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Abstract Estimating time-varying reproduction number Rt is important for
quantifying the transmission ability, capturing the trend of infectious disease
and assessing the effectiveness of public health intervention measures. How-
ever, accurate estimation of Rt remains a challenging work. Deep neural
networks are uniform approximators and have an unreasonable and counter-
intuitive effectiveness in learning unknown functions, thus can be applied to
represent Rt. In this paper, we will estimate Rt by universal differential equa-
tion method which embeds neural network Rt into a differential equation.
Compared with other methods such as state space, EpiEstim and EpiNow2
methods, deep learning method can achieve better performance with fewer
data sources.
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1. Introduction
The basic reproduction number R0, defined as the expected average number of sec-
ondary cases produced in a completely susceptible population by a typical infectious
individual during the infectious period, is one of the most significant concepts in
population biology and epidemiology ( [2, 18]). R0 determines the threshold be-
havior for many epidemic models and commonly used to estimate herd immunity
level. It is often the case that a disease dies out if the basic reproduction number is
less than unity and the disease is established in the population if it is greater than
unity. The effective reproduction number, denoted as Re or Rt, is the expected
average number of secondary cases produced by an infectious individual in a pop-
ulation where some individuals may no longer be susceptible. Rt often determines
the potential for epidemic spread at a specific time t under the control measures.
Estimation of Rt is crucial to assessing the effect of public health measures and
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vaccination effectiveness [28]. The effective reproduction number can also be used
to forecast the turning point and trend of epidemic transmission.

Many effective reproduction number estimation methods arise these years ( [23]),
such as compartment models method ( [19]), Wallinga-Teunis method ( [42]), Epi-
Estim method ( [12]), EpiNow2 method ( [1]), EpiFilter method ( [34]). However,
these methods either can not achieve good performance with few data sources (case
data, serial interval) or get accurate Rt at a cost of multiple data sources ( [1]) such
as case data, generation time distribution, incubation time distribution, reporting
delays. Is there a way to mine enough information from fewer data and achieve
better performance on estimating Rt? Deep learning method can be an answer.

In recent years, deep neural network ( [22,29]), as a universal approximator for
unknown mappings ( [25]), shows an unreasonable effectiveness ( [39]) in pattern
recognition, learning unknown mechanisms and solving traditional difficult prob-
lems such as image recognition ( [24]), natural language processing ( [17]). Deep
learning methods are also used to aid mathematicians in discovering new conjectures
and theorems ( [15]), and physicians in finding new physical laws ( [13]). To bet-
ter understand and improve the performance of deep neural networks on scientific
problems such as physics, chemistry and epidemiology, more and more works pay at-
tention to coupling or embedding differential equations and deep neural networks.
One important idea is regarding deep neural network (DNN) as discretization of
differential equation, which inspires researchers to redesign traditional sequential
neural architectures based on numerical discretization schemes ( [8, 10, 30, 33, 38])
or to replace DNN by a continuous model characterized by differential equations
( [9, 16,37]). Another revolutionary idea is training DNN from the view of optimal
control. This extend the idea of backprogation ( [22]) to include adjoint sensitivity
analysis ( [7]), which opens the mind in differential programming ( [3]) and inspires
a lot of architectures coupling neural network and differential equation, such as
neural differential equation ( [9]) and universal differential equations which embed
neural networks into the differential equations ( [36]).

Despite the remarkable progress in coupling the differential equation and deep
learning, deep learning methods like universal differential equations ( [36]) haven’t
attracted enough attention and widely used in epidemiological dynamics problems
such as the expression of incidence rate, estimation of effective reproduction number.
This may be because coupling of transmission models and deep learning requires the
researchers to have a strong background of mathematical epidemiology and deep
learning as well as a basic understanding of differential programming and scientific
computation, which might not always be expected in aforementioned fields. To fill
this gap, we apply deep learning method to estimate effective reproduction number,
and investigate the advantages and weakness of deep learning method, which will
also give new insights to traditional mathematical epidemiological problems.

