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Abstract In this paper, a nonsmooth version of multiple critical point the-
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Then an application of this theorem to a discontinuous quasilinear Schrödinger
equation is presented. Some continuous results are extended to discontinuous
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1. Introduction
Many practical problems can be transformed into ordinary or partial differential
equations with discontinuous nonlinearities. The problem of mosquito population
suppression by releasing sterile males can be changed to piecewise continuous or-
dinary differential equations [1, 15–17, 20–22]. Some obstacle problems and free
boundary problems may be reduced to Dirichlet boundary value problems with
discontinuous nonlinearities which have been studied in recent years. The area
of nonsmooth analysis is closely related with the development of critical points
theory for non-differentiable functionals, in particular, for locally Lipschitz contin-
uous functionals based on Clarke’s generalized gradient [4]. In 1981, Chang [3]
extended the variational methods to a class of non-differentiable functionals, and
directly applied the variational methods for non-differentiable functionals to prove
some existence theorems for PDE with discontinuous nonlinearities. It provides
an appropriate mathematical framework to extend classic critical points theory for
C1-functionals in a natural way, and to meet specific needs in applications such as
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in nonsmooth mechanics and engineering. For a comprehensive understanding, we
refer to references [7, 18,19] and monographs [12,13].

The main purpose of the present paper is to establish a nonsmooth version of
multiple critical points theorem by adopting the framework of nonsmooth analysis
theory. Let E be a real Banach space and let Br = {x ∈ E : ‖x‖ < r}(r > 0) and
Sr = ∂Br. Assume h ∈ C(E,R1), and set h(0) = {x ∈ E : h(x) ≥ 0}. We make the
following hypotheses on h:

(H1) h(0) = 0 and there exist ρ, α > 0 such that B̄ρ ⊂ h(0) and h(x) ≥ α, ∀x ∈ Sρ;
(H2) For any finite dimension space E0 ⊂ E, E0 ∩ h(0) is bounded.

Our main result is the following theorem:

Theorem 1.1. Assume that E is an infinite dimensional real Banach space, K
is compact and symmetric, K ⊂ E, h : E → R1 is an even and locally Lipschitz
functional, and satisfies the nonsmooth C-condition. Hypotheses (H1) and (H2)
are satisfied. For any positive integer m, set

bm = inf
K∈Γm

max
x∈K

h(x). (1.1)

Then

(i) 0 < α ≤ bm < +∞ and bm is a critical value of h(m=1,2,...);
(ii) bm = bm+1 = · · · = bm+r−1 = b(r ≥ 1) ⇒ γ(Kb) ≥ r, where Kb = {x ∈ E :

h(x) = b, 0 ∈ ∂h(x)};
(iii) bm ≤ bm+1(m = 1, 2, ...), and bm → +∞(m→ ∞);
(iv) h has infinitely many critical points and infinitely many critical values.

Remark 1.1. In [4] Marano also obtained an infinitely many critical points theory
for non-differentiable functions. Compared to their conditions in Theorem 1.1, our
conditions in this theorem are very simple, and it is very easy to verify.

We next present an application of the following discontinuous quasilinear Schröd-
inger equation and extend the corresponding result of [5] into the discontinuous case.{

− div(g2(u)(∇u)) + g(u)g′(u)|∇u|2 + a(x)u ∈ ∂F (x, u) a.e. in Ω,

u|∂Ω = 0,
(1.2)

where N ≥ 3, g : R → R+ is an even differential function, Ω is a bounded region
with smooth boundary in RN , ∂F (x, u) is the partial generalized gradient of F (x, ·)
at the point u, g′(t) ≥ 0 for all t ≥ 0, a(x) is a continuous function in Ω. Such
equations arise in various branches of mathematical physics and are related to the
existence of solitary wave solutions for quasilinear Schrödinger equations

i∂tz = −∆z +W (x)z − k(x, z)−∆l(|z|2)l(|z|2)z, (1.3)

where z : R × RN → C, W : RN → R is a given potential, l : R → R and
k : RN × R → R are suitable functions. (1.3) is used to describe various physical
phenomena corresponding to various types of nonlinear term l. Such as plasma
physics, condensed matter theory and fluid mechanics. Some related results can be
found in [2, 8, 10,11] and references therein.
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Since the energy functional of problem (1.2) is non-differentiable, it will raise
some essential difficulties. In order to state our results, we give the following hy-
potheses:

