
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 12, Number 3, June 2022, 1118–1140 DOI:10.11948/20220148

SIGN-CHANGING SOLUTIONS OF A
DISCRETE FOURTH-ORDER LIDSTONE
PROBLEM WITH THREE PARAMETERS

Yuhua Long1,2 and Qinqin Zhang3,†

Dedicated to Professor Jibin Li on the occasion of his 80th birthday.

Abstract By combining the method of the invariant sets of descending flow
with variational technique, we give a series of criteria in terms of different
values of λ to ensure that a discrete fourth-order Lidstone problem with three
parameters possesses at least four solutions. It is further shown that these
four solutions consist of one sign-changing solution, one positive solution, one
negative solution and one trivial solution. Finally, three examples are also
provided to illustrate our theoretical results.
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1. Introduction
Let a, b be two fixed integer numbers with a < b and [a + 1, b + 1] = {a + 1, a +
2, · · · , b+ 1} represent a discrete segment. Consider the nonlinear discrete fourth-
order Lidstone boundary value problem with three explicit parameters α, β and λ
given by

∆4x(n− 2) + α∆2x(n− 1)− βx(n) = λf(n, x(n)), n ∈ [a+ 1, b+ 1],

x(a) = ∆2x(a− 1) = 0, x(b+ 2) = ∆2x(b+ 1) = 0. (1.1)

Here f(n, x) : Z×R→ R is continuous with respect to x. ∆ is the forward difference
operator defined by ∆x(n) = x(n+ 1)− x(n) and ∆ix(n) = ∆(∆i−1x(n)).

By a positive (negative) solution x of the BVP (1.1), we refer that a sequence
{x(n)}b+3

a−1 = x satisfies the BVP (1.1) with x(n) > 0 (x(n) < 0) for all n ∈
[a + 1, b + 1]. If there exist i, j ∈ [a + 1, b + 1] such that x(i) · x(j) < 0, then x is
called a sign-changing solution.

Discrete boundary value problem emerges from real world problems. It is one of
the most important topics in the qualitative theory of difference equations so that
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it has a long history of research as to the first study can retrospect as early as to
1968 [25]. Besides its theoretical interest, it also has many applications. It is widely
employed as handy means to describe the processes in many fields such as computer
science, mathematical biology, control systems, economics and so on, we refer the
reader to [7,10,11,15,28,31,33,36,37] and the reference therein for a thoroughgoing
overview.

Much interest has lately shown in discrete boundary value problems. Many
authors have investigated discrete boundary value problems extensively by various
techniques, such as topology method, upper and lower solution methods, fixed-point
theory, critical point theory to study the existence, multiplicity, and uniqueness of
solutions to boundary value problems, see [2, 3, 5, 16–19, 24, 32, 34, 38] and many
works follow.

It is interesting to note that, among the numerous obtained results, there are
many results that pay attention to the existence, multiplicity, and nonexistence of
solutions to fourth-order difference equations derived from various discrete elastic
beam problems. For example, [1] analyzed the existence, multiplicity, and nonexis-
tence of nontrivial solutions to the BVP (1.1) by fixed point theorem and Leggett-
Williams theorem. Depending on the critical point theory and monotone operator
theory, [8] gave sufficient conditions for the existence and nonexistence of nontrivial
solutions to the BVP (1.1). We also refer the interested reader to the papers [6, 9]
in which discrete fourth-order boundary problems with parameters have been in-
vestigated.

On the other hand, with the rapid development of critical point theory, it has
become a powerful tool to deal with various discrete problems (see [4, 12, 20, 29,
35]). However, as mentioned to sign-changing solution, a special case of solutions
as positive solution, to the best of our knowledge, it seems that there has no so
many similar results. Meanwhile, our recent works [21–23, 30] have established
criteria for the existence of multiple solutions, including sign-changing solution, to
fourth-order difference equations with different boundary conditions via variational
methods and the invariant sets of descending flow, which indicate that the method
of invariant sets of descending flow plays an important role in dealing with sign-
changing solutions.

Motivated by above comments, we decide to tackle the existence of sign-changing
solutions as well as multiple solutions of the BVP (1.1) by variational methods
together with invariant sets of descending flow. Compared to the previous results,
some related works are generalized.

The brief outline of this paper is as follows: after this introduction, the varia-
tional functional, and the needed lemmas are given in Section 2. Section 3 displays
the main results on the multiplicity of nontrivial solutions for the BVP (1.1) in
terms of different values of λ and states their proofs in detail. Finally, several
examples are provided in Section 4 to demonstrate our main results.

2. Preliminaries
In this section, we are going to construct the corresponding variational framework
for the BVP (1.1) and give some basic lemmas.

First, we recall some notations from [26,27].
Let X be a real Hilbert space and I : X → R be a continuously Fréchet dif-

ferentiable functional, denoted by I ∈ C1(X,R). If x0 ∈ X such that I ′(x0) = 0,
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then x0 is a critical point of I. We say I satisfies the Palais-Smale (PS condition)
condition if any sequence {x(j)} ⊂ X such that I(x(j)) is bounded and I ′(x(j))→ 0
as j → ∞, has a convergent subsequence. If any sequence {x(j)} ⊂ X such that
I ′(x(j))→ c for some c ∈ R and (1+∥x(j)∥)I ′(x(j))→ 0 as j →∞ has a convergent
subsequence. We say I satisfies the Cerami ((C)c for short) condition.

Now we introduce the following powerful theorem which is the main tool to
prove our results.

Lemma 2.1 ( [14, Theorem 3.2]). Assume that I satisfies the PS condition on X
and there exists a completely continuous operator S such that I ′(x) = x− S(x) for
x ∈ X. Moreover, S(∂D1) ⊂ D1 and S(∂D2) ⊂ D2, where D1 and D2 are two
open convex subsets of X with the properties D1

∩
D2 ̸= ∅. If there exists a path

h : [0, 1]→ X such that

h(0) ∈ D1 \D2, h(1) ∈ D2 \D1

and
sup

t∈[0,1]

I(h(t)) < inf
x∈D1

∩
D2

I(x).

Then I has at least four critical points, x1 ∈ X \ (D1

∪
D2), x2 ∈ D1 \ D2, x3 ∈

D2 \D1 and x4 ∈ D1

∩
D2.

Remark 2.1. Theorem 5.1 in [13] shows that the usual PS condition in Lemma
2.1 can be substituted by the weaker (C)c condition.

In the sequel, we define a (b− a+ 1)-dimensional Hilbert space

X = {x = {x(n)}|x(n) ∈ R, n ∈ [a+ 1, b+ 1]}

equipped with the inner product (·, ·) and the corresponding norm ∥ · ∥ as

(x, y) =

b+1∑
n=a+1

x(n)y(n), ∥x∥ =

(
b+1∑

n=a+1

|x(n)|2
) 1

2

∀x, y ∈ X,

respectively. For later use, given 1 ≤ p < +∞, for any x ∈ E, define the norm

∥x∥p =

(
b+1∑

n=a+1

|x(n)|p
) 1

p

, ∀x ∈ X.

