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Abstract In the paper we characterize planar polynomial differential systems
with a global center, that is, every orbit of the system is a periodic orbit in
R2. Further, we give algebraic sufficient and necessary conditions for potential
systems and Liénard systems which have a global center, respectively. Last
we discuss some related problems.
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1. Introduction
Consider planar polynomial differential systems

ẋ = P (x, y), ẏ = Q(x, y), (x, y) ∈ R2, (1.1)

where P (x, y) and Q(x, y) are relatively prime real polynomials of degree m and n,
respectively. Without loss of generality, we always assume that n ≥ m.

A classical and difficult problem in the qualitative theory of planar polynomial
differential systems is to give the global phase portraits of the systems having some
center. The notion of center goes back to Poincaré and Dulac. A center is an
equilibrium point p of system (1.1) in R2, which has a neighborhood U such that
p is the unique equilibrium point in U and U \ {p} is filled by nontrivial periodic
orbits (closed orbits) of system (1.1) enclosing p. The center p is global if R2 \{p} is
entirely filled by nontrivial periodic orbits. There are three kinds of centers: linear
type, nilpotent and degenerate, see for instance [12]. More precisely, after moving
the center to the origin of coordinates, and making a linear change of variables
and a scaling of the time variable (if necessary), the planar polynomial differential
system having a center at the origin can be written in one of the following three
forms with polynomials X2(x, y) and Y2(x, y) starting at least with terms of second
order:

ẋ = −y +X2(x, y), ẏ = x+ Y2(x, y),
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which is called a linear type center or an elementary center;

ẋ = y +X2(x, y), ẏ = Y2(x, y),

which is called a nilpotent center;

ẋ = X2(x, y), ẏ = Y2(x, y),

which is called a degenerate center.
In [7] we characterized planar polynomial Hamiltonian systems with a global

center, and showed that the global center of the systems with degree n ≥ 3 can
exhibit any one type of centers, respectively. The aim of this paper is to characterize
planar polynomial differential systems with a global center. In particular, our goal
is to give algebraic sufficient and necessary conditions for some polynomial systems
with a global center. The algebraic sufficient and necessary conditions have been
obtained for cubic homogeneous polynomial Hamiltonian systems with a global
center in [7] and general quasi-homogeneous polynomial Hamiltonian systems with a
global center in [2]. We here focus on potential systems and Liénard systems. In this
study, the Poincaré compactification and the index theory of a planar polynomial
vector field play a key role. From the results in [7] one can see that local dynamics
of the system at infinity can determine if the unique equilibrium point p in R2

is a global center of the planar polynomial Hamiltonian system. And there are
several kinds of global phase portraits in the Poincaré disc D for planar polynomial
Hamiltonian systems with a global center, where ∂D = S1 corresponds to the infinity
of R2. Precisely speaking, the only difference between the corresponding global
phase portraits of two Hamiltonian systems with a global center is the difference in
their orbits at infinity, that is, the equator S1 is the closed orbit of the Hamiltonian
system or not. If the equator S1 is not a closed orbit, then there are finitely many
isolated infinite equilibrium points in S1 such that S1 is a monodromic polycycle
(cf. [4]), in other words, S1 is divided into several open trajectories by finitely many
infinite equilibrium points of system (1.1), where each infinite equilibrium point is
the ω limit set of an open trajectory and the α limit set of another adjacent open
trajectory, and every infinite equilibrium point has only hyperbolic sectors. If we
ignore the exact number of isolated infinite equilibrium points in S1, then there are
only two kinds of global phase portraits in the Poincaré disc D for planar polynomial
Hamiltonian systems with a global center: one has a closed orbit S1 and the other
has a monodromic polycycle S1. We now assume (possibly reverting t into −t)
that, along S1, the orbit is oriented clockwise and there are two pairs of isolated
infinite equilibrium points in S1. Accordingly, we can sketch the two kinds of global
phase portraits in Figure 1 for planar polynomial Hamiltonian systems with a global
center.

In this paper we prove that the conclusion about the two kinds of global phase
portraits is also true for planar polynomial non-Hamiltonian systems with a global
center, see Figure 1. Note that any one of the two kinds of local dynamics on the
equator S1 can determine that the unique equilibrium point p in R2 is a center of a
planar polynomial Hamiltonian system. However, the local dynamics on the equator
S1 cannot determine whether the unique equilibrium point p in R2 is a center of a
planar polynomial non-Hamiltonian system. For example, the equator S1 is a closed
orbit of linear differential systems with a focus at p, but the unique equilibrium point
p is not center. Hence, to characterize planar polynomial differential systems with
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Figure 1. Two kinds of global phase portraits for planar polynomial systems with a global center.

a global center, we need to constrain the local dynamics of the unique equilibrium
point p except the local dynamics of the system at the equator S1. Further, we
study the algebraic sufficient and necessary conditions of the global center for the
general potential systems and cubic generalized Liénard systems, respectively, and
prove that the classic Liénard system can not have a global center.