(F0) For all u ∈ R, Ω 3 x 7→ F (x, u) ∈ R is measurable and for all x ∈ Ω,
R 3 u 7→ F (x, u) is locally Lipschitz;

(F1) g ∈ C1(R) is positive and even, g′(u) ≥ 0 for all u ≥ 0 and limu→∞ g(u) = A;
(F2) 0 ≤ a(x) ∈ C1(Ω), a1 = infx∈Ω a(x) and a2 = supx∈Ω a(x);
(F3) There exists 2 < q < 2∗ − 1 = N+2

N−2 such that for all ξ(u) ∈ ∂F (x, u),
|ξ(u)| ≤ a+ b|u|q, a > 0, b > 0;

(F4) There exist 2 < β andM > 0 such that for all ξ(u) ∈ ∂F (x, u), βg(u)F (x, u) ≤
G(u)ξ(u), ∀u ≥M ;

(F5) (i)limu→0
F (x,u)

u2 = 0 for a.e. x ∈ Ω, (ii)limu→+∞
F (x,u)

u2 = +∞ for a.e. x ∈ Ω;
(F6) F (x,−u) = F (x, u), ∀x ∈ Ω, u ∈ R.

Based on Theorem 1.1 and the above hypotheses, we have the following two
theorems.

Theorem 1.2. If hypotheses (F0)− (F4) and (F5)(i) hold, then problem (1.2) has
at least one nontrivial solution in H1

0 (Ω) .

Theorem 1.3. If hypotheses (F0)-(F6) hold, then problem (1.2) has infinitely many
solutions in H1

0 (Ω).

This paper is organized as follows. In section 2, we present some necessary
preliminary knowledge and use the genus theory, nonsmooth deformation lemma
and minimax theory to prove Theorem 1.1. In section 3, Theorems 1.2, 1.3 are
proved.

2.. Proof of Theorem 1.1
In order to prove Theorem 1.1, we firstly give some preliminaries. (X, ‖ · ‖) denotes
a (real) Banach space and (X∗, ‖·‖∗) denotes its topological dual. c, ci, C, Ci denote
estimated constants(c, C may be different from line to line). θ represents the origin
of coordinates.

Definition 2.1 ( [6]). A function I: X → R is locally Lipschitz if for every u ∈ X
there exist a neighborhood U of u and L > 0 such that for every ν, η ∈ U

|I(ν)− I(η)| ≤ L‖ν − η‖.

Definition 2.2 ( [6]). Let I : X → R be a locally Lipschitz function. The gener-
alized derivative of I in u along the direction ν is defined by

I0(u; ν) = lim sup
η→u,τ→0+

I(η + τν)− I(η)

τ
,

where u, ν ∈ X.
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It is easy to see that the function ν 7→ I0(u; ν) is sublinear, continuous and so
is the support function of a nonempty, convex and w∗-compact set ∂I(u) ⊂ X∗,
defined by

∂I(u) = {u∗ ∈ X∗ : 〈u∗, ν〉X ≤ I0(u; ν) for all v ∈ X}.

If I ∈ C1(X), then
∂I(u) = {I ′(u)}.

Clearly, these definitions extend those of the Gâteaux directional derivative and
gradient.

Definition 2.3 ( [6]). I satisfies the nonsmooth C-condition if every sequence
{un} ⊂ X, satisfying I(un) → c and (1 + ‖un‖)mI(un) → 0 as n → ∞, has a
strongly convergent subsequence, where mI(un) = infu∗

n∈∂I(un) ‖u∗n‖X∗ .

Definition 2.4. Let E be a Banach space and let Acs(E) = {A ⊂ E : A is closed
and A = −A} (i.e., Acs(E) is the family of all closed symmetric subsets of E).
A nonempty subset A ∈ Acs(E) is said to have Krasnoselskii’s genus k (write
γ(A) = k), if k is the smallest integer with the property that there exists an odd
continuous map h : A → Rk \ {0}. If no such k exists we set γ(A) = +∞ and if
A = ∅, we set γ(A) = 0.

The following deformation lemma plays a very important role to obtain minimax
characterizations of critical points for locally Lipschitz functionals.