Clearly, ∥x∥ = ∥x∥2. Moreover,

∥x∥p = (b− a+ 1)
2−p
2p ∥x∥. (2.1)

Define another space

H = {x : [a− 1, b+ 3]→ R|x(a) = ∆2x(a− 1) = 0, x(b+ 2) = ∆2x(b+ 1) = 0}

equipped with the following inner product

⟨x, y⟩ =
b+1∑

n=a+1

[∆2x(n−1)∆2y(n−1)−α∆x(n−1)∆y(n−1)−βx(n)y(n)], x, y ∈ H.
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Then the induced norm is

∥x∥H =

(
b+1∑

n=a+1

|∆2x(n− 1)|2 − α|∆x(n− 1)|2 − β|x(n)|2
) 1

2

, ∀x ∈ H.

Take account of the boundary conditions x(a) = ∆2x(a − 1) = 0 and x(b + 2) =
∆2x(b+ 1) = 0, that is,

x(a− 1) = −x(a+ 1), x(a) = 0, x(b+ 2) = 0, x(b+ 3) = −x(b+ 1), (2.2)

it follows that (H, ⟨·, ·⟩) is also a (b − a + 1)-dimensional Hilbert space. Thus, H
is isomorphic to X, which means that ∥x∥H is equivalent to ∥x∥. Therefore, there
and thereafter, we always deem x ∈ H as an extension of x ∈ E when it is needed.

Let F (n, x) =
∫ x

0
f(n, s)ds for n ∈ [a + 1, b + 1] and x ∈ R. Consider the

functional J(x) : X → R defined by

J(x) =
1

2

b+1∑
n=a+1

[|∆2x(n− 1)|2 − α|∆x(n− 1)|2 − β|x(n)|2]− λ

b+1∑
n=a+1

F (n, x(n))

=
1

2
∥x∥2H − λ

b+1∑
n=a+1

F (n, x(n)) (2.3)

with x(a) = ∆2x(a− 1) = 0 and x(b+2) = ∆2x(b+1) = 0. Then the continuity of
f guarantees that J ∈ C1(X,R).

To estimate J , give two (b− a+ 1)× (b− a+ 1) matrices A and B as

A =



5 −4 1 0 0 · · · 0 0 0 0 0

−4 6 −4 1 0 · · · 0 0 0 0 0

1 −4 6 −4 1 · · · 0 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 0 · · · 1 −4 6 −4 1

0 0 0 0 0 · · · 0 1 −4 6 −4

0 0 0 0 0 · · · 0 0 1 −4 5


(b−a+1)×(b−a+1)

and

B =



−2 1 0 0 · · · 0 0 0

1 −2 1 0 · · · 0 0 0

0 1 −2 1 · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · −2 1 0

0 0 0 0 · · · 1 −2 1

0 0 0 0 · · · 0 1 −2


(b−a+1)×(b−a+1)

.
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Denote M = A+ αB − βI, where I is a (b− a+ 1)× (b− a+ 1) identity matrix.
Then J(x), defined by (2.3), can be expressed by

J(x) =
1

2
xTMx− λ

b+1∑
n=a+1

F (n, x(n)), ∀x ∈ X. (2.4)

Moreover, the eigenvalues of M are

ωk = 16 sin4
kπ

2(b− a+ 2)
− 4α sin2

kπ

2(b− a+ 2)
− β, k = 1, 2, · · · , b− a+ 1.

(2.5)

Denote w = sin kπ
2(b−a+2) , then ωk can be rewritten by

ωk = 16w4 − 4αw2 − β.

Simple computation gives that ωk is strictly increasing if 8w > α. On the other
hand, 16 sin4 π

2(b−a+2) > 4α sin2 kπ
2(b−a+2) + β ensures that

ω1 > 0.

Consequently, if the parameters α and β satisfy

α < 8 sin2
π

2(b− a+ 2)
and 16 sin4

π

2(b− a+ 2)
> 4α sin2

π

2(b− a+ 2)
+ β,

(2.6)
then matrix M possesses positive eigenvalues and the algebraic multiplicity of each
eigenvalue ωk, 1 ≤ k ≤ b− a+ 1, is equal to 1. Therefore,

0 < ω1 < ω2 < · · · < ωb−a+1. (2.7)

Joint (2.3), (2.4), (2.7) with the definition of ∥ · ∥H and ∥ · ∥, we have
√
ω1∥x∥ ≤ ∥x∥H ≤

√
ωb−a+1∥x∥, ∀x ∈ X. (2.8)

In the following, it is needed to show that all conditions given in Lemma 2.1
are fulfilled. So, firstly, we find a completely continuous operator Sλ such that
J ′(x) = x− Sλ(x) for all x ∈ X.

Let w(n) : [a+ 1, b+ 1]→ R, consider the following BVP{
∆4x(n− 2) + α∆2x(n− 1)− βx(n) = w(n), n ∈ [a+ 1, b+ 1]

x(a) = ∆2x(a− 1) = 0, x(b+ 2) = ∆2x(b+ 1) = 0.
(2.9)

Note that the BVP (2.9) can be written as linear algebra equations Mx = w, where
w = (w(a+ 1), w(a+ 2), · · · , w(b+ 1))

T . Thanks to (2.7), matrix M is nonsingular,
then the unique solution of the BVP (2.9) is

x = M−1w. (2.10)

On the other hand, [8] has shown that the BVP (2.9) possesses a unique solution
x = {x(n)}b+3

a−1 in the form of

x(n)=

b+1∑
k=a+1

(
b+1∑

s=a+1

G1(n, s)G2(s, k)

)
w(k)=

b+1∑
k=a+1

(
b+1∑

s=a+1

G2(n, s)G1(s, k)

)
w(k)

(2.11)
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and x(a − 1) = −x(a + 1), x(a) = 0, x(b + 2) = 0, x(b + 3) = −x(b + 1) for
n ∈ [a+ 1, b+ 1]. Here

Gi(n, k) =
1

ρ(1, 0)ρ(b+ 2, a)

{
ρ(n, a)ρ(b+ 2, k), if a ≤ n ≤ k ≤ b+ 1

ρ(k, a)ρ(b+ 2, n), if a ≤ k ≤ n ≤ b+ 1
(2.12)

with

ρ(n, k)=


sinφ(n−k), φ ≜ arctan

√
−ri(ri+4)

2 + ri
, if− 4 sin2

π

2(b−a+2)
<ri<0;

n− k, if ri = 0;

γn−k − γk−n, γ ≜ ri + 2 +
√
ri(ri + 4)

2
, if ri > 0,

and r1 =
−α+
√

α2+4β

2 , r2 =
−α−
√

α2+4β

2 .
Write

G(n, k) =

b+1∑
k=a+1

G1(n, s)G2(s, k), ∀n, k ∈ [a+ 1, b+ 1], (2.13)

where Gi(n, k), i = 1, 2, are given by (2.12). Then we have

Lemma 2.2 ( [8, Lemma 2.2] ). If the parameters α and β satisfy

α2 + 4β ≥ 0. (2.14)

Then G(n, k), defined by (2.13), is the Green’s function associated with the BVP
(2.9) which satisfies G(n, k) > 0 and G(n, k) = G(k, n) for all n, k ∈ [a+ 1, b+ 1].