This paper is organized as follows. In Section 2, we characterize planar poly-
nomial differential systems with a global center. In Section 3, we investigate the
existence of a global center for the potential systems and Liénard systems, obtain
the algebraic sufficient and necessary conditions for the two kinds of polynomial
differential systems, and prove that the cubic generalized Liénard systems are an-
alytically integrable if this system has a global center. We end the paper with a
brief discussion in last section, and some related problems are proposed.

2. The polynomial differential systems with a global
center

In the section we suppose that system (1.1) has an equilibrium point at p in R2.
Without loss of generality, we always assume that p is the origin O = (0, 0). Then
system (1.1) becomes

ẋ = P (x, y) =

m∑
i=1

pi(x, y), ẏ = Q(x, y) =

n∑
j=1

qj(x, y), (2.1)

where pi(x, y) and qj(x, y) are the ith order and jth order homogeneous parts of
polynomials P (x, y) and Q(x, y), respectively, and n ≥ m.

To characterize system (2.1) with a global center, we have to study the dynamical
behaviour of system (2.1) in a neighbourhood at infinity. The most natural way is
to use the compactification by Poincaré sphere such that the equator S1 of Poincaré
sphere corresponds to the infinity of R2. Using the Poincaré transformations

u =
y

x
, z =

1

x
; or v =

x

y
, z =

1

y
(2.2)

and a scaling of the time variable by multiplying zn−1, we can obtain the induced
differential system for calculating infinite equilibrium points of system (2.1). The
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infinite equilibrium points are determined by real linear factors of (n+ 1)-th order
homogeneous polynomial

ypn(x, y)− xqn(x, y), if n = m, (2.3)

or
− xqn(x, y), if n > m. (2.4)

These infinite equilibrium points appear in pairs on opposite diametrically points
of S1, the boundary of Poincaré disc D.

The main result of this section is as follows.

Theorem 2.1. System (2.1) has a global center if and only if the following two
conditions hold.

(i) System (2.1) has a unique equilibrium point at the origin O = (0, 0) in R2 and
it is a center.

(ii) Either system (2.1) has no infinite equilibrium points, that is the equator S1
is a closed orbit (see the left figure in Figure 1), or system (2.1) has finitely
many infinite equilibrium points and the equator S1 is a monodromic polycycle
(see the right figure in Figure 1).

Proof. If system (2.1) has a global center, then from the definition of global center,
we know that system (2.1) has no orbits in R2 whose α or ω limit set contains the
infinite equilibrium points. Therefore, the equator S1 of Poincaré sphere is invariant
under the flow of the induced system on the Poincaré disc. Note that system (2.1)
is analytically equivalent to the induced system on the Poincaré disc. We denote
the number of infinite equilibrium points of system (2.1) by N(∞). Then only three
cases can occur: N(∞) = 0, N(∞) = 2k with 1 ≤ k < +∞ and N(∞) = +∞.

If N(∞) = 0, then S1 is a closed orbit. And if N(∞) = 2k then S1 is a
monodromic polycycle by the continuous dependence of the orbit on the initial
points in D. This leads that condition (ii) holds. To prove the necessity, we only
need to prove that N(∞) 6= +∞.

Assume that N(∞) = +∞. Then n = m, and every point at S1 is an infinite
equilibrium point of system (2.1), that is, S1 is entirely filled by infinite equilibrium
points of system (2.1). By Poincaré transformations (2.2) and dτ/dt = z1−n, system
(2.1) can be transformed to

du

dτ
= qn(1, u)− upn(1, u) + z

(
n−1∑
i=1

zn−1−i(qi(1, u)− upi(1, u))

)
,

dz

dτ
= −z

(
n∑

i=1

zn−ipi(1, u)

)
,

(2.5)

and

dv

dτ
= pn(v, 1)− vqn(v, 1) + z

(
n−1∑
i=1

zn−1−i(pi(v, 1)− vqi(v, 1))

)
,

dz

dτ
= −z

 n∑
j=1

zn−jqj(v, 1)

 .

(2.6)
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Since S1 is entirely filled by infinite equilibrium points of system (2.1),

qn(1, u)− upn(1, u) ≡ 0, and pn(v, 1)− vqn(v, 1) ≡ 0.

This implies that system (2.5) is orbitally equivalent to the following system in the
half-plane z > 0

du

dτ̃
=

n−1∑
i=1

zn−1−i(qi(1, u)− upi(1, u)),

dz

dτ̃
= −

n∑
i=1

zn−ipi(1, u) = −pn(1, u)− z

n−1∑
i=1

zn−ipi(1, u),

(2.7)

Note that dz
dτ̃ |z=0 = −pn(1, u) 6≡ 0. This leads that the equator S1 is not invariant,

which contradicts the definition of the global center. Thus, N(∞) 6= +∞, and the
assertion of necessity follows.