Lemma 2.1 ( [6]). If I : X → R satisfies the nonsmooth C-condition, then for any
ε0 > 0 and for any neighborhood U of KI

c (if KI
c = ∅), there exist ε ∈ (0, ε0) and

a continuous map η : [0, 1]×X → X such that for all (t, x) ∈ [0, 1]×X, we have

(i) ‖η(t, x)− x‖X ≤ (1 + e)(1 + ‖x‖X)t;
(ii) if |I(x)− c| ≥ ε0 or mI(x) = 0, then η(t, x) = x;
(iii) η({1} × Ic+ε) ⊂ Ic−ε ∩ U ;
(iv) I(η(t, x)) ≤ I(x);
(v) if η(t, x) 6= x, then I(η(t, x)) < I(x);
(vi) η satisfies the semigroup property, i.e.,

η(s, .) ◦ η(t, .) = η(s+ t, .) ∀s, t ∈ [0, 1], s+ t ≤ 1;

(vii) for any t ∈ [0, 1], η(t, .) is a homeomorphism of X;
(viii) if I is even, then for any t ∈ [0, 1], η(t, .) is odd.

Lemma 2.2 ( [6]). Let A,B ∈ Acs and h ∈ C(Y ;Y ) be an odd map. The following
hold:

(i) γ(A) ≥ 0 and γ(A) = 0 if and only if A = ∅;
(ii) if h(A) ⊂ B, then γ(A) ≤ γ(B);
(iii) if A ⊂ B, then γ(A) ≤ γ(B)(monotonicity);
(iv) γ(A ∪ B) ≤ γ(A) + γ(B) and if γ(B) < +∞, then γ(A \B) ≥ γ(A) −

γ(B)(subadditivity);
(v) γ(A) ≤ γ(h(A))(supervariance);
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(vi) if A ∈ Acs is compact, then γ(A) < +∞ and there exists δ > 0 such that
γ(A) = γ(Aδ), where Aδ = {y ∈ Y : dY (y,A) < δ} (continuity);

(vii) for any t ∈ [0, 1], η(t, .) is a homeomorphism of X;
(viii) if u is a bounded symmetric neighborhood of the origin in Rk, then γ(∂U) = k;
(ix) if there exists an old homeomorphism mapping between A and B, then γ(A) =

γ(B).

Let Γ = {f |f : E → E is an old homeomorphism mapping, f(B̄1) ⊂ h(0)}. It is
easy to see that if h satisfies (H1), then Γ 6= ∅. Set Γm = {K ⊂ E|K is compact
and symmetric on θ, and for each f ∈ Γ, γ(K ∩ f(S1)) ≥ m}, where m is an integer
for f ∈ Γ. Since f is an old homeomorphism mapping, we have f(0) = 0. Then the
closed set f(S1) is symmetric on θ and 0 6∈ f(S1).

Lemma 2.3. Let dimE ≥ m and the functional h : E → R1 satisfies (H1) and
(H2). Then

(i) Γm 6= ∅;
(ii) Γm+1 ⊂ Γm;
(iii) K ∈ Γm, A ∈ Acs(E), γ(A) ≤ r < m⇒ K −A ∈ Γm−r;
(iv) If φ : E → E is an odd homeomorphism mapping and satisfies φ−1(h(0)) ⊂

h(0), then φ(K) ∈ Γm, ∀K ∈ Γm.

Proof. (i) Take a m dimensional subspace E0 satisfying E0 ⊂ E. Since h satisfies
hypothesis (H2), we can choose sufficiently large R such that E0 ∩BR ⊃ E0 ∩ h(0).
Set KR = E0 ∩ BR. Obviously, KR is compact and symmetrical on θ. For any
f ∈ Γ, there exist E0 ⊃ KR ⊃ E0 ∩h(0) ⊃ E0 ∩ f(S1). Consequently, KR ∩ f(S1) =
E0 ∩ f(S1). Noting that f is an odd homeomorphism mapping and θ ∈ f(B1),
f(B1) is an open set in E, and is symmetric on θ. Thus E0 ∩ f(B1), containing
θ, is a symmetric open set on θ. It follows from ∂(f(B1)) = f(∂B1) = f(S1),
∂(E0 ∩ f(B1)) ⊂ E0 ∩ ∂(f(B1)) = E0 ∩ f(S1) and Lemma 2.2 (vii) that

m = dimE0 = γ(∂(E0 ∩ f(B1)))

≤ γ(E0 ∩ f(S1)) = γ(KR ∩ f(S1)),

i.e., KR ∈ Γm. Hence Γm 6= ∅.
(ii) is obvious.
(iii) It is easy to see that K \A is a compact set and is symmetric on θ. For

f ∈ Γ, one has
K \A ∩ f(S1) ⊃ (K ∩ f(S1)) \ (A ∩ f(S1))

= (K ∩ f(S1)) \A.
Since γ(K ∩ f(S1)) ≥ m, Lemma 2.2(iv) deduces that

γ(K \A ∩ f(S1)) ≥ γ(K ∩ f(S1)) \A
≥ γ(K ∩ f(S1))− γ(A) ≥ m− r.