Define an operator K : X → X by

(Kx)(n) =

N∑
n=1

G(n, k)x(k), x ∈ X, n ∈ [a+ 1, b+ 1]. (2.15)

Owe to Lemma 2.2, the unique solution of the BVP (2.9) is

x(n) =

b+1∑
n=a+1

G(n, k)w(k),

together with (2.10), it follows that

K = M−1.

Moreover, there holds

Lemma 2.3. For real value parameter λ ∈ (0,+∞), define an operator Sλ : X → X
as Sλ = λKf , where fx(n) = f(n, x(n)), x ∈ X, n ∈ [a+1, b+1]. Then the operator
Sλ is a completely continuous operator.
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Proof. For all x ∈ X, we have

(Sλx)(n) = λ

b+1∑
n=a+1

G(n, k)f(k, x(k)), x ∈ X, n ∈ [a+ 1, b+ 1]. (2.16)

Lemma 2.2 means that it is no harm in assuming C̄ = max
n,k∈[a+1,b+1]

{G(n, k)} > 0.

Then for any y, z ∈ X and k ∈ [a+ 1, b+ 1],

|y(k)− z(k)| ≤ ∥y − z∥ and ∥Sλy − Sλz∥ ≤ C̄λ

b+1∑
n=a+1

|f(k, y(k))− f(k, z(k))|,

together with the continuity of f(n, x) in x, which lead to the continuity of the
operator Sλ.

Choose a bounded set X̃ such that X̃ ⊂ X. Since X is a (b−a+1)-dimensional
Hilbert space, it is enough to show that, for any y ∈ X̃, Sλ(y) is bounded to
accomplish the proof. For any y ∈ X̃, the boundedness of X̃ yields that there exists
constant C̃ > 0 such that ∥y∥ ≤ C̃, which means |y(n)| ≤ C̃. Then the continuity
of f(n, x) in x ensures that there exists a constant Ĉ > 0 such that

|f(n, y(n))| ≤ Ĉ, ∀y ∈ X̃, n ∈ [a+ 1, b+ 1].

Therefore, making use of (2.16), we get, for any y ∈ X̃,

∥Sλy∥ ≤Mλ

b+1∑
n=a+1

|f(s, y(s))| ≤ ĈλM(b− a+ 1),

that is, Sλ(X̃) is bounded in X. Thus the verification of Lemma 2.3 is finished.

Remark 2.2. Since the operator equations x = Sλx and K−1x = λfx are equiv-
alent, x = {x(n)}b+1

a+1 ∈ X is a solution of the BVP (1.1) if and only if x =

{x(n)}b+3
a−1 ∈ H is a fixed point of the operator Sλ with x(a − 1) = −x(a + 1),

x(a) = 0, x(b+ 2) = 0, x(b+ 3) = −x(b+ 1).

Now we declare that

Lemma 2.4. Let J(x) be defined by (2.3). Then J ′(x) = x− Sλ(x) for all x ∈ X.

Proof. Notice that ∂F (n,x)
∂x = f(n, x). Then, for any x, y ∈ X and every n ∈

[a + 1, b + 1], applying Lagrange’s mean value theorem to F (n, x), it yields that
there exists κ(n) ∈ (0, 1) such that

F (n, (x+ y)(n))− F (n, x(n)) = f(n, x(n) + κ(n)y(n)).

Hence

J(x+ y)− J(x)

=

b+1∑
n=a+1

[
|∆2x(n− 1)|2 ·|∆2y(n− 1)|2−α|∆x(n−1)|·|∆2y(n−1)|− vβ|x(n)|·|y(n)|

]
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+
1

2

b+1∑
n=a+1

[
|∆2y(n− 1)|2 − α|∆2y(n− 1)| − β|y(n)|

]
− λ

b+1∑
n=a+1

f(n, x(n) + κ(n)y(n))y(n)

=⟨x, y⟩+ 1

2
∥y∥2H − λ

b+1∑
n=a+1

f(n, x(n) + κ(n)y(n))y(n),

together with the continuity of f , which implies that

J(x+ y)− J(x)− ⟨x, y⟩+ λ

b+1∑
n=a+1

f(n, x(n))y(n)→ 0, as ∥y∥H → 0.

Thus,

⟨J ′(x), y⟩ = ⟨x, y⟩ − λ

b+1∑
n=a+1

f(n, x(n))y(n), ∀x, y ∈ X. (2.17)

On the other side, for any x, y ∈ X, make use of the boundary conditions (2.2), we
have

b+1∑
n=a+1

∆4x(n− 2)y(n)

=

b+1∑
n=a+1

[∆2x(n)− 2∆2x(n− 1) + ∆2x(n− 2)]y(n)

=

b+1∑
n=a+1

∆2x(n)y(n)− 2

b+1∑
n=a+1

∆2x(n− 1)y(n) +

b+1∑
n=a+1

∆2x(n− 2)y(n)

=

b+1∑
n=a+1

∆2x(n−1)y(n−1)−∆2x(a)y(a)+∆2x(b+1)y(b+1)−
b+1∑

n=a+1

v∆2x(n−1)y(n)

−
b+1∑

n=a+1

∆2x(n− 1)y(n) +

b+1∑
n=a+1

∆2x(n− 1)y(n+ 1) + ∆2x(b)y(b+ 1)

−∆2x(a− 1)y(a+ 1)

=−
b+1∑

n=a+1

∆2x(n− 1)∆y(n− 1) +

b+1∑
n=a+1

∆2x(n− 1)∆y(n)

=

b+1∑
n=a+1

∆2x(n− 1)∆2y(n− 1),

and
b+1∑

n=a+1

∆2x(n− 1)y(n)
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=

b+1∑
n=a+1

∆x(n)y(n)−
b+1∑

n=a+1

∆x(n− 1)y(n)

=

b+1∑
n=a+1

∆x(n)y(n) + ∆x(a)y(a)−∆x(b+ 2)y(b+ 2)−
b+1∑

n=a+1

∆x(n− 1)y(n)

=

b+1∑
n=a+1

∆x(n− 1)y(n− 1)−
b+1∑

n=a+1

∆x(n− 1)y(n)

=−
b+1∑

n=a+1

∆x(n− 1)∆y(n− 1).