We now prove the sufficiency. Since system (2.1) has a unique center at the
origin O, there exists a neighborhood U surrounding the origin in Poincaré disc D
such that every orbit passing through a point in U \ {O} is a closed orbit of system
(2.1) in U . We call the neighborhood U as periodic annulus. Let Ω be the maximum
periodic annulus surrounding the origin in D. Notice that system (2.1) has a unique
equilibrium point in R2. Then

O ∈ Ω ⊆ D,

and the boundary ∂Ω is either a closed orbit in the interior of D, or ∂Ω = S1 = ∂D.
We claim it is impossible that ∂Ω is a closed orbit in the interior of D. In fact,

if ∂Ω is a closed orbit, we consider the Poincaré map P of system (2.1) associated
to a transversal section to ∂Ω. Then the map P is an analytic function with one
argument because (2.1) is polynomial system. Note that P is an identical mapping
defining in the part of the transversal section contained in the interior of Ω. Hence,
there exists a tubular neighbourhood of ∂Ω such that every orbit through any a
point in the tubular neighbourhood is a closed orbit of system (2.1). This is a
contradiction to the definition of Ω, the maximum periodic annulus surrounding
the origin.

Hence, ∂Ω = S1. This implies that Ω = D. By the condition (ii), the origin O
is a global center of system (2.1).

Let us recall the characterization of planar polynomial Hamiltonian systems with
global center in [7].

Proposition 2.1. Assume that system (2.1) is a Hamiltonian system. Then it has
a global center if and only if the following two conditions hold.

(̃i) The Hamiltonian system has a unique equilibrium point at the origin O = (0, 0)
in R2.

(ii) Either the equator S1 is a closed orbit, or the equator S1 is a monodromic
polycycle.

Comparing Theorem 2.1 and Proposition 2.1, we can see the difference between
Hamiltonian polynomial systems and non-Hamiltonian polynomial systems. The
constraint on the local dynamics of the unique equilibrium point in the condition (i)
is removed for Hamiltonian polynomial systems. The condition (̃i) in Proposition
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2.1 is an algebraic condition. You may be wondering why Hamiltonian systems
can remove this constraint. The reason is that the sum of indices at the infinite
equilibrium points is equal to zero by condition (ii), which leads that the index
of the unique equilibrium point is equal to one by Poincaré-Hopf theorem. From
Proposition 2.1 in [1], an equilibrium point of Hamiltonian system is a center if the
index of the equilibrium point is one.

For condition (ii), if the equator S1 is a closed orbit, we can obtain the algebraic
condition: the (n + 1)-th order homogeneous polynomial (2.3) does not have real
linear factors. If the equator S1 is a monodromic polycycle, then the (n + 1)-th
order homogeneous polynomial (2.3) or (2.4) has and only has real linear factors
with even multiplicity by calculation, but the complete algebraic conditions cannot
be obtained for the existence of the monodromic polycycle. Hence, a necessary
condition for the existence of a global center is the (n + 1)-th order homogeneous
polynomial (2.3) or (2.4) cannot have real linear factors with odd multiplicity. Note
that the (n + 1)-th order homogeneous polynomial (2.3) or (2.4) must have real
linear factors with odd multiplicity if n is even. Therefore, the following corollary
is obvious.

Corollary 2.1. If n = max{m,n} which is even, then system (2.1) cannot have a
global center.

3. The algebraic sufficient and necessary conditions
of the global center

In last section we characterize the polynomial differential system (2.1) with a global
center, which satisfies the conditions (i) and (ii) in Theorem 2.1. Using the condi-
tions (i) and (ii), we should study the local dynamics of system (2.1) at the unique
equilibrium point O, and infinite equilibrium points, respectively. A natural ques-
tion is asked whether we can give some conditions from the expressions of P (x, y)
and Q(x, y) which discriminate if system (2.1) has a global center. Such conditions
are called algebraic condition of the global center. In this section we apply Theorem
2.1 to study the algebraic sufficient and necessary conditions for two kinds of planar
polynomial differential systems with a global center. One is the general potential
system and the other is generalized Liénard system, and discuss the integrability of
generalized Liénard system if the system has a global center.

3.1. The potential systems with a global center
Consider a general potential system with an equilibrium point at the origin O =
(0, 0)

ẋ = U(y),

ẏ = −W (x),
(3.1)

where U(y) and W (x) are real polynomials of degree m and n, respectively. Without
loss of generality, we assume that n ≥ m and

U(y) =

m∑
i=m0

uiy
i, W (x) =

n∑
j=n0

wjx
j , m0, n0 ∈ N,
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where ui and wj are real coefficients, m0 ≥ 1, n0 ≥ 1, and wn0
6= 0 and um0

> 0.
Our main result in this section is as follow.

Theorem 3.1. System (3.1) has a global center at the origin O if and only if the
following two conditions hold.

