(

√
3t)|+ 1

135
e12| cos(

√
5t)|,

a2(t) =e0

(
1− 1

3
sin(2t)

)
+

√
3

200
e1 cos

2(2t)+
1

150
e2 sin

4(
√
2t)+

3

200
e12| cos(

√
7t)|,

b11(t) =
1

100
e0 sin(2t) +

√
3

300
e1 sin(4t)−

√
3

305
e2 cos(t) +

√
2

201
e12 sin(

√
3t),

b12(t) =
1

50
e0 sin(

√
2t) +

√
3

300
e1 cos(4t)−

√
3

315
e2 sin(6t) +

3

100
e12 sin(

√
5t),

b21(t) =
13

1000
e0 cos(3t) +

√
3

250
e1 sin(4t) +

3

250
e2 cos(

√
3t) +

1

100
e12 cos(

√
5t),

b22(t) =
9

500
e0 cos(3t) +

17

1000
e1 sin(4t) +

3

250
e2 cos(

√
3t) +

2

125
e12 cos(

√
5t),

c11(t) =
13

500
e0 cos(

√
3t) +

3

125
e1 sin(4t) +

2

121
e2 cos(

√
3t) +

2

125
e12 cos(

√
5t),

c12(t) =
3

125
e0 sin(

√
3t) +

√
3

126
e1 cos(2t) +

1

50
e2 sin(

√
2t) +

5

251
e12 cos(

√
7t),

c21(t) =

√
3

143
e0 cos(2t) +

1

66
e1 cos(

√
2t) +

1

50
e2 cos(

√
3t) +

3

100
e12 sin(

√
7t),
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c22(t) =
1

50
e0 cos(3t) +

1

55
e1 sin(4t) +

1

63
e2 cos(

√
3t) +

1

123
e12 cos(

√
5t),

I1(t) =
√
2e0 sin 8t+

1

3
e1e

−|t| + e2 cos(
1

2
t) +

2

5
e12 cos(9t),

I2(t) =
1

2
e0 sin 8t+

5

2
e1 sin 7t−

5

6
e12 cos 2t.

If T = R, then we take

τ11(t) = 2 sin2(
1

2
t), τ12(t) =

2

17
cos2 t, τ21(t) =

1

3
sin2(

1

2
t), τ22(t) =

2

9
sin4(

1

2
t),

υ11(t) =

∣∣∣∣cos(23 t)
∣∣∣∣ , υ12(t) = 1

19
sin2(

1

3
t), υ21(t) =

1

4
sin2(

1

5
t), υ22(t) =

2

5
cos4(

1

7
t),

and if T = Z, then we take

τ11(t) =
1

4
sin

(
πt+

π

2

)
, τ12(t) =

1

5
cos(πt), τ21(t) =

1

4
sin(

π

2
t),

τ22(t) =
2

9
cos(

π

2
t), υ11(t) =

2

13
cos(πt), υ12(t) =

1

6
sin

(
πt+

π

2

)
,

υ21(t) =
1

16
cos(2πt), υ22(t) =

2

9
sin(

π

2
t).

By computing,

Lf
1 = Lf

2 =
1

20
, Lg

1 = Lg
2 =

3

50
, a− =

1

2
, ǎ1 =

3

100
, ǎ2 =

3

200
, b+11 =

1

100
, b+12 =

3

100
,

b+21 =
13

1000
, b+22 =

17

1000
, c+11 =

13

500
, c+12 =

3

125
, c+21 =

3

100
, c+22 =

1

50
.

Thus, we obtain that

max
1≤i≤2

{
2

a−

(
ǎ+i +

2∑
j=1

b+ijL
f
j +

2∑
j=1

c+ijL
g
j

)}
= 0.14 < 1.

When T = R, take p = 2, it is easy to obtain that τ = 2,τ̃ = 1
2 , υ = 1,υ̃ = 2

3 and

max
1≤i≤2

{
12

(
1

a−

)p
1

1− a−µ+

[
(ǎ+i )

p +
2ea

−τ

1− τ̃

×
( n∑

j=1

b+ijL
f
j

)p

+
2ea

−υ

1− υ̃

( n∑
j=1

c+ijL
g
j

)p]}
≈ 0.0496 < 1.

When T = Z, take p = 3, it is easy to obtain that τ = 1
4 ,τ̃ = 1

2 , υ = 1
6 ,υ̃ = 1

3 and

max
1≤i≤2

{
12

(
1

a−

)p
1

1− a−µ+

[
(ǎ+i )

p +
2ea

−τ

1− τ̃

×
( n∑

j=1

b+ijL
f
j

)p

+
2ea

−υ

1− υ̃

( n∑
j=1

c+ijL
g
j

)p]}
≈ 0.0052 < 1.

Thus, whether T = R or T = Z, all of the conditions of Corollary 3.1 are satisfied.
Hence, system (1.1) has a unique W p-almost periodic solution, which is globally
exponentially stable (see Figures 1-6).
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5. Conclusion
In this paper, the concept of Weyl almost periodic on time scales is proposed. Tak-
ing a Clifford-valued neural network with time-varying delays on time scales as an
example of dynamic equations on time scales, the existence and global exponential
stability of Weyl almost periodic solutions of the network on time scales are estab-
lished. Even when the system we consider is a real-value system, our results are
brand-new. In addition, the method of this paper can also be used to study the
existence of Weyl almost periodic solutions of other types of dynamic equations on
time scales.
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