Thus, for any x, y ∈ X,

⟨x− Sλx, y⟩
=⟨x, y⟩ − ⟨Sλx, y⟩

=⟨x, y⟩−
b+1∑

n=a+1

[∆2Sλx(n−1)∆2y(n−1)−α∆Sλx(n−1)∆y(n−1)−βSλx(n)y(n)]

=⟨x, y⟩ −
b+1∑

n=a+1

[∆4Sλx(n− 2) + α∆2Sλx(n− 1)− βSλx(n)]y(n)

=⟨x, y⟩ − λ

b+1∑
n=a+1

f(n, x(n))y(n)

which leads to J ′(x) = x− S(x) for all x ∈ X. And the proof is completed.

Remark 2.3. Remark 2.2 and Lemma 2.4 indicate that the critical points x =
{x(n)}b+1

a+1 ∈ X of J(x) and the fixed points x = {x(n)}b+3
a−1 ∈ H of the operator

Sλ and the solutions of the BVP (1.1) are equivalent to each other. And we seek
critical points of the functional J(x) defined on X to obtain the solutions of the
BVP (1.1).

3. Main results
With the help of above preparations, it is time for us to establish our main results
and utilize Lemma 2.1 to provide their proofs in this section.

For convenience, there and thereafter, let parameters α, β always satisfy (2.6)
and (2.14).

Theorem 3.1. Assume that
(F1) max

n∈[a+1,b+1]
lim sup

x→0
| f(n,x)x | = f0 ∈ (0,+∞);

(F2) min
n∈[a+1,b+1]

lim inf
x→∞

f(n,x)
x = f∞ ∈ (0,+∞);

(F3) there exist constants s > 2 and C > 0 such that

|f(n, x)| ≤ C
(
1 + |x|s−1

)
, ∀(n, x) ∈ [a+ 1, b+ 1]×R.
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Let ω1 and ωb−a+1 be defined by (2.5). If ω1

f0
> ωb−a+1

f∞
, then, for every λ ∈ Λ1 ≜

(ωb−a+1

f∞
, ω1

f0
), the BVP (1.1) has at least four distinct solutions: one is sign-changing,

one is positive, one is negative and one is trivial.

Proof. We apply Lemma 2.1 to finish the proof by three steps.
Step 1 Assume (F2) holds, then the functional J(x) satisfies the PS condition.
Fix λ ∈ Λ1. (F2) means that there exists constant δ1 > 0 such that

f(n, x)

x
≥ f∞, |x| > δ1, ∀n ∈ [a+ 1, b+ 1].

Choose a constant C1 with C1 > ωb−a+1. Note that λ ∈ Λ1 ≜ (ωb−a+1

f∞
, ω1

f0
), then

f(n, x) ≥ C1

λ
x, |x| > δ1, ∀n ∈ [a+ 1, b+ 1],

which indicates that

F (n, x) ≥ C1

2λ
x2, |x| > δ1, ∀n ∈ [a+ 1, b+ 1]. (3.1)

Since f(n, x) is continuous respect to x for all x ∈ X and ∂F (n,x)
∂x = f(n, x), which

ensures that F (n, x) is continuous in x for all x ∈ X. Then there exists a constant
C2 > 0 such that

F (n, x) ≥ C1

2λ
x2 − C2, 0 ≤ |x| ≤ δ1, ∀n ∈ [a+ 1, b+ 1]. (3.2)

Combining (3.1) with (3.2), we get

F (n, x) ≥ C1

2λ
x2 − C2, ∀x ∈ R, ∀n ∈ [a+ 1, b+ 1]. (3.3)

Hence, for sequence {x(i)}i∈N ⊂ X, (2.4) and (3.3) lead to

J(x(i)) =
1

2
x(i)TMx(i) − λ

b+1∑
n=a+1

F (n, x(i)(n))

≤ ωb−a+1

2
∥x(i)∥2 − C1

2
∥x(i)∥2 + C2λ(b− a+ 1)

=
1

2
(ωb−a+1 − C1)∥x(i)∥2 + C2λ(b− a+ 1).

(3.4)

In virtue of C1 > ωb−a+1 and J(x(i)) is bounded, (3.4) ensures the boundedness of
{x(i)}i∈N. Together with the finite-dimension of X, the PS condition is verified.

Step 2 Let

Ω = {x ∈ X : x ≥ 0} and − Ω = {x ∈ X : x ≤ 0}

represent the positive and the negative convex cones, respectively. Denote the
distance in X with respect to ∥ · ∥H by

distH(x,±Ω) = inf
φ∈±Ω

∥x− φ∥H .
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Then if the assumptions (F1) and (F3) are fulfilled, there exists ε0 > 0 such that
for all 0 < ε < ε0

Sλ(∂D
−
ε ) ⊂ D−

ε and Sλ(∂D
+
ε ) ⊂ D+

ε ,

where

D+
ε = {x ∈ X : distH(x,Ω) < ε}, D−

ε = {x ∈ X : distH(x,−Ω) < ε}.

Further, if x ∈ D−
ε (x ∈ D+

ε ) such that J ′(x) = 0, then x corresponds to the
negative (positive) solution of the BVP (1.1).

The proofs of the case of D−
ε and D+

ε are similar, here we state that of D−
ε in

detail for brevity.
Thanks to (F1), (F3) and the continuity of f(n, x), for any given δ > 0, there

exists Cδ > 0 such that

|f(n, x)| ≤ δ|x|+ Cδ|x|s−1
, ∀(n, x) ∈ [a+ 1, b+ 1]×R. (3.5)

For any x ∈ X, denote x+ = {x+(n)}b+1
a+1, x− = {x−(n)}b+1

a+1 where x+(n) =
max{x(n), 0} and x−(n) = min{x(n), 0}. Combining (2.8) with the definition of
distH(x,±Ω), we have

∥x+∥ = inf
φ∈−Ω

∥x− φ∥ ≤ 1
√
ω1

inf
φ∈−Ω

∥x− φ∥H =
1
√
ω1

distH(x,−Ω). (3.6)

On the other hand, let y = Sλ(x) ∈ X, the fact y+ = y − y− and y− ∈ −Ω yields

distH(y,−Ω) = inf
φ∈−Ω

∥y − φ∥H ≤ ∥y − y−∥H = ∥y+∥H . (3.7)

Then, for λ ∈ Λ1, we have

distH(y,−Ω)∥y+∥H
≤⟨y+, y+⟩ ≤ ⟨Sλ(x), y

+⟩

=λ

b+1∑
n=a+1

[f(n, x(n)), y+(n)]

≤λ
b+1∑

n=a+1

[f(n, x+(n)), y+(n)] ≤ λ

b+1∑
n=a+1

[(δ|x+(n)|+ Cδ|x+(n)|s−1
, y+(n))]