(A) U(y) = 0 and W (x) = 0 have a unique real root y = 0 and x = 0, respectively;
(B) both n and m are odd and wn > 0.

Proof. It is clear that system (3.1) is Hamiltonian system with Hamiltonian func-
tion

H(x, y) =

∫ y

0

U(s)ds+

∫ x

0

W (s)ds =

m∑
i=m0

ui

i+ 1
yi+1 +

n∑
j=n0

wj

j + 1
xj+1.

By Proposition 2.1, we need to check whether conditions (A) and (B) hold if O is
a global center of system (3.1). Note that the condition (̃i) in Proposition 2.1 is
exactly condition (A). Hence, to prove the necessity, we only need to show that the
condition (ii) in Proposition 2.1 implies condition (B).

Assume the condition (ii) holds. Then either system (3.1) has no infinite equi-
librium points or the indices at every infinite equilibrium points are equal to zero
in the monodromic polycycle. What are infinite equilibrium points of system (3.1)?
By equalities (2.3) and (2.4), we let

G(x, y) =

{
y · uny

n − x · (−wnx
n) = wnx

n+1 + uny
n+1, n = m,

−x · (−wnx
n) = wnx

n+1, n > m.

Then the infinite equilibrium points of system (3.1) correspond to the intersection
points of S1 and the lines determined by the real linear factors of G(x, y).

To calculate the indices at the infinite equilibrium points, we use Poincaré trans-
formation v = x/y, z = 1/y and time scaling dτ/dt = z1−n for system (3.1) to induce
a vector field as follows.

dv

dτ
= zn(U(

1

z
) + vW (

v

z
)) =

n∑
i=1

zn−i(ũi + w̃iv
i+1),

dz

dτ
= zn+1W (

v

z
) =

n∑
i=1

w̃iz
n+1−ivi,

(3.2)

where

ũi =

{
ui, m0 ≤ i ≤ m,

0, others,

and

w̃i =

{
wi, n0 ≤ i ≤ n,

0, others.

Thus, we discuss the indices of infinite equilibrium points in the two cases:
m = n and n > m, separately.

Case 1: m = n. Note that m = n means wnun 6= 0.
Obviously, if G(v, 1) = wnv

n+1 + un = 0 has a nonzero real root v0, then the
equilibrium point (v0, 0) of system (3.2) is an infinite equilibrium point of system
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(3.1). Note that wnv
n+1 + un = 0 has only simple nonzero roots when wnun 6= 0

if it has. Assume that (v0, 0) with v0 6= 0 is an infinite equilibrium point of system
(3.1). We now calculate the index of (v0, 0). Consider Jacobian matrix of system
(3.2) at the point (v, z) = (v0, 0)(n+ 1)wnv

n
0 ∗

0 wnv
n
0

 ,

which has two real eigenvalues with the same sign. This leads that (v0, 0) is a
hyperbolic node of system (3.2). This implies the index of (v0, 0) is equal to one,
which contradicts condition (ii). Hence, equation G(v, 1) = wnv

n+1+un = 0 has no
real roots. Note that un > 0 since U(y) has a unique real zero y = 0 and um0

> 0.
Thus, wn > 0 and m = n is odd. This is condition (B).

Case 2: n > m. When n > m, system (3.1) has only a pair of infinite equilibrium
points which correspond to the intersection points of S1 and the line x = 0. And
the infinite equilibrium point of system (3.1) corresponds to an equilibrium point
(v, z) = (0, 0) of system (3.2). Using the computing method of the index at an
equilibrium point defined by Poincaré, we calculate the index of system (3.2) at
(v, z) = (0, 0).

Taking a small circle Sε = {(v, z) : v2 + z2 = ε2, 0 < ε � 1} around (v, z) =
(0, 0) and choosing a direction vector V = (1, 0), we consider the points at which
the vector field of (3.2) is parallel to V , that is the points lie on the real algebraic
curve

zn+1W (
v

z
) =

n∑
i=1

w̃iz
n+1−ivi =

n∑
i=n0

wiz
n+1−ivi = 0.

Notes that W (x) = 0 has the unique solution x = 0 in R. Thus zn+1W ( vz ) = 0 on
R2 is equivalent to z = 0 or v = 0. Therefore, near the intersection points of z = 0
and Sε, the direction vector of system (3.2) on Sε can be approximated by

(
dv

dτ
,
dz

dτ
) ≈ (wnv

n+1, wnv
nz).

Near the intersection points of v = 0 and Sε, the direction vector of system (3.2)
on Sε can be approximated by

(
dv

dτ
,
dz

dτ
) ≈ (umzn−m, wn0

vn0zn+1−n0).