In this paper, we will represent effective reproduction number Rt as

Rt = NeuralNetworkθ(t, I), (1.1)

where NeuralNetworkθ(t, I) is a deep neural network receiving t, I as inputs and θ
denotes the parameter set of neural network. Neural network is embedded into the
following differential equation model (Fig. 1):{

I ′ = γNeuralNetworkθ(t, I)I − γI,

H ′ = γNeuralNetworkθ(t, I)I,
(1.2)
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Figure 1. Scheme of deep neural network method.

where I(t) and H(t) denote the number of infected individuals and accumulated
confirmed cases at time t, and 1/γ is infection period of infectious disease. Assumed
that T = {t1, t2, · · · , tn} is a set of the case data sampling time points and Ho =
{h1, h2, · · · , hn} denotes observed accumulated confirmed cases set. Then training
of model (1.2) is defined as the following optimal problem:

min
θ

Lossθ(Ho,H(T )),

s.t. I ′ = γNeuralNetworkθ(t, I)I − γI,
(1.3)

where H(T ) = {H(t1),H(t2), · · · ,H(tn))} and Lossθ(Ho,H(T )) is some kind of
metric between Ho,H(T ) such as log or square loss.

The rest of the paper is organized as follows. Universal differential equation
method and adjoint sensitivity analysis will be introduced in Section 2. We will
estimate Rt based on generated data and real COVID-19 case data by deep learning
method, and compare deep learning method with three other Rt estimation methods
in Section 3. Conclusion and discussion will be in Section 4.

2. Universal Differential Equation Method
In this part, we will introduce a recently proposed state-of-the-art methodology,
universal differential equations (UDEs) ( [36]), which couple differential equation
models with deep learning structures for scientifically-based learning, and can be
accurately extrapolate beyond the original data, obtain differentiable and fully ob-
served fitting data, and accelerate model simulation, all in a time and data-efficient
manner.

2.1. Deep Neural Network
To start with, we briefly introduce neural networks and the universal approximate
properties. A deep neural network is a special kind of compositional function which
applies linear and nonlinear transformations to the inputs recursively (See also a
diagram of a deep neural network in Figure 1). Many deep neural networks archi-
tectures are proposed in recent years ( [22]), such as feed-forward neural network
(FNN), convolution neural network (CNN), recurrent neural network (RNN), long
short-term memory (LSTM), gate recurrent unit (GRU). In this paper, the effective
reproduction number Rt is represented by the simplest neural network architectures
FNN ( also called multi-layer perceptron (MLP)), which is sufficient for modeling
emerging infectious disease. However, the ideas can also be extended to other
neural network architecture. For example, CNN can be used to estimate effective
reproduction number of spatial epidemic models.
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Let FL(x) : Rdin → Rdout be an L-layer feed-forward neural network with an
(L − 1)-hidden layer neural network. Nk, k = 0, 1, 2, · · · , L denotes the number of
neurons in the kth layer with N0 = din and NL = dout. Denote the weight matrix
and bias vector in the kth layer by W k ∈ RNk×Nk−1 and bk ∈ RNk , respectively.
Then the FNN can be recursively defined as follows:

• input layer: F0(U) = U ∈ Rdin

• hidden layers: Fk(U) = σ
(
W kFk−1(U) + bk

)
∈ RNk for 1 ≤ k ≤ L−1

• output layer: FL(U) = WLFL−1(U) + bL ∈ Rdout ,

where W k is a matrix or tensor, and σ is a nonlinear activation function. Commonly
used activation functions include the logistic sigmoid 1/(1+exp(−x)), the hyperbolic
tangent (tanh), the rectified linear unit (ReLU, max{x, 0}) and swish function (
x∗sigmoid(x)) ( [20]). Here, activation functions in different layers can be different.

One fundamental property of DNN is that a single layer neural network can
simultaneously and uniformly approximate a function and its partial derivatives.
Let Zd+ be d-dimensional nonnegative integers set. For m = (m1, · · · ,md) ∈ Zd+,
set |m| := m1 + · · ·+md, and

Dm :=
∂|m|

∂xm1
1 . . . ∂xmd

d

.

We say f ∈ Cm(Rd) if Dkf ∈ C(Rd) for all k ≤ m, k ∈ Zd+, where C(Rd) =
{f : Rd → R|f is continuous} is the space of continuous functions. Then we have
the following universal approximate theorem of derivatives using single hidden layer
neural networks( [35]).

Theorem 2.1 ( [35]). Let mi ∈ Zd+, i = 1, · · · , s, and set m = maxi=1,··· ,s |mi|.
Assume σ ∈ C(Rd) and that σ is not a polynomial. Then a single hidden layer
neural network:

M(σ) := span
{
σ(w ·U+ b) : w ∈ Rd, b ∈ R

}
is dense in

Cm1,...,ms (
Rd

)
:= ∩s

i=1C
mt (

Rd
)
.