≤δλ

(
b+1∑

n=a+1

|x+(n)|2
) 1

2
(

b+1∑
n=a+1

|y+(n)|2
) 1

2

+ Cδλ

(
b+1∑

n=a+1

|x+(n)|
(s−1)s
s−1

) s−1
s
(

b+1∑
n=a+1

|y+(n)|s
) 1

s

=δλ∥x+∥ · ∥y+∥+ Cδλ∥x+∥s−1

s · ∥y+∥s

≤ δλ
√
ω1
∥x+∥ · ∥y+∥H +

Cδλ√
ω1

(b− a+ 1)
(2−s)(s−1)

2s (b− a+ 1)
2−s
2s ∥x+∥s−1∥y+∥H

=

(
δλ
√
ω1
∥x+∥+ Cδλ√

ω1
(b− a+ 1)

2−s
2 ∥x+∥s−1

)
∥y+∥H
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≤
(
δλ

ω1
distH(x,−Ω) + Cδλ√

ω1
s (b− a+ 1)

2−s
2 (distH(x,−Ω))s−1

)
∥y+∥H . (3.8)

Choose δ = D
4λ where D = min{√ω1, ω1}, then (3.8) deduces

distH(y,−Ω) ≤ 1

4
distH(x,−Ω) + CδD

−s(b− a+ 1)
2−s
2 (distH(x,−Ω))s−1. (3.9)

Make 0 < ε0 <
(
4CδD

−s(b− a+ 1)
2−s
2

) 1
2−s . If distH(x,−Ω) ≤ ε ≤ ϵ0, then (3.9)

yields
distH(Sλ(x),−Ω) ≤

1

2
distH(x,−Ω) < ε (3.10)

which implies that Sλ(x) ∈ D−
ε for any x ∈ ∂D−

ε , namely, Sλ(∂D
−
ε ) ⊂ D−

ε .
Moreover, if x ∈ D−

ε is nontrivial such that J ′(x) = 0, then Lemma 2.4 means
0 = J ′(x) = Sλ(x)−x, that is, S(x) = x. Together with (3.10), we get x ∈ −Ω\{0}.
Therefore, x is a negative solution of BVP (1.1).

Step 3 The last and most important thing is to find a path which meets with
the assumptions in Lemma 2.1.

Since λ ∈ Λ1 ≜ (ωb−a+1

f∞
, ω1

f0
), then (F1) means there exist constants 0 < ϵ̃ < 1

and δ2 > 0 such that

|f(n, x)| ≤ f0(1− ϵ̃)|x| ≤ ω1

λ
(1− ϵ̃)|x|, |x| ≤ δ2, ∀n ∈ [a+ 1, b+ 1],

which arises

F (n, x) ≤ ω1(1− ϵ̃)

2λ
|x|2, |x| ≤ δ2, ∀n ∈ [a+ 1, b+ 1].

For the same reason as (3.3), there exists a constant C3 such that

F (n, x) ≤ ω1(1− ϵ̃)

2λ
|x|2 + C3, ∀x ∈ R, ∀n ∈ [a+ 1, b+ 1]. (3.11)

Therefore, for any x ∈ R and all n ∈ [a+ 1, b+ 1], there holds

J(x) ≥ ω1

2
∥x∥2 − λ

b+1∑
n=a+1

ω1(1− ϵ̃)

2λ
|x|2 − C3λ(b− a+ 1)

=
ω1ϵ̃

2
∥x∥2 − C3λ(b− a+ 1).

(3.12)

Note that for any x ∈ D+
ε
∩
D−

ε , in the same manner as (3.6), we get

∥x±∥ ≤ 1
√
ω1

distH(x,∓Ω) ≤ 1
√
ω1

ε0, ∀x ∈ D+
ε

∩
D−

ε . (3.13)

Consequently, (3.12) and (3.13) ensure inf
x∈D+

ε

∩
D−

ε

J(x) = c0 for some constant c0 >

−∞. Recall (3.3) and notice C1 > ωb−a+1. Then for λ ∈ Λ1,

J(x) ≤ ωb−a+1

2
∥x∥2 − λ

b+1∑
n=a+1

[
C1

2λ
x2 − C2

]
= −1

2
(C1 − ωb−a+1)∥x∥2 + λC2(b− a+ 1)

(3.14)



1130 Y. Long & Q. Zhang

and J(x)→ −∞ as ∥x∥ → +∞.
Let ν1 and ν2 stand for the eigenvectors associated with the eigenvalues ω1 and

ω2 of matrix M and X1 = span{ν1, ν2}. According to the equivalence of ∥ · ∥ and
∥ · ∥H , (3.14) also implies that J(x)→ −∞ as ∥x∥H → +∞ for x ∈ X1. Therefore,
it is not difficult to find a constant µ ≫ ε0 large enough such that J(x) < c0 − 1
with ∥x∥H = µ. Define a path h : [0, 1]→ X1 as

h(t) = µ
(−1)tν1 + t(1− t)ν2
∥(−1)tν1 + t(1− t)ν2∥H

.

Obviously, ∥h∥H = µ and h(t) ∈ X1. Hence,

sup
t∈[0,1]

J(h(t)) < c0 − 1 < c0 = inf
x∈D+

ε

∩
D−

ε

J(x).

Further, simple calculation gives

h(0) = µ
ν1
∥ν1∥H

and h(1) = −µ ν1
∥ν1∥H

,

which means
h(0) ∈ D+

ε \D−
ε and h(1) ∈ D−

ε \D+
ε .

Jointly with Lemma 2.3 and 2.4, all conditions in Lemma 2.1 are fulfilled. There-
fore, Lemma 2.1 guarantees that J possesses at least four distinct critical points:
one is trivial in D+

ε

∩
D−

ε , one is sign-changing in E \ (D+
ε
∪
D−

ε ), one is posi-
tive in D+

ε \ D−
ε and one is negative in D−

ε \ D+
ε . Consequently, the BVP (1.1)

admits at least one trivial solution and three distinct nontrivial solutions: one is
sign-changing, one is positive and one is negative. Thus the verification of Theorem
3.1 is completed.

Theorem 3.2. Assume (F3) holds. Further
(F4) lim

x→0

f(n,x)
x = 0, uniformly for n ∈ [a+ 1, b+ 1];

(F5) lim
x→+∞

f(n,x)
x = +∞, uniformly for n ∈ [a+ 1, b+ 1].

Then for all λ ∈ Λ2 ≜ (0,+∞), the BVP (1.1) possesses at least one trivial solution
and three nontrivial solutions which are composed of one sign-changing solution,
one positive solution and one negative solution.

Proof. Fix λ ∈ Λ2. By (F5), there exist constant C4 > ωb−a+1

2 and C5 > 0 such
that for all x ∈ R and n ∈ [a+ 1, b+ 1]

F (n, x(n)) ≥ C4

λ
|x(n)|2 − C5. (3.15)

Suppose {x(k)}k∈N ⊂ X be a PS sequence. Then J(x(k)) is bounded for all k ∈ N
and J(x(k))→ 0 as k →∞. On account of X is a (b− a+ 1)-dimensional space, it
suffices to prove {x(k)} is bounded. By (2.4) and (3.15), it follows that

J(x) =
1

2
x(k)TMx(k) −

b+1∑
n=a+1

F (n, x(k)(n))

≤ (
ωb−a+1

2
− C4)∥x(k)∥

2
+ C5λ(b− a+ 1).