Thus K \A ∈ Γm−r.
(iv) It is obvious that φ(K) is a compact set and is symmetric on θ. Since

φ : E → E is a homeomorphism mapping,

φ(A1 ∩A2) = φ(A1) ∩ φ(A2), ∀A1, A2 ⊂ E.
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For any f ∈ Γ we have

φ(K ∩ φ−1(f(S1))) = φ(K) ∩ f(S1), (2.1)

which implies φ−1(f(S1)) ∈ Acs(E), thus K ∩ φ−1(f(S1)) ∈ Acs(E). It follows
from Lemma 2.2 (ix) that

γ(K ∩ φ−1(f(S1))) = γ(φ(K ∩ φ−1(f(S1)))). (2.2)

Recalling that φ−1(h(0)) ⊂ h(0) and f(B1) ⊂ h(0), one has φ−1(f(B1)) ⊂ h(0) and
φ−1f ∈ Γ. Consequently,

γ(K ∩ φ−1(f(S1))) ≥ m. (2.3)

From (2.1)-(2.3) we derive γ(φ(K) ∩ f(S1)) ≥ m, which means φ(K) ∈ Γm. Thus
the proof is completed.
Proof of Theorem 1.1. If K ∈ Γm, then K is a compact set. Hence h(x) can
attain its maximum value on K, which implies bm < +∞. On the other hand,
setting f0(x) = ρx ∀x ∈ E, we have f0 ∈ Γ and f0(S1) = Sρ. Consequently, for
K ∈ Γm, γ(K ∩ Sρ) ≥ m, and so K ∩ Sρ 6= ∅. From hypothesis (H1), one has
bm ≥ α. If (ii) is true, then bm is a critical value of h. Therefore (i) is proved. (In
(ii) setting r = 1, we have γ(Kbm) ≥ m, whence Kbm 6= ∅).

In the following, we prove (ii). Proceeding by contradiction, assume γ(Kb) < r.
Since Kb is a compact set (h satisfies the nonsmooth C-condition), from Lemma 2.2
(vi), there exists δ > 0 such that

γ(Nδ(Kb)) = γ(Kb) < r. (2.4)

Hence, by Lemma 2.1, there exist ϵ > 0 and an old homeomorphism mapping
η1 : E → E such that

η1(hb+ϵ \Nδ(Kb)) ⊂ hb−ϵ. (2.5)
From the definition of bm+r−1, there is K∗ ∈ Γm+r−1 such that

max
x∈K∗

h(x) < bm+r−1 + ϵ = b+ ϵ. (2.6)

It follows from Lemma 2.3 (iii) that K∗ \Nδ(Kb) ∈ Γm. But K∗ \Nδ(Kb) =
K∗ \ Nδ(Kb), then K∗ \ Nδ(Kb) ∈ Γm. (2.6) deduces K∗ ⊂ hb+ϵ. By Lemma 2.1
(iv) and Lemma 2.3(iv), one has η−1

1 (h(0)) ⊂ h(0) and η1(K∗ \Nδ(Kb)) ∈ Γm. Thus

max
x∈η1(K∗\Nδ(Kb))

h(x) ≥ bm = b. (2.7)

On the other hand, since K∗ \Nδ(Kb) ⊂ hb+ϵ \Nδ(Kb), from (2.5), we have

η1(K
∗ \Nδ(Kb)) ⊂ η1(hb+ϵ \Nδ(Kb)) ⊂ hb−ϵ.