Note that um > 0, wn0
wn > 0 and n− n0 is even since U(y) = W (x) = 0 has only

the solution (x, y) = (0, 0) on R2. Further, since the boundary S1 of Poincaré disc
is a monodromic polycycle, system (3.2) on z = 0 satisfies that dv

dτ = wnv
n+1 dose

not change its sign, so n and n0 are both odd.
By discussing the sign of wn and the parity of m, we easily obtain the four

cases on direction vectors at the intersection points of curve vz = 0 and Sε in
counterclockwise sense, see Figure 2. And we obtain that the index at point (v, z) =
(0, 0) is

ind(0, 0) =


0, m is odd and wn > 0,
+2, m is odd and wn < 0,
+1, others.
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Figure 2. The changes on the direction of vector field (3.2) near the intersection points of Sε and
vz = 0.

Hence, both m and n are odd and wn > 0 if the index of (v, z) = (0, 0) is zero. This
implies condition (B) holds.

Next, we prove the sufficiency. When n = m, the sufficiency can be obtained by
Proposition 2.1 immediately since system (3.1) has no infinite equilibrium points if
n is odd and un > 0, wn > 0.

When n > m, system (3.1) has only a pair of infinite equilibrium points corre-
sponding the equilibrium (v, z) = (0, 0) of system (3.2). For system (3.2), we claim
that there exists a neighborhood of (v, z) = (0, 0) such that the ω or α limit set
of any orbits except z = 0 in this neighborhood is not (v, z) = (0, 0). That is for
any point p = (vp, zp) near (v, z) = (0, 0) and zp 6= 0, the integral curve t 7→ γ(t, p)
which passes through p can not be the characteristic orbit of system (3.2).

If the claim is not true, then there exists a point p = (vp, zp) near (v, z) = (0, 0)
such that γ(t, p) is a characteristic orbit, i.e.

γ(t, p) = (vγ(t, p), zγ(t, p)) → (0, 0), when t → +∞

and
vγ(t, p)

zγ(t, p)
→ λ, for some λ ∈ [−∞,+∞].

Note that system (3.2) has a first integral

F (v, z) =

∫ 1
z

0

U(s)ds+

∫ v
z

0

W (s)ds =

m∑
i=m0

ui

i+ 1

1

zi+1
+

n∑
i=n0

wi

i+ 1

vi+1

zi+1
.

Let K = F (vp, zp). Then

(F ◦ γ)(t, p) = F (vγ(t, p), zγ(t, p)) = K < +∞.

On the other hand, um > 0 since um0
> 0 and U(y) = 0 has a unique solution y = 0

on R. Recall n,m are both odd and um, wn > 0, hence we have

F (vγ(t, p), zγ(t, p)) =
um

m+ 1

1

zγ(t, p)m+1
+ o(

1

zγ(t, p)m+1
) +

n∑
i=n0

wi

i+ 1
(
vγ(t, p)

zγ(t, p)
)i+1

→ +∞, when t → +∞.

It is a contradiction. In summary, the claim is true.
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Hence, the equilibrium point (v, z) = (0, 0) has only elliptic sectors or hyperbolic
sectors and z = 0 is exactly a separatrix. Suppose the number of elliptic sectors
and hyperbolic sectors of (v, z) = (0, 0) are e and h, respectively. Thus e + h = 2.
On the other hand, by Bendixson formula, we have

ind(0, 0) = 1 +
e− h

2
.

The index ind(0, 0) is calculated in the proof of the necessity, and it is equal to
0. Hence, we have e = 0, h = 2, i.e. the neighbourhood of point (x, z) = (0, 0) is
exactly composed of two hyperbolic sectors. By Proposition 2.1, O is the global
center of system (3.1). The proof is complete.

Remark 3.1. The condition (A) is usually checked by some methods about sym-
bolic computation, see [14] for detail.

3.2. Liénard systems with a global center
Consider generalized Liénard system

ẋ = y − F (x) = y −
∫ x

0

f(s)ds,

ẏ = −g(x),

(3.3)

where f(x) and g(x) are real polynomials of variable x with degree m and n, re-
spectively, and f(0) = g(0) = 0. Then

f(s) =

m∑
i=1

ais
i, g(x) =

n∑
j=1

bjx
j , F (x) =

m∑
i=1

ai
i+ 1

xi+1,

where ai, bi ∈ R, n and m are positive integers.
If g(x) = x, then system (3.3) becomes the classical Liénard system

ẋ = y − F (x) = y −
∫ x

0

f(s)ds,

ẏ = −x.

(3.4)

In the subsection, we prove that classical Liénard system (3.4) cannot have a global
center, and study the algebraic sufficient and necessary conditions of cubic general-
ized Liénard system (3.3) having a global center. And we show the cubic generalized
Liénard system (3.3) is integrable if it has a global center. Our main results are as
follows.

Theorem 3.2. System (3.4) does not have a global center if f(s) 6≡ 0.

Theorem 3.3. Assume that f(s) = a1s + a2s
2 and g(x) = b1x + b2x

2 + b3x
3 in

system (3.3). Then the cubic system (3.3) has a global center at the origin O = (0, 0)
if and only if one of following conditions holds.