(3.16)
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Since J(x(k)) is bounded, then (3.16) means {x(k)} is bounded. Thus J(x) satisfies
the PS condition.

For λ ∈ Λ2, owing to (F4), there exist constants δ3 > 0 and 0 < ϵ < ω1 such
that

F (n, x(n)) ≤ ϵ

2λ
|x(n)|2, ∀|x| < δ3, n ∈ [a+ 1, b+ 1], (3.17)

which leads to

J(x) =
1

2
xTMx−

b+1∑
n=a+1

F (n, x(n)) ≥ ω1

2
∥x∥2 − ϵ

2
∥x∥2 =

ω1 − ϵ

2
∥x∥2. (3.18)

Similar to (3.6), we have

∥x±∥ ≤ 1
√
ω1

distH(x,∓Ω) ≤ 1
√
ω1

ξ, ∀x ∈ D+
ε

∩
D−

ε . (3.19)

Therefore, by (3.18) and (3.19), we can draw a conclusion that there exists č0 ≥ 0
such that inf

x∈D+
ε

∩
D−

ε

J(x) = č0. Make use of (3.15) again, we have

J(x) =
1

2
xTMx−

b+1∑
n=a+1

F (n, x(n)) ≤ (
ωb−a+1

2
−C4)∥x∥2+C5λ(b− a+1). (3.20)

In virtue of ωb−a+1

2 − C4 < 0, (3.20) deduces J(x)→ −∞ as ∥x∥ → +∞.
The remain proof is similar to that of Theorem 3.1.

Corollary 3.1. Assume (F3) and (F4) hold. Replace (F5) by
(F6) There exist constants ρ > 0 and θ > 2 such that

0 < θF (n, x) ≤ x · f(n, x), |x| ≥ ρ, n ∈ [a+ 1, b+ 1]. (3.21)

Then conclusions in Theorem 3.2 are still true.

Proof. According to Theorem 3.2, it suffices to show (F5) is true under the con-
dition (F6). In fact, if (F6) holds, that is,

f(n, x)

F (n, x)
≥ θ

x
, ∀n ∈ [a+ 1, b+ 1], |x| ≥ ρ. (3.22)

Integrating both sides of (3.22), it follows that there exists constant c > 0 such that

F (n, x) ≥ c|x|θ, ∀n ∈ [a+ 1, b+ 1], |x| ≥ ρ,

which implies that

|f(n, x)| ≥ cθ|x|θ−1
, ∀n ∈ [a+ 1, b+ 1], |x| ≥ ρ.

Since θ > 2, it yields that

lim
x→+∞

f(n, x)

x
= lim

x→+∞

|f(n, x)|
|x|

≥ lim
x→+∞

cθ|x|θ−1

|x|
= lim

x→+∞
cθ|x|θ−2

= +∞.

Therefore, (F5) in Theorem 3.2 is valid. And the proof is completed.
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Theorem 3.3. Assume (F3) and (F6) hold. Further
(F7) there exist constants ϑ, σ > 2 and k, l > 0 such that

k|x|ϑ ≤ F (n, x) ≤ l|x|σ, ∀x ∈ R, n ∈ [a+ 1, b+ 1].

Then for all λ ∈ Λ2 ≜ (0,+∞), the BVP (1.1) admits at least four solutions which
contain one sign-changing solution, one positive solution, one negative solution and
one trivial solution.

Proof. First, we show that J(x) satisfies the PS condition. Recall the definition
of ∥ · ∥H and J(x) ∈ C1(X,R), then for any x ∈ X

(J ′(x), x) =

b+1∑
n=a+1

[
|∆2x(n− 1)|2−α|∆x(n−1)|2−β|x(n)|2

]
− λ

b+1∑
n=a+1

f(n, x(n))x(n)

=∥x∥2H − λ

b+1∑
n=a+1

f(n, x(n))x(n).

(3.23)

In virtue of (F6) and the continuity of F (n, x)− 1
θx · f(n, x) respect to x ∈ [−ρ, ρ],

there exists C6 > 0 such that

F (n, x) ≤ 1

θ
x · f(n, x) + C6, x ∈ R, n ∈ [a+ 1, b+ 1]. (3.24)

Set sequence {x(i)}i∈N ⊂ X such that |J(x(i))| ≤ R̄ for some constant R̄ > 0 and
J ′(x(i)) → 0 as i → ∞. For λ ∈ Λ2 ≜ (0,+∞), by (3.23) and (3.24), it is ease to
get

R̄ ≥J(x(i)) =
1

2
∥x(i)∥2H − λ

b+1∑
n=a+1

F (n, x(i)(n))

≥1

2
∥x(i)∥2H −

λ

θ

b+1∑
n=a+1

f(n, x(i)(n))x(i)(n)− λ

θ
C6(b− a+ 1)

=
1

2
∥x(i)∥2H −

1

θ
(∥x(i)∥2H − (J ′(x(i)), x(i)))− λ

θ
C6(b− a+ 1)

=(
1

2
− 1

θ
)∥x(i)∥2H +

1

θ
(J ′(x(i)), x(i))− λ

θ
C6(b− a+ 1)

≥(1
2
− 1

θ
)∥x(i)∥2H −

1

θ
∥J ′(x(i))∥ · ∥x(i)∥H −

λ

θ
C6(b− a+ 1).

(3.25)

We claim that {x(i)} is bounded in X. Or else, without loss of generality, assume
that lim

i→+∞
∥x(i)∥H =∞. Then (3.25) means that

0← R̄

∥x(i)∥2H
≥ (

1

2
−1

θ
)−∥J

′(x(i))∥
θ∥x(i)∥H

−λC6(b− a+ 1)

θ∥x(i)∥2H
→ (

1

2
−1

θ
), as ∥x(i)∥H →∞.

Meanwhile, θ > 2 which contradicts 0 ≥ ( 12 −
1
θ ). Therefore, {x(i)} is bounded in

(b− a+ 1)-dimensional space X and J(x) satisfies the PS condition.
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Next, to finish the similar proof to Step 3 in Theorem 3.1, for simplicity, we
only state the proofs of J(x) → −∞ as x → +∞ and there exists a constant c̃0
such that inf

x∈D+
ε

∩
D−

ε

J(x) = c̃0.

By means of (F7) and (2.1), for λ ∈ Λ2, it yields

J(x) =
1

2
xTMx− λ

b+1∑
n=a+1

F (n, x(n)) ≤ 1

2
ωb−a+1∥x∥2 − λk∥x∥ϑϑ

=
1

2
ωb−a+1∥x∥2 − λk(b− a+ 1)

2−ϑ
2 ∥x∥ϑ

→ −∞, as ∥x∥ → +∞.