Universal approximate theorems theoretically ensure that deep neural networks
is able to overcome the inaccuracies of approximate unknown mappings or operators
by directly learning the entire set of nonlinear interactions from data. In practice,
deep neural networks method is shown to easily find good surrogate to validate the
data. More importantly, good surrogate doesn’t need to be unique, which implies
a belief in practice that for large neural networks, a local minima is enough and
global minima often leads to over-fitting, which need more theoretical investigating.

2.2. Universal Differential Equation
Before the introduction on UDEs, we introduce neural differential equations ( [9])
first. Neural differential equations are initial value problems with the following
form:

u′ = NNθ(u, t), (2.1)
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where NN is a deep neural network receiving [u, t] as input. Neural differential
equations were proposed before UDEs, inspired the ideas in UDEs and can be
regarded as a special case of UDEs. Neural differential equations make use of
scientific structures as a modeling basis. Since the embedded neural network is a
universal approximator, it follows that neural differential equations can learn to
approximate any sufficiently regular differential equation. From the perspective of
deep learning, neural differential equations are redisigned sequential neural networks
based on numerical schemes of differential equation, and they can be regarded as
continuous-depth or ”infinitely deep” ResNet-like deep learning models.

However, the resulting neural differential model is defined without direct in-
corporation of known mechanisms. UDEs extends the previous data-driven neural
ODE approaches to directly utilize mechanistic modeling simultaneously with uni-
versal approximators. UDEs are initial value problems with the following forms:

u′ = fθ2(u, t,NNθ1(u, t)), (2.2)

where f is a known mechanistic model and NN denotes the missing or unknown
terms, θ1 and θ2 are parameters of known mechanisms and neural networks, respec-
tively, which can be estimated simultaneously. UDEs has stronger explaniablility
than deep neural networks or neural differential equations, since they keep known
mechanisms in physics, chemistry or epidemiology. UDEs are proved to be methods
with good generalization and can be trained with less sample data ( [36]).

2.3. Adjoint Sensitivity Analysis
The key issue of training universal differential equations is how to implement “back-
propagation” ( [22]) in differential equations. Actually, it is a mature topic in opti-
mal control theory. From the perspective of optimal control, the training of neural
differential equations can be regarded as optimal control problems, which extend
the idea of backprogation ( [22]) in differential programming to include adjoint
sensitivity analysis ( [7]).

In this part, we will introduce adjoint sensitivity analysis in detail. Considering
the following optimal control problem:

min
u

∫ T

0

g(u(t))dt, s.t. u′ = f(u, θ). (2.3)

Here u can be regarded as neural networks or dynamics including neural networks.
Our purpose here is to derive the ”backprogation” of derivatives of

∫ T

0
g(u(t))dt to

θ. If the loss function is discrete, i.e.,
n∑

i=1

m(u(ti)),

we can rewrite discrete loss function by Dirac function
n∑

i=1

m(u(ti)) =

∫ T

0

n∑
i=1

m(u(ti))δ(t− ti)dt.

Denote

L(θ) =

∫ T

0

g(u)dt =

∫ T

0

g(u)dt+

∫ T

0

λ(t) (f(u, θ)− u′(t)) dt.
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Then

∂L

∂θ
=

∫ T

0

guuθdt+ λ(T )uθ|t=T +

∫ T

0

λ′(t)uθdt

+

∫ T

0

λ(t) (fuuθ + fθ) dt

=

∫ T

0

[λ′(t) + gu + fuλ(t)]uθdt+

∫ T

0

λ(t)fθdt+ λ(T )uθ|t=T .

Let
λ′(t) + gu + fuλ(t) = 0, λ(T ) = 0. (2.4)

We obtain
∂L

∂θ
=

∫ T

0

λ(t)fθdt. (2.5)

If the loss function is discrete, i.e.,

g(t) =

n∑
i=1

m(u(ti))δ(t− ti),

then system (2.4) becomes an impulsive system{
λ′(t) = −fuλ(t),

λ(t+i ) = λ(t−i ) + gu(u(ti)), i = 1, 2, · · · , n.
(2.6)

3. Effective Reproduction Number by UDE Method
In this section, we estimate effective reproduction number Rt by UDE Method based
on data generated by three toy infectious disease models and Ontario’s first wave
COVID-19 case data. The results show that UDE can fit the data well and deep
neural networks represent Rt very well. Moreover, we compare UDE method with
three other most used estimation methods: state space method, EpiEstim ( [12])
method and EpiNow2 ( [1]) method, and find that UDE method can achieve correct
and smooth estimation with fewer data sources.