Therefore
h(x) ≤ b− ϵ, ∀x ∈ η1(K

∗ \Nδ(Kb)),

which contradicts to (2.7). Then (ii) is proved.
We now prove (iii). By virtue of Lemma 2.3(ii), we can directly deduce that

bm ≤ bm+1(m = 1, 2, ...), from which it follows that {bm} is an increase sequence.
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Next we show bm → +∞ as m→ +∞. Suppose, by contradiction, that bm → b∗ <
+∞. Since Kb∗ is compact and Kb∗ ∈ Acs(E), it follows from Lemma 2.2(vi) that
γ(Kb∗) = s < +∞, and there exists δ > 0 such that

γ(Nδ(Kb∗)) = γ(Kb∗) = s. (2.8)

According to Lemma 2.1, there exist ϵ > 0 and an old homeomorphism mapping
η1 : E → E such that

η1(hb∗+ϵ \Nδ(Kb∗)) ⊂ hb∗−ϵ. (2.9)
Since bm → b∗ we can find an integer n such that bn > b∗ − ϵ. Recalling that {bm}
is increasing, we have bn+s ≤ b∗ < b∗ + ϵ. So there exists K∗ ∈ Γn+s such that

max
x∈K∗

h(x) < b∗ + ϵ,

i.e.,
K∗ ⊂ hb∗+ϵ. (2.10)

Furthermore, by Lemma 2.3 (iii) one has

K∗ \Nδ(Kb∗) = K∗ \Nδ(Kb∗) ∈ Γm. (2.11)

Lemma 2.1 (iv) deduces that η−1
1 (h(0)) ⊂ h(0). Then η1(K∗ \Nδ(Kb∗)) ∈ Γn,

max
x∈η1(K∗\Nδ(Kb∗ ))

h(x) ≥ bn > b∗ − ϵ. (2.12)

On the other hand, from (2.9) and (2.10) one has

η1(K∗ \Nδ(Kb∗)) ⊂ η1(hb∗+ϵ \Nδ(Kb∗)) ⊂ hb∗−ϵ.

Thus
h(x) ≤ b∗ − ϵ, ∀x ∈ η1(K∗ \Nδ(Kb∗)),

which contradicts to (2.12). This means that bm → +∞.
(iv) is a direct conclusion of (iii). Since bm → +∞, f has infinitely many different

critical values, and all are the critical values of h. Of course, the corresponding
critical points of bm are different. The proof is completed.

3. Applications
In this section, we use Theorem 1.1 to prove that the following quasilinear Schrödinger
differential inclusion has infinitely many solutions.{

− div(g2(u)(∇u)) + g(u)g′(u)|∇u|2 + a(x)u ∈ ∂F (x, u) a.e. in Ω,

u|∂Ω = 0,
(3.1)

where N ≥ 3, g : R → R+ is an even and differential function, g′(t) ≥ 0 for all t ≥ 0,
a(x) is a continuous function in Ω, Ω is a bounded domain with smooth boundary
in RN .

It is easy to see that the energy functional of problem (3.1) is

I(u) =
1

2

∫
Ω

g2(u)|∇u|2dx+
1

2

∫
Ω

a(x)|u|2dx−
∫
Ω

F (x, u)dx. (3.2)
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From (3.2), I(u) may not be well defined in H1
0 (Ω) as the appearance of g(u). In

order to overcome this difficulty, we make a change of variable constructed by Shen
and Wang [14]. Set

v = G(u) =

∫ u

0

g(t)dt.

Then

J(v) =
1

2

∫
Ω

|∇v|2dx+
1

2

∫
Ω

a(x)|G−1(v)|2dx−
∫
Ω

F (x,G−1(v))dx.

Noting that g is nondecreasing and positive, we derive |G−1(v)| ≤ 1
g(0) |v|. For

this reason, J is well defined in H1
0 (Ω). We endow H1

0 (Ω) with the norm ‖u‖2 =∫
RN (|∇u|2 + |u|2)dx for u ∈ H1

0 (Ω).
If u is a nontrivial solution of problem (3.1), then it should satisfy∫

Ω

[g2(u)∇u∇φ+ g(u)g′(u)|∇u|2φ+ a(x)uφ− ξ(u)φ]dx = 0 (3.3)

for some ξ(u) ∈ ∂F (x, u) and all φ ∈ C∞
0 (Ω). Set φ = 1

g(u)ψ; then (3.3) is equivalent
to

〈v∗n, ψ〉 =
∫
Ω

[
∇v∇φ+ a(x)

G−1(v)

g(G−1(v))
ψ − ξ(G−1(v))

g(G−1(v))
ψ

]
dx = 0 (3.4)

for some v∗n ∈ ∂J(v), ξ(G−1(v)) ∈ ∂F (x,G−1(v)), and all ψ ∈ C∞
0 (Ω).

Thus, in order to find the nontrivial solutions of problem (3.1), it suffices to deal
with the nontrivial solutions of the following differential inclusion

−∆v + a(x)
G−1(v)

g(G−1(v))
∈ ∂F (x,G−1(v)).