(3.26)

On the other hand, thanks to (F7), we have

J(x) =
1

2
∥x∥2H − λ

b+1∑
n=a+1

F (n, x(n))

≥ 1

2
∥x∥2H − λl∥x∥σσ

=
1

2
∥x∥2H − λl(b− a+ 1)

2−σ
2 ∥x∥σ.

(3.27)

Notice (3.6) means that ∥x±∥ ≤ 1√
ω1

distH(x,∓Ω) ≤ 1√
ω1

ε0 for all x ∈ D+
ε
∩
D−

ε .
Thus the equivalence between ∥x∥H and ∥x∥ and (3.27) yield that there exists
c̃0 > −∞ such that inf

x∈D+
ε

∩
D−

ε

J(x) = c̃0.

Moreover, (F7) can be rewritten as

k|x|ϑ−2 ≤ F (n, x)

|x|2
≤ l|x|σ−2, ∀x ∈ R \ {0}, n ∈ [a+ 1, b+ 1],

which means that

lim
x→0

f(n, x)

x
= 0, ∀n ∈ [a+ 1, b+ 1]. (3.28)

Together with (F3) and repeat the process of Step 2 in Theorem 3.1, it yields the
desired results similar to that in Step 2 of Theorem 3.1.

Consequently, all conditions in Lemma 2.1 are fulfilled and Lemma 2.1 ensures
that the results in Theorem 3.3 are correct. Thus the verification is completed.

Take account of Remark 2.1, it is feasible to replace the PS condition by the
(C)c condition. We have

Theorem 3.4. Assume f(n, x) satisfies the assumptions (F1), (F3) and
(F8) there exist constants r, d > 0 and τ > 2 such that

F (n, x) ≥ r|x|τ − d, ∀x ∈ R, n ∈ [a+ 1, b+ 1].

Further, either
(F9) lim

|x|→+∞
[xf(n, x)− 2F (n, x)] = +∞ for all n ∈ [a+ 1, b+ 1];

or
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(F10) lim
|x|→+∞

[xf(n, x)− 2F (n, x)] = −∞ for all n ∈ [a+ 1, b+ 1].

Then for λ ∈ Λ3 = (0, ω1

f0
), the BVP (1.1) has at least four solutions including one

sign-changing solution, one positive solution, one negative solution and one trivial
solution.

Proof. With the assumptions (F1), (F3), (F8), (F9) or (F1), (F3), (F8), (F10)
the proof of Theorem 3.4 can be done by same manner. So we only state the proof
under conditions (F1), (F3), (F8) and (F9).

First of all, we show J(x) satisfies the (C)c condition with (F9).
Suppose sequence {x(j)}j∈N ⊂ X such that J(x(j)) → c for some c ∈ R and

(1 + ∥x(j)∥)J ′(x(j))→ 0 as j →∞. Thus there is no harm in supposing that there
exists R > 2c+ 1 such that

|J(x(j))| ≤ R− 1

2
and (1 + ∥x(j)∥)∥J ′(x(j))∥ < 1, j ∈ N. (3.29)

Note that X is an (b−a+1)-dimensional space, then the boundedness of {x(j)}j∈N

guarantees that J(x) satisfies the (C)c condition on X.
Combine (3.23) with (3.29), we have

λ

N∑
n=1

[
f(n, x(j)(n))x(j)(n)− 2F (n, x(j)(n))

]
=2J(x(j))− (J ′(x(j)), x(j)) ≤ 2|J(x(j))|+ ∥J ′(x(j))∥∥x(j)∥
≤2|J(x(j))|+ (1 + ∥x(j)∥)∥J ′(x(j))∥ ≤ R.

(3.30)

Now we claim that {x(j)} is bounded. Or else, suppose {x(j)} is unbounded, then
there exists a subsequence of {x(j)}, without loss of generality, we still denote it by
{x(j)} for simplicity, and some n0 ∈ [a + 1, b + 1] such that |x(j)(n0)| → +∞ as
j →∞. For λ ∈ Λ3, take account of (F9), it follows that

λ[f(n0, x
(j)(n0))x

(j)(n0)− 2F (n0, x
(j)(n0))]→ +∞, j → +∞.

Use (F9) once more, the continuity of f and F means that there exists a constant
R̄ > 0 such that

f(n, x(j)(n))x(j)(n)− 2F (n, x(j)(n)) ≥ R̄, n ∈ [a+ 1, b+ 1], x ∈ X.

Therefore,

λ

b+1∑
n=a+1

[
f(n, x(j)(n))x(j)(n)− 2F (n, x(j)(n))

]

=λ

n0−1∑
n=a+1

[f(n, x(j)(n))x(j)(n)− 2F (n, x(j)(n))]

+ λ[f(n0, x
(j)(n0))x

(j)(n0)− 2F (n0, x
(j)(n0))]

+ λ

b+1∑
n=n0+1

[
f(n, x(j)(n))x(j)(n) + 2F (n, x(j)(n))

]
≥λ(b− a)R̄+ λ[f(n0, x

(j)(n0))x
(j)(n0)− 2F (n0, x

(j)(n0))]→ +∞. (3.31)
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Obviously, (3.30) and (3.31) contradict each other. As a result, {x(j)} is bounded
and J(x) satisfies the (C)c condition.

In the following, owing to (F1), there exists constant δ4 > 0 such that

|f(n, x)| ≤ f0|x|, |x| ≤ δ4, ∀n ∈ [a+ 1, b+ 1].

Similar to (3.11), there exists constant C7 such that

F (n, x) ≤ f0
2
|x|2 + C7, ∀x ∈ R, ∀n ∈ [a+ 1, b+ 1]. (3.32)

Therefore, for λ ∈ Λ3,

J(x) =
1

2
xTMx− λ

b+1∑
n=a+1

F (n, x(n))

≥ 1

2
ω1∥x∥2 − λ

b+1∑
n=a+1

(
f0
2
|x|2 + C7)

=
ω1 − λf0

2
∥x∥2 − λ(b− a+ 1)C7.

(3.33)

Notice λ ∈ Λ3 guarantees ω1 − λf0 > 0 and (3.6) means

∥x±∥ ≤ 1
√
ω1

distH(x,∓Ω) ≤ 1
√
ω1

ε0, ∀x ∈ D+
ε

∩
D−

ε .

Therefore, (3.33) deduces that there exists a constant ĉ0 such that inf
x∈D+

ε

∩
D−

ε

J(x) =

ĉ0.
By (F8), for λ ∈ Λ3,

J(x) =
1

2
xTMx− λ

b+1∑
n=a+1

F (n, x(n))

≤ 1

2
ωb−a+1∥x∥2 − λ

b+1∑
n=a+1

(r|x|τ − d)

=
1

2
ωb−a+1∥x∥2 − λr(b− a+ 1)

2−τ
2 ∥x∥τ + λ(b− a+ 1)d.