(I) a1 = a2 = 0, and bi, i = 1, 2, 3, satisfies one of the following conditions.
(I.1) b1 > 0, b2 = b3 = 0;
(I.2) b1 > 0, b3 > 0 and b22 < 4b1b3;
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(I.3) b3 > 0 and b1 = b2 = 0.
(II) 0 6= a21 < 8b3, b1 ≥ 0 and a2 = b2 = 0.

Moreover, the global center O is elementary (nilpotent) if b1 > 0 (b1 = 0, resp.).

Corollary 3.1. If the cubic system (3.3) has a global center at the origin O = (0, 0),
then there exists a first integral of the system in R2 or in R2 \{(0, 0)}. Furthermore,
the first integral is analytic in R2 if either condition (I) holds or condition (II) with
b1 > 0. And the first integral is analytic in R2 \{(0, 0)} if condition (II) with b1 = 0
holds.

Proof of Theorem 3.2. It is clear that system (3.4) has a unique equilibrium point
at the origin O = (0, 0) in R2. If f(s) 6≡ 0, then system (3.4) has a pair of infinite
equilibrium points which corresponds to the y-axis direction, that is x = 0. Using
the technique of calculation of index at an infinite equilibrium point in the proof of
Theorem 3.1, we can find that the index at the infinite equilibrium point is equal
to −1 by standard calculation. To save space, we omit the detail here. Therefore,
the origin O is not a global center by Theorem 2.1. The proof is complete.

Remark 3.2. In [3], authors studied the perturbation of classical Liénard system
ẋ = y − 1

2x
2, ẏ = −x which has a unique center at the origin in R2. This center

is not a global center since the limit set of orbit y − 1
2x

2 + 1 = 0 is an infinite
equilibrium point. Proposition 16 in [3] shown that the origin of system ẋ = y −
1
2x

2 + εα̃(x2), ẏ = −x is still a center, where 0 < |ε| � 1. By Theorem 3.2, we
know that this center is not yet a global center.

To prove Theorem 3.3, we first state two propositions.

Proposition 3.1. Assume that f(s) = a1s + a2s
2 and g(x) = b1x + b2x

2 + b3x
3

in system (3.3). Then the cubic system (3.3) has an equilibrium point at the origin
O = (0, 0), which is a center if and only if one of following conditions holds.

(i) b1 > 0, a2 = b2 = 0;
(ii) b1 > 0, a1b2 = a2b1, a1b3 = 0;

(iii) a21 < 8b3, a2 = b1 = b2 = 0.

Proof. This result can be obtained from Theorem 3.8 in [5] by some transforma-
tions. Notice that Theorem 3.8 in [5] was given under assumption either b1 = 1 or
b1 = b2 = 0 and b3 = 1. In order to apply Theorem 3.8, we make the following
transformation if 0 < b1 6= 1

x 7→
√
b1x, y 7→ y, t 7→

√
b1t.

Then system (3.3) is transformed into

ẋ = y − (
a1
2b1

x2 +
a2

3b
3
2
1

x3),

ẏ = −(x+
b2

b
3
2
1

x2 +
b3
b21
x3).

(3.5)

If b1 = b2 = 0 and b3 > 0, then using the transformation

x 7→ 4
√
b3x, y 7→ y, t 7→ 4

√
b3t,
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we can make system (3.3) become

ẋ = y − (
a1

2
√
b3
x2 +

a2

3 4
√

b33
x3),

ẏ = −(
b1√
b3
x+

b2
4
√
b33
x2 + x3).

(3.6)

Apply Theorem 3.8 in [5] to system (3.5) and (3.6), we obtain the conclusion. The
proof is finished.

The follow proposition give the necessary conditions for cubic system (3.3) hav-
ing a global center.

Proposition 3.2. If the origin O is a global center of the cubic system (3.3), then
a2 = 0.

Proof. If a2 6= 0, then the cubic system (3.3) has a pair of infinite equilibrium
points which corresponds to the infinity of y-axis, that is the line x = 0. By Poincaré
transformation and time scaling, the cubic system (3.3) can be transformed to the
following form

dv

dτ
= (b3v −

a2
3
)v3 + (b2x− a1

2
)v2z + (1 + b1v

2)z2,

dz

dτ
= vz(b3v

2 + b2vz + b1z
2).

(3.7)

On the invariant line z = 0, near the equilibrium (v, z) = (0, 0), we have

dv

dτ
= −a2

3
v3 + o(v3).

Since the sign of −a2

3 v3 + o(v3) near v = 0 can change on the line z = 0, it is
impossible that the equator S1 is a monodromic polycycle. This contradicts to
Theorem 2.1. Hence, we have a2 = 0. The proof is complete.

Proof of Theorem 3.3. From Proposition 3.1 and Proposition 3.2, we divide the
parameters into the following three sets of conditions for verifying the conclusion.