From hypothesis (F1) we obtain the following lemma.

Lemma 3.1. The functions g(t) and G(t) =
∫ t

0
g(ρ)dρ satisfy the following prop-

erties

(1) G(t) and G−1(s) are odd;
(2) For all t ≥ 0, s ≥ 0, G(t) ≤ g(t)t, G−1(s) ≤ s

g(0) ;

(3) For all s≥0, G−1(s)
s is nonincreasing, lim

s→0

G−1(s)

s
=

1

g(0)
, and lim

s→∞

G−1(s)

s
=

1

A
.

Proof. (1) and (2) are immediately deduced by the definition of G(t) and the dif-
ferential mean value theorem. We now prove (3). By virtue of the rule of L’Hosptial
rule we derive(

G−1(s)

s

)′

s

=

(
G−1(s)

s

)′

t

1

g(t)
=

1

g(t)

(
t

G(t)

)′

t

=
1

g(t)G2(t)
(G(t)− g(t)t) ≤ 0

for all t ≥ 0, which shows that s
A ≤ G−1(s) ≤ s

g(0) from hypothesis (F1).
Using the nonsmooth mountain pass theorem [6], we can show that problem

(3.1) has at least one nontrivial solution.
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Proof of Theorem 1.2. We firstly claim that the functional J satisfies the moun-
tain pass geometry. Indeed, from hypothesis (F5)(i) there exists δ > 0 such that

|F (x, u)| ≤ ϵu2 ∀ϵ > 0, |u| ≤ δ. (3.5)

By hypothesis (F3), for all z ∈ Ω \ D with |D|N = 0(where |.|N denotes the
Lebesgue measure on Ω), the function u 7→ F (x, u) is locally Lipschitz, and so,
from Rademacher’s theorem, it is almost everywhere differentiable. Moreover, at
any such point ρ ∈ R of differentiability, we derive

d

dρ
F (x, ρ) ∈ ∂F (x, ρ)

(see Clarke [4, p.32]). Hence, from (F3)

d

dρ
F (x, ρ) ≤ a+ b|ρ|q for a.e. x ∈ Ω.

Integrating this inequality on [0, x] (without loss of generality, here we assume
x > 0), one has

F (x, u) ≤ a|u|+ b

q + 1
|u|q+1 for a.e. x ∈ Ω.

This combining (3.5) deduces that

|F (x, u)| ≤ ϵ|u|2 + cϵ|u|q+1 for a.e. x ∈ Ω. (3.6)

It follows from (3.6) and Lemma 3.1 that

J(v) ≥ 1

2

∫
Ω

|∇v|2dx+1

2

∫
Ω

a(x)|G−1(v)|2dx−ϵ
∫
Ω

(G−1(v))2dx−cϵ
∫
Ω

|G−1(v)|q+1dx

≥ 1

2

∫
Ω

|∇v|2dx+
1

2

∫
Ω

a(x)
v2

A2
dx− ϵc1‖v‖2 − cϵc2‖v‖q+1

≥ c3
2
‖v‖2 − ϵc1‖v‖2 − cϵc2‖v‖q+1,

where c1, c2 > 0, c3 = min
{
1, a1

2A2

}
. If we choose ϵ < c3

2c1
, then there exist α, ρ > 0

such that J(v) ≥ α for all ‖u‖ = ρ.
It follows from (F4) that

G(t)β+1∂(G(t)−βF (x, t)) = −βg(t)F (x, t) +G(t)∂F (x, t)

≥ 0

for t > M , which implies ∂(G(t)−βF (x, t)) ≥ 0 for t > M . Because of hypothesis
(F0) and Rademacher’s theorem, for a.e. x ∈ Ω, the function t 7→ G(t)−βF (x, t) is
differentiable at a.e. x ∈ RN . Moreover at any differentiable point, we have

d

dt
(G(t)−βF (x, t)) ∈ ∂(G(t)−βF (x, t)).

Hence
d

dt
(G(t)−βF (x, t)) ≥ 0 for a.e. x ∈ Ω, t > M.
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Integrating for M to t, we obtain

F (x, t) ≥ c(G(t))β for a.e. x ∈ Ω, t > M.