(3.34)

Since τ > 2, (3.34) leads to J(x)→ −∞ as ∥x∥ → +∞.
According to the process of the proof of Theorem 3.1, the remain proof is similar

so that won’t be covered again here. And this completes the verification of Theorem
3.4.

4. Examples
Now we present three examples to explicate the the applications of our theoretical
results.

Example 4.1. Consider the BVP (1.1) with a = 0, b = 3, α = −1, β = 0.25 and

f(n, x) = p(n)
x2

1 + x2
− 16.3582x

1 + x2
+ 16.4582x, (4.1)

where p(n) : [a+ 1, b+ 1]→ R.
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It is clear that parameters α, β always satisfy (2.6) and (2.14) and (4.1) fulfills
(F3) with f0 = 0.1 ∈ (0,+∞), f∞ = 16.4582 ∈ (0,+∞). Moreover,

M =



6.75 −5 1 0

−5 7.75 −5 1

1 −5 7.75 −5

0 1 −5 6.75


.

Then ω1 = 0.2779, ω2 = 3.0418, ω3 = 9.2221 and ω4 = 16.4582. According to
Theorem 3.1, for λ ∈ (1, 2.779), the BVP (1.1) admits at least four solutions: one
is sign-changing, one is positive, one is negative and one is trivial.

To make the results more convenient to see, take λ = 2.2 ∈ (1, 2.779) and
p(n) = n, n ∈ [1, 4]. Then the BVP (1.1) is rewritten by∆4x(n−2)−∆2x(n−1)−0.25x(n)=2.2

(
nx2(n)

1+x2(n)
− 16.3582x(n)

1+x2(n)
+16.4582x(n)

)
,

x(0) = ∆2x(−1) = 0, x(5) = ∆2x(4) = 0, n ∈ [1, 4].

(4.2)

With the aid of computer, we obtain the BVP (4.2) admits 13 real roots which
are composed of 1 trivial solution, 1 positive solution, 1 negative solution and 10
sign-changing solutions. In detail, we list them as the following table:

Table 1. Solutions x = {x(n)}6
n=−1 for the BVP (4.2)

♯ x(−1) x(0) x(1) x(2) x(3) x(4) x(5) x(6) character
1 0 0 0 0 0 0 0 0 trivial
2 -0.0067 0 0.0067 0.0110 0.0110 0.0068 0 -0.0068 positive
3 0.1155 0 -0.1155 -0.1770 -0.1563 -0.0861 0 0.0861 negative
4 -0.5928 0 0.5928 -0.5642 -0.5721 0.5112 0 -0.5112 sign-changing
5 0.3222 0 -0.3222 -0.2310 0.0654 0.2575 0 -0.2575 sign-changing
6 0.6972 0 -0.6972 0.6037 0.0847 -0.6294 0 0.6294 sign-changing
7 0.5380 0 -0.5380 0.1842 0.5816 -0.8075 0 0.8075 sign-changing
8 -0.6370 0 0.6370 -0.6799 -0.3079 0.4212 0 -0.4212 sign-changing
9 -0.4886 0 0.4886 -0.2663 -0.7088 0.5611 0 -0.5611 sign-changing
10 0.8205 0 -0.8205 0.9146 -1.0643 0.6860 0 -0.6860 sign-changing
11 -0.3605 0 0.3605 0.0489 -0.3645 -0.3728 0 0.3728 sign-changing
12 -0.7694 0 0.7694 -1.0381 0.8991 -0.9371 0 0.9371 sign-changing
13 0.6283 0 -0.6283 0.4336 0.4939 -0.7714 0 0.7714 sign-changing

Example 4.2. Let a = 0, b = 4, α = −3, β = −1. Consider the following BVP∆4x(n− 2)− 3∆2x(n− 1) + x(n) = λ(1 + sin2
nπ

6
)x3(n), n ∈ [1, 5]

x(0) = ∆2x(−1) = 0, x(6) = ∆2x(5) = 0.
(4.3)

Obviously, f(n, x) = (1+sin2 nπ
6 )x3 satisfies (F3) and lim

x→0

f(n,x)
x = 0, lim

x→+∞
f(n,x)

x =

+∞. Consequently, Theorem 3.2 ensures that the BVP (4.3) possesses at least four
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solutions: one trivial solution, one sign-changing solution, one positive solution and
one negative solution.

To be more clearly, choose λ = 0.5, then the BVP (4.3) admits 21 real roots. Or,
more specifically, here we list a few as following: trivial solution (0, 0, 0, 0, 0, 0, 0,
0, 0), positive solution (-0.6211, 0, 0.6211, 1.2854, 1.694, 1.354, 0.6939, 0, -0.6939),
negative solution (0.6211, 0, -0.6211, -1.2854, -1.694, -1.354, -0.6939, 0, 0.6939)
and sign-changing solutions (1.44E+57, 0, -1.44E+57, -4.36E+56, 2.85E+55, -
3.45E+55, 3.7576, 0, -3.7576) and (-9.36E+38, 0, 9.36E+38, 2.45E+38, 1.86E+37,
-3.32E+35, -2.9273, 0, 2.9273).

Example 4.3. Consider the BVP (1.1) in the form of{
∆4x(n− 2)− 0.4∆2x(n− 1) + 5x(n) = λ

(
x3(n) + 2x(n)

)
, n ∈ [1, 5]

x(0) = ∆2x(−1) = 0, x(6) = ∆2x(5) = 0.
(4.4)

In view of (4.4), it is easy to get α = −0.4, β = −5, a = 0, b = 4 and
f(n, x) = x3 + 2x fulfills (F3) and (F8). Moreover,

M =



10.8 −4.4 1 0 0

−4.4 11.8 −4.4 1 0

1 −4.4 11.8 −4.4 1

0 1 −4.4 11.8 −4.4

0 0 1 −4.4 10.8


possesses five positive eigenvalues: ω1 = 5.1790, ω2 = 6.4, ω3 = 9.8, ω4 = 15.2 and
ω5 = 20.4210. Further,

max
n∈[1,5]

lim sup
x→0

|f(n, x)
x
| = lim

x→0

x3 + 2x

x
= 2 = f0 ∈ (0,+∞)

and

lim
|x|→+∞

[xf(n, x)− 2F (n, x)] = lim
|x|→+∞

(x4 + 2x2 − x4

2
− 2x2) = lim

|x|→+∞

x4

2
= +∞.

Then all conditions of Theorem 3.4 are satisfied. As a result, Theorem 3.4 ensures
that, for λ ∈ Λ3 = (0, 5.1790

2 ), the BVP (4.4) admits at least four solutions which
contains a sign-changing solution, a positive solution, a negative solution and a
trivial solution.

For more directly to see, let λ = 2.4, the BVP (4.4) has 19 real roots including
16 sign-changing solutions, 1 positive solution, 1 negative solution and 1 trivial
solution. We display them by the following table.
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