C1. b1 > 0, a1 = a2 = 0.
C2. b1 > 0, a1 6= 0, a2 = b2 = 0.
C3. 0 6= a21 < 8b3 and a2 = b1 = b2 = 0.

If condition C1 holds, then the cubic system (3.3) becomes a potential system
as follows

ẋ = y,

ẏ = −x(b1 + b2x+ b3x
2).

(3.8)

By Theorem 3.1, we know that the condition C1 is the sufficient and necessary
conditions for system (3.8) having a global center. Hence, the cubic system (3.3)
has a global center under the condition C1.

If condition C2 hold, then b3 6= 0 by Theorem 3.2. Since g(x) = 0 has a unique
real solution x = 0, we have b3 > 0. The cubic system (3.3) has exactly a pair of
infinite equilibrium points, which correspond to the infinity along the line x = 0
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under the conditions C2 or C3. When a2 = b2 = 0, b1 ≥ 0, b3 > 0 and a1 6= 0, the
cubic system (3.3) becomes

ẋ = y − a1
2
x2,

ẏ = −(b1x+ b3x
3).

(3.9)

To obtain the conclusion, we need to prove that the neighbourhoods of system (3.9)
at the infinite equilibrium point are exactly composed of two hyperbolic sectors if
and only if a21 < 8b3.

In fact, by Poincaré transformation and time scaling, system (3.9) can be trans-
formed to

dv

dτ
= b3v

4 − a1
2
v2z + (1 + b1v

2)z2,

dz

dτ
= vz(b3v

2 + b1z
2).

(3.10)

By the transformation (u1, z) 7→ (v, z) := (u1z, z) and time scaling dτ 7→ zdτ , we
blow up the equilibrium (v, z) = (0, 0) of system (3.10) in the z-direction and obtain

du1

dτ
= −a1

2
zu2

1 + 1,

dz

dτ
= z3u1(b3u

2
1 + b1),

(3.11)

which has no equilibrium points on line z = 0. and it means there is no equilibrium
under blowing up on direction θ 6= 0 in polar blowing up.

Next we blow up the equilibrium point (v, z) = (0, 0) in v-direction by map
(v, v1) 7→ (v, z) := (v, vv1) and time scaling dτ 7→ vdτ , system (3.10) can be trans-
formed into

dv

dτ
= v(v21 −

a1
2
vv1 + b3v

2 + b1v
2v21),

dv1
dτ

= v21(
a1
2
v − v1).

(3.12)

(v, v1) = (0, 0) is the unique equilibrium of system (3.12) on v = 0 and it is still non-
elementary. Then we shall blow up this equilibrium twice. It is easily calculated that
there are two elementary saddles on direction θ = π

2 ,−
π
2 by blowing up (v, v1) =

(0, 0) of system (3.12) in v1-direction. And blowing up point (v, v1) = (0, 0) in
v-direction again (the process of blowing up see Figure 3), we have

dv

dτ
= v(b3 −

a1
2
v2 + v22 + b1v

2v22),

dv2
dτ

= v2(−b3 + a1v2 − 2v22 − b1v
2v22).

(3.13)

System (3.13) has isolated equilibrium point (v, v2) = (0, v∗2) on v = 0, where v = v∗2
is the real root of equation

v2(2v
2
2 − a1v2 + b3) = 0.

If v∗2 = 0, it is no hard to see the equilibrium (v, v2) = (0, 0) is an elementary saddle.
If ∆ = a21−8b3 ≥ 0 and v2 = v∗2 is a real root of equation h(v2) = 2v22−a1v2+b3 = 0,
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Figure 3. The process of blowing up for the equilibrium point of system (3.12).

we claim Jacobian matrix of system (3.13) at the equilibrium point (v, v2) = (0, v∗2)
has two real eigenvalues and at least one of them is not zero, i.e. the equilibrium
point (v, v2) = (0, v∗2) is either a saddle or a node or a saddle-node.

Indeed, Jacobian matrix of system (3.13) at (v, v2) = (0, v∗2) has the formλ1 ∗

0 λ2

 =

(v∗2)2 − a1

2 v∗2 + b3 ∗

0 v∗2(a1 − 4v∗2)

 . (3.14)

If ∆ = a21−8b3 > 0, v = v∗2 is a simple real root for equation h(v2) = 0 since ∆ > 0,
then we have λ2 = −h′(v∗2) 6= 0. Thus the claim is true.

If ∆ = a21 − 8b3 = 0, i.e. b3 =
a2
1

8 , it is easily calculated that v∗2 = a1

4 . Thus the
other eigenvalue of the Jacobian matrix

λ1 = (v∗2)
2 − a1

2
v∗2 + b3 =

a21
16

6= 0.