Therefore, for a.e. x ∈ Ω and all s ≥ 0 we have F (x,G−1(s)) ≥ c4|s|β − c5 for
some c4, c5 > 0. So for each t > 0, choosing v0 ∈ H1

0 (Ω) such that ‖v0‖ = 1 and
v0(x) > 0, one has

J(tv0) =
t2

2

∫
Ω

|∇v0|2dx+
1

2

∫
Ω

a(x)|G−1(tv0)|2dx−
∫
Ω

F (x, tv0)dx

≤ t2

2

∫
Ω

|∇v0|2dx+
1

2

∫
Ω

a2
t2v20
g2(0)

dx− c4

∫
Ω

|tv0|βdx+ c5|Ω|

≤ c6
2
t2‖v0‖2 − c4

(∫
Ω

|v0|βdx
)
tβ + c5|Ω|

≤ c6
2
t2 − c4

(∫
Ω

|v0|βdx
)
tβ + c5|Ω|

→ −∞ as t→ +∞ (since β > 2),

where c6 = max
{
1, a2

g2(0)

}
, from which there exists w ∈ H1

0 (Ω) such that ‖w‖ > ρ

and J(w) < 0.
In the following, we will show that J satisfies the nonsmooth C-condition. As-

sume that {vn} ⊂ H1
0 (Ω), |J(vn)| → c, (1+‖vn‖)mJ(vn) → 0(n = 1, 2, ...). Then for

any ψ ∈ C∞
0 (Ω) there exists some v∗n ∈ ∂J(vn) and ξ(G−1(vn)) ∈ ∂F (x,G−1(vn))

such that

〈v∗n, ψ〉 =
∫
Ω

[
∇vn∇ψ + a(x)

G−1(vn)

g(G−1(vn))
ψ − ξ(G−1(vn))

g(G−1(vn))
ψ

]
dx

≤ on(1)‖ψ‖ as n→ ∞.

Since C∞
0 (Ω) is dense in H1

0 (Ω), choosing ψ = vn, we only need to prove to that
{vn} is bounded.

〈v∗n, vn〉 =
∫
Ω

[
|∇vn|2 + a(x)

G−1(vn)

g(G−1(vn))
vn − ξ(G−1(vn))

g(G−1(vn))
vn

]
dx

≤ on(1)‖vn‖ as n→ ∞.

Thus, it follows from Lemma 3.1(2) and (F4) that

βc− 〈v∗n, vn〉 = βJ(vn)− 〈v∗n, vn〉

=
β−2

2

∫
Ω

|∇vn|2dx+
∫
Ω

a(x)G−1(vn)

[
β

2
G−1(vn)−

vn
g(G−1(vn))

]
dx

+

∫
Ω

[
ξ(G−1(vn))vn
g(G−1(vn))

− βF (x,G−1(vn))

]
dx

≥ β − 2

2

[∫
Ω

|∇vn|2dx+

∫
Ω

a(x)|G−1(vn)|2dx
]

≥ β − 2

2
min

{
1,
a1
A

}
‖vn‖2,

which means that {vn} is bounded in H1
0 (Ω). Therefore J satisfies the nonsmooth

C-condition. It follows from the nonsmooth mountain pass theorem that problem
(3.1) has at least one nontrivial solution. Thus the proof is completed.
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Proof of Theorem 1.3. From Theorem 1.2 we already know that J satisfies the
nonsmooth C-condition. So we only need to verify conditions (H1) and (H2). Since
G−1(v) is odd, by hypothesis (F6) we have F (x,G−1(−v)) = F (x,G−1(v)). Then
J(v) is an even function. We now prove that J(v) satisfies (H1) and (H2). From
Theorem 1.2 we already know that (H1) is satisfied. So we only need to verify
(H2). It follows from (F5) and (F6) that

lim
u→+∞

F (x,−u)
(−u)2

= lim
u→+∞

F (x, u)

u2
= +∞ for a.e. x ∈ Ω, (3.7)

which means that

lim
u→−∞

F (x, u)

u2
= +∞ for a.e. x ∈ Ω. (3.8)

Suppose, by contradiction, that (H2) is not satisfied. Then there exists a finite
subspace E in H1

0 (Ω) such that E ∩ J (0) is an unbounded set, where

J (0) = {v ∈ H1
0 (Ω) : J(v) ≥ 0}.

Therefore, there exists vn ∈ E satisfying ‖vn‖ → +∞ such that

J(vn) ≥ 0(n = 1, 2, ...). (3.9)

Let tn = ‖vn‖, yn = 1
tn
vn ∈ X. Then

vn = tnyn, ‖yn‖ = 1 (n = 1, 2, ...).