Deep learning methods are implemented in open source Julia language 1.6.2
( [5]). State space, EpiEstim ( [12]) and EpiNow2 ( [1]) methods are implemented
in open source R language 4.1.2. All algorithms and codes in this section are
available in https://github.com/Song921012/EstmatingRtDeepL

3.1. Toy Models
In this part, we generate data from the following three toy infectious disease models
which have a lot of applications in epidemiology:

• subexpotential model ( [31]) 
I ′ = 0.2

√
I,

Rt =
2√
I
+ 1,

(3.1)

https://github.com/Song921012/EstmatingRtDeepL
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• logistic growth model 
I ′ = 0.2

(
1− I

30

)
I,

Rt = 3− I

15
,

(3.2)

• media impact model ( [40])
I ′ = 0.2 exp(−0.2I)

(
1− I

30

)
I,

Rt = 2 exp(−0.2I)

(
1− I

30

)
+ 1,

(3.3)

and compare real Rt in models (3.1)-(3.3) with estimated Rt = NeuralNetwork(t) in
UDE (1.2) by deep learning method. Throughout this section, the infection period
is assumed to be 10 days.

For subexpotential and logistic models, we use 30 days training data and make
prediction for another 10 days. In media impact disease model, 20 days data is
used for training and another 20 days data is used for prediction. The left and right
parts in Fig 2 describe the fitting and prediction results, and Rt estimation results,
respectively. From Fig. 2, we can see that universal differential equation model (1.2)
can fit the generated data and predict well. Moreover, trained neural networks Rt

match real Rt well, which gives insight to universal approximate abilities of deep
neural networks.

3.2. Real COVID-19 Data
The UDE method is also used in estimating the effective reproduction number
concerned with the first wave Covid-19 cases in Ontario, Canada, i.e., using UDE
model (1.2) to fit the case data and training the neural networks Rt. First wave
data began on Feb 25, 2020 and continued for about 150 days. The accumulated
and daily reported cases data are shown in Figs. 3(left) and 4(left), respectively.
From Fig. 3(left) and 4(left), we can see that UDE model (1.2) fits first wave data
well. Rt is shown in 3(right).

Fig. 4(left) also shows that UDE model (1.2) achieves a very smooth fitting
of the daily reported case data. More importantly, the fitting data is differentiable
which implies that UDE model (1.2) can be regarded as advanced case data filtering
or smoothing techniques with a great advantage over other soothing methods such as
moving average, B-spline, expotential smoothing methods ( [26]). The differentiable
and fully observed fitting data can be directly used for subsequent data mining
such as discovering first principle epidemic models to describe the transmission
mechanisms, especially for data-driven techniques such as symbolic regression and
sparse identification of nonlinear dynamical systems ( [6]).

Moreover Rt, represented as deep neural networks, can be directly integrated
into other deep learning architectures and used for other purposes such as the effect
of temperature, GDP, population density on infectious disease.

3.3. Comparison and Ensemble with EpiEstim and EpiNow2
In this part, we will compare deep learning method with 3 other methods state
space, EpiEstim and EpiNow2 methods on the following aspects:
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Figure 2. Left: fitting and predicting the toy models’ generating data by universal differential equations
model (1.2). Right: comparing real and trained effective reproduction numbers.

Figure 3. Left: Ontario’s first wave COVID-19 case data fit by model (1.2). Right: effective reproduc-
tion number estimation by deep learning method.
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• data sources: data needed to implement the method;
• smooth: describing the data fitting abilities, i.e., fitting the data but not

over-fitting.
• speed: describing the algorithms speed.
• Accuracy of Rt: the smooth properties and reliability (not bigger than 7) of

Rt,

and ensemble the four methods to estimate Rt.
State-space method estimates effective reproduction number Rt based on the

following state-space model:
I(t) = (1− γ) ∗ I(t− 1) + DailyCases,

I(t)− I(t− 1)

I(t− 1)
= γ(Rt − 1).

(3.4)

Based on the daily confirmed case data and infection period data, kalman filter
methods ( [11]) can be used to estimate the Rt and handle the uncertainties. The
ideas behind state space model (3.4) and UDE (1.2) are similar. They are both
derived from classic SIR model ( [27]). However, UDE model (1.2) embedded with
neural networks can automatically incorporate many unknown features and export
differentiable, fully observed fitting data and Rt. UDE model (1.2) can be regarded
as advanced state space model which is simple but incorporating many complex
features.

EpiEstim method estimate Rt by the following equation ( [12,41])

Rt =
Incidencet∑t

s=1 Incidencet−sws

,

where Incidencet is the number of infection incidents on day t, and ws is the serial
interval. EpiEstim method needs daily confirmed cases data and serial interval data.
Moreover, EpiEstim method can incorporate information on imported cases.