Hence, the claim still holds in ∆ = 0.
The claim implies ∆ = a2 − 8b3 < 0 if and only if the neighbourhood of equilib-

rium (x, z) = (0, 0) of system (3.10) is exactly composed of two hyperbolic sectors.
Therefore, the conclusions in Theorem 3.3 are true.

Last, From the linearized system of system (3.3) at O = (0, 0), we can see that
the global center O = (0, 0) is elementary if b1 > 0 in condition (I) and condition
(II), and the global center O = (0, 0) is nilpotent if b1 = 0 in condition (I) and
condition (II). The proof is complete.

Proof of Corollary 3.1. By Theorem 3.3, we know that one of condition (I) and
condition (II) holds if the cubic Liénard system (3.3) has a global center.

If condition (I) holds, then the cubic Liénard system (3.3) is a potential system,
which is Hamiltonian system with Hamiltonian function

H(x, y) =
1

2
y2 +

b1
2
x2 +

b2
3
x3 +

b3
4
x4.

Hence, the first integral H(x, y) of system (3.3) exists in R2, and it is analytic in
whole plane R2 whether the global center O is an elementary center or a nilpotent
center.
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If condition (II) holds, then by direct calculation we obtain a first integral of
the cubic Liénard system (3.3) as follows

F (x, y) =
e

a1 arctan


2b3y+a1b1
2b3x2+2b1

− a1
4√

b3
2

−
a2
1

16


4·

√
b3
2

−
a2
1

16

(x2 + b1
b3
)
√

b3
2 − a2

1

16 + ( 2b3y+a1b1
2b3x2+2b1

− a1

4 )2
.

It is clear that F (x, y) is analytic in R2 if b1 > 0 in condition (II) holds. In this
case the global center O is elementary.

If b1 = 0 in condition (II) holds, then the global center O is nilpotent and the
first integral is

F0(x, y) =
e

a1√
8b3−a2

1

arctan

(
4y−a1x2

x2
√

8b3−a2
1

)
√
(8b3 − a21)x

4 + (4y − a1x2)2
.

It can be checked that F0(x, y) is analytic in R2 \ {(0, 0)} by using the following
transformation

X = x2
√
8b3 − a21, Y = 4y − a1x

2

and X = r cos θ, Y = r sin θ. The proof is finished.

4. Discussion
The existence on periodic orbits of planar polynomial differential systems (1.1) with
degree n is the most fundamental object of ordinary differential equations. This is
related to the Hilbert’s 16th problem and the infinitesimal Hilbert’s 16th Problem,
see [9, 10]. In this paper, we characterize planar polynomial differential systems
(1.1) with degree n whose every orbit is a periodic orbit. In other words, the period
annulus of the system is whole plane R2, it is said the existence of a global center.
Our result shows the existence of a global center depends on parity of n. This
reveals a big difference between planar polynomial differential systems of degree 2n
and degree 2n− 1, where n is a positive integer. More precisely, there is not planar
polynomial differential systems of degree 2n whose every orbit is a periodic orbit,
and for any positive integer n, there exists planar polynomial differential systems of
degree 2n−1 which has a global center. In [7] it has shown that the global center can
become any one type of elementary center, nilpotent center and degenerated center
for Hamiltonian systems of degree 2n+ 1 with n ≥ 1. From qualitative analysis of
viewpoint, we give algebraic sufficient and necessary conditions for the existence of
global center of several polynomial differential systems, such as potential systems,
cubic Liénard systems. Interestingly these polynomial differential systems have the
first integral if each of them has a global center. It is well known there is a close
relationship between the existence of a center and the integrability of the system,
see [12,13,15]. Hence, a natural question is proposed as follows.
Problem 1: Does there exist the first integral of system (1.1) in R2 or R2 \{(0, 0)}
if the system has a global center? What conditions can guarantee that the system
with a nilpotent (or degenerate) global center has an analytical first integral in R2?
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It is well known that if system (1.1) has a global center, then every solution
of the system is a nontrivial periodic solution except the center point in R2. It is
interesting to know what property the period of these periodic solutions has. Hence,
we ask whether the period function of planar polynomial differential system (1.1)
with a global center has a finite number of critical points.
Problem 2: How many critical points has the period function of system (1.1) with
a global center if the number of critical points is finite? Can you give sufficient and
necessary conditions for system (1.1) having an isochronous global center?

On the other hand, a challenge problem is the number of limit cycles bifurcating
from the period annulus, see [6, 9, 10]. For a global center, we can consider limit
cycle bifurcation in any bounded period annulus of R2. There have been some
works on the number of limit cycles bifurcating from any bounded period annulus
of R2 for quasi-homogeneous polynomial systems, see [2, 8, 11]. Under the light of
quasi-homogeneous polynomial systems, we are wonder if one can
Problem 3: Find a new class of planar polynomial differential systems with a
global center such that the number of limit cycles bifurcating from any bounded
period annulus in R2 of the system can be estimated by the degree n of the small
polynomial perturbation and the order k of Melnikov functions of the perturbation.
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