Since E is finite, the unit sphere in E is compact. This means that {vn} has a
convergent subsequence, still denoted by itself, yn → y0 (‖yn − y0‖ → 0), y0 ∈ X,
‖y0‖ = 1. By Friedrichs inequality, we have ‖yn − y0‖2 → 0. Thus, there exists a
subsequence of {yn} such that yn → y0 a.e. in Ω.

Set Ω0 = {x ∈ Ω : y0(x) 6= 0 and yn(x) → y0(x)}. Then meas(Ω0) > 0. Set
a0 = (

∫
Ω0

(y0(x))
2dx)

1
2 , then a0 > 0. From (3.7) and (3.8) there exists M0 > 0 such

that
F (x, u) ≥ cu2, ∀|u| ≥M0, x ∈ Ω. (3.10)

Let Dn = {x ∈ Ω : |G−1(tnyn)| ≥M0}, then Ω\Dn = {x ∈ Ω : |G−1(tnyn)| < M0}.
Dn = D

(1)
n ∪D(2)

n , D(1)
n ∩D(2)

n = ∅, where D(1)
n = {x ∈ Ω : G−1(tnyn) ≥ M0} and

D
(2)
n = {x ∈ Ω : G−1(tnyn) ≤ −M0}. By virtue of hypothesis (F3) and Lemma 3.1,

we have∫
Ω

F (x,G−1(tnyn))dx =

∫
Dn

F (x,G−1(tnyn))dx+

∫
Ω\Dn

F (x,G−1(tnyn))dx

≥ C1

∫
Dn

|G−1(tnyn)|2dx− C2

≥ C1

A
t2n

∫
Dn

|yn|2dx− C2,

(3.11)
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where C1 > 0, C2 = 2
(
aM0 +

b
q+1M

q+1
0 + C1M

2
0

)
|Ω|. Since

∣∣∣∣∣
(∫

Dn

(yn(x))
2dx

) 1
2

−
(∫

Dn

(y0(x))
2dx

) 1
2

∣∣∣∣∣
≤
(∫

Dn

(yn(x)− y0(x))
2dx

) 1
2

≤
(∫

Ω

(yn(x)− y0(x))
2dx

) 1
2

=‖yn − y0‖2 → 0 (n→ ∞),

there exists N1 > 0 such that(∫
Dn

(yn(x))
2dx

) 1
2

>

(∫
Dn

(y0(x))
2dx

) 1
2

− a0
4

∀n > N1. (3.12)

Set D∗
n = ∩∞

k=nDk and D∗ = ∪∞
n=1D

∗
n, then D∗

1 ⊂ D∗
2 ⊂ D∗

3 ⊂ · · · and Dn ⊃ D∗
n,

D∗
n ⊂ D∗, |D∗

n| → |D∗|(n→ ∞). Thus there exists N2 > 0 such that

(∫
Dn

(y0(x))
2dx

) 1
2

≥

(∫
D∗

n

(y0(x))
2dx

) 1
2

>

(∫
D∗

(y0(x))
2dx

) 1
2

− a0
4
, ∀n > N2.

Applying the definition of Ω0, we obtain Ω0 ⊂ D∗, which shows that

(∫
D∗

(y0(x))
2dx

) 1
2

≥
(∫

Ω0

(y0(x))
2dx

) 1
2

= a0. (3.13)

The above inequality deduces that
(∫

Dn
(yn(x))

2dx
) 1

2

> a0

2 , ∀n > N = max{N1, N2}.
Then ∫

Ω

F (x,G−1(tnyn))dx ≥ C1a
2
0

4A
t2n − C4.

So

J(vn) = J(tnyn)

=
t2n
2

∫
Ω

|∇yn|2dx+
1

2

∫
Ω

a(x)|G−1(tnyn)|2dx−
∫
Ω

F (x,G−1(tnyn))dx

≤ t2n
2

∫
Ω

|∇yn|2dx+
1

2

∫
Ω

a(x)|yn|2dx−
∫
Ω

F (x,G−1(tnyn))dx

≤ B

2
t2n − C1a

2
0

4A
t2n + C2

→ −∞ as t→ +∞,

where B = max{1, a2} and C1 >
2BA
a0

, which means limn→∞ J(vn) = −∞, contra-
dicting to (3.9). Thus the proof is finished.
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