EpiNow2 method ( [1]) is a sophisticated framework accounting for generation
time distribution, incubation period distribution and delays in data such as report-
ing delays. Rather than reported onset date, EpiNow2 method estimates Rt on
infection date, thus the effectiveness of public health intervention measures will
be immediately reflected without delay. However, EpiNow2 method requires many
high quality data sources and the algorithms are slow.

Fig. 4 shows the comparison and ensemble of these four methods with left and
right parts describing the data fitting and Rt estimating results, respectively. It can
be seen from Fig. 4(left) that both deep learning and EpiNow2 methods fit well but
EpiNow2 method over-fits. Here, state space and EpiEstim methods do not fit daily
confirmed cases data but directly calculate Rt from the case data. Fig. 4(right)
shows that deep learning and EpiNow2 methods have good accuracy, while many
Rt estimated by state space and EpiEstim methods are bigger than 7. Summary of
comparisons is listed in Table 1.

Moreover, we integrate EpiNow2 and deep learning method in data fitting with
equal weight (Fig. 4(left)), and integrate state space, EpiEstim, EpiNow2 and deep
learning method in Rt with equal weight (Fig. 4(left)).
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Figure 4. Left: Ontario’s first wave COVID-19 case data fit by different methods. Right: effective
reproduction number estimation by different methods.

Table 1. Comparison of different effective reproduction number estimation methods: deep learning,
state space, EpiEstim, EpiNow2 Methods. Smooth measures the data fitting abilities, i.e., fitting the
data but not over-fitting. Speed describe the algorithms speed. Accuracy of Rt measures the smooth
properties and reliability (not bigger than 7) of Rt. Tests are implemented on Ontario’s first wave data
and laptop Y7000P with i5-9300HF CPU, 16G RAM.

Methods Data source Smooth Speed Accuracy of Rt

Deep Learning Case data,
infection period

strong slow (3682s) strong

State Space Case data,
infection period

weak quick (1s) weak

EpiEstim Case data,
serial interval

weak quick (1s) weak

EpiNow2

Case data,
generation time,

incubation period,
delay distribution

normal slow (2578s) strong

4. Conclusion and Discussion
Effective reproduction number Rt is widely used in inferring the turning points
and trend of an infectious disease, which is crucial for estimating the public health
intervention measures and informing the public. In this paper, we use a deep neural
network to represent Rt and embed it into a differential equation. This method is
tested on three toy models, i.e., subexpotential, logistic growth and media impact
models, and Ontario’s first wave COVID-19 case data with good performance.

Compared with other Rt estimation methods such as compartment models
( [19]), state space method, EpiEstim ( [12]) method and EpiNow2 ( [1]) method,
deep learning method has the following advantages: (1) UDE model (1.2) is a sim-
ple model automatically incorporated with many complicated features and unknown
mechanisms. Experts based compartment models, though without blackbox term
and easy to interpret, are hard to capture unknown mechanisms of infectious disease,
thus can not correctly estimate Rt. Neural networks, though called as blackbox and
hard to interpret, can incorporate complicated and unknown transmission mecha-
nisms, thus can correctly estimate Rt. (2) Deep learning method needs less data
source. To accurately estimate Rt, EpiNow2 method needs generation time, incu-
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bation period and reporting delays distributions data. Deep learning method only
need infection period. (3) More importantly, neural network Rt can be directed
integrated into deep learning ecosystem and used to discover more profound disease
transmission mechanisms, such as the relationship between economy and infectious
disease. Moreover, the obtained fitting data is differentiable and fully observed,
and can be regarded as an alternative of daily confirmed cases with high quality,
thus can be directly used for subsequent data mining such as unknown mechanisms
discovering by symbolic regression and sparse identification of nonlinear dynamical
systems ( [6]).

Two obvious weakness of deep learning method are algorithms speed and un-
certainties quantification. UDE method needs a lot of computation resources since
one “backpropagation” (adjoint sensitivity analysis) means solving a big differential
equation system. The speed weakness will become obvious especially when Rt is
estimated in many regions and large time span. Some existing methods such as
curriculum learning ( [4]), transfer learning, decreasing testing data will increase
the speed, but much more work are needed to improve the performances of UDE
method. Handling uncertainty is another difficult job for universal differential equa-
tions with so many parameters. Some limited techniques exist such as bayesian neu-
ral differential equations ( [14]), dropout ( [21]), SGD as bayesian sampler ( [32]).
It will be our future work.
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