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Abstract In this paper we analyze an ODE model for oncolytic dynamics
of exponential growth of tumor cells with slow-spread of virus, which was
modeled by Komarova and Wodarz but not discussed yet. The involved four
parameters render finding equilibria to be a difficult problem of algebraic va-
rieties. We discuss resultants of polynomials to give complete conditions for
distribution and qualitative properties of equilibria. We prove that the degen-
erate equilibrium is either a saddle-node or a cusp, which is of codimension
infinity. Moreover, we prove that the equilibrium of center type is either a
rough center or a weak center of order 1. Furthermore, analyzing equilibria
at infinity, showing existence of a homoclinic orbit and giving nonexistence
of limit cycles, we exhibit global phase portraits, which suggest strategies of
tumor control.
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1. Introduction

In recent years, oncolytic virotherapy entered clinical trials to tumor patients and
attracted increasing attention of clinicians (e.g. [12,14,27,30]). The idea of this
therapy is to infect the tumor cells with engineered viruses who can infect and lyse
tumor cells, spread throughout the tumor, and leave healthy cells almost unharmed.
In order to describe the dynamics of oncolytic viruses, a number of ODE models
have been established in the past decades (e.g. [1,7,17,21,29]), one of which is of
the general predator-prey type

&=zl (z,y) - ByG(z,y), y=PByG(z,y)—ay (1.1)

considered by Komarova and Wodarz ([17]), where « and y denote the population
of the uninfected tumor cells and infected tumor cells respectively, the coefficient a
represents the virus-infected cells death rate, and the coefficient 8 represents the in-
fectivity of the virus. The function F', describing the growth of an uninfected tumor,
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and the function G, presenting the rate of infection, are both nonnegative polyno-
mials satisfying the F-condition of 4 items (shown in [17, p.531, 532]) and the G-
condition of 7 items (shown in [17, p.532]) respectively. In particular, F' can be mod-
eled in the form Fi,,(z,y) := 1 for exponential growth, Fy(x,y) :=n/(n+z+y) for
linear growth and Fj,(z, y) := 1—(z+y)/W for logistic growth. G can be modeled in
the form G1(z,y) == z/ ((x +e1) (y + £2)), Ga(z,y) := z/ (Vx(y+¢) + = +¢) and
Gs(z,y):=z/ ((\/zy+e1) (VT+/y++/22)), all of which satisfy wginoo G(z,z/a) =
0, referred to as the slow-spread mode.

In 2010, Komarova and Wodarz ([17]) discussed model (1.1) in the slow-spread
mode with three matches, i.e., G; matched with Fi;p,, F; and Fj, separately. For
F = F,yp, they found that system (1.1) has two interior equilibria for large 3, one
of which is a saddle, and showed that the tumor can out-run the virus infection and
grow beyond control. For F' = Fj, which adds saturation to the type ' = Feyp,
they discussed with £; = e5 in 1 and found that system (1.1) has a unique interior
equilibrium Ej : (zg,ys) for large 8 and both z; and y; tend to 0, the state of
extinction, as f — 400, which indicated that the tumor will be driven extinct for
large 3. For F' = Fjg4, which is limited by a carrying capacity, they found that there
exists an equilibrium describing tumor growth towards carrying capacity rather
than towards infinity, indicating that saturation of tumor growth at lower scales
contributes to successful virus therapy. Later, Si and Zhang ([26]) further inves-
tigated the first match, i.e., system (1.1) with Gy and F.,p, for its nonhyperbolic
cases and showed a saddle-node bifurcation on a center manifold, a Hopf bifurca-
tion from which exactly one limit cycle arises, and a Bogdanov-Takens bifurcation
in which a homoclinic orbit arises while the limit cycle disappears. Recently, Zhang
([31]) investigated system (1.1) with Go and F.,,, discussing the distribution of
equilibria and giving a saddle-node bifurcation, a degenerate Hopf bifurcation at a
weak focus of multiplicity 3 and a Bogdanov-Takens bifurcation of codimension 2.

In this paper we consider the match of Gz with Fi.p, which was not discussed
in literatures yet. With this match, system (1.1) can be presented as

Ve Wa i ve)

in the closure of the first quadrant R? := {(z,y) € R? : © > 0,y > 0}, where j, a,
€1 and €5 are all positive constants. In section 2 we investigate its equilibria, which
are determined by a cubic equation but the well-known formulae of cubic roots can
hardly help determine the number of positive roots because it involves irrational
expressions with four parameters. Using the resultant theory of polynomials (10,
p-398]), we prove that system (1.2) has exactly one boundary equilibrium and at
most two interior equilibria, which have two non-hyperbolic cases: the degenerate
case (either one zero eigenvalue or two zero eigenvalues with nilpotent linear part)
and the center type case (a pair of pure imaginary eigenvalues). Section 3 is devoted
to the degenerate case, in which we prove that the equilibrium is either a saddle-node
or a nilpotent cusp of codimension co. In section 4 we discuss the case of center type
and prove that the equilibrium is either a rough center or a weak center of order 1,
using resultant elimination to compute period quantities. Moveover, we prove that
the system has no elementary first integrals in this case. In section 5, analyzing
equilibria at infinity, showing existence of a homoclinic orbit and giving nonexistence
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of limit cycles, we exhibit global phase portraits. We finally demonstrate the case
of a stable focus with a saddle and the case of a center with a homoclinic orbit with
numerical simulations in section 6, providing strategies of tumor control.

2. Analysis of equilibria

As the problems of distribution (i.e., the number and relative positions) and quali-
tative properties of equilibria can be reduced to real zeros of polynomials in Ri, we
need the following lemma on Sylvester resultant ([10]) to deal with semi-algebraic
systems. For convenience, let R[x; A] denote the ring of real polynomials in « pa-
rameterized by X. Let lcoeff(f,z) denote the leading coefficient of polynomial f
with respect to the variable x and res(f;, fj, ) denote the Sylvester resultant of
polynomials f; and f; with respect to x.

Lemma 2.1. Let fi,..., fr € Rlz;A], where k > 1 and XA = (A1, ..., M) € Rf_, If
there is a region U C Ri such that for all X € U the conditions are true: (i)
lcoeff(f;,z) # 0 Vi € {1,...,k}, (ii) res(fi,(fi),,x) # 0 and res(f;, fj,z) # 0
Vi # 3 € {1,..,k}, and (iil) filz.—0 # 0 Vi € {1,...,k}, then the distribution of
positive (and negative) zeros of f1,..., f does not change as X varies in U.

Proof. First, we consider each f; and claim that the number and relative positions
of its positive (and negative) zeros never change as A € U varies. Let deg(f;, ) = n;,
the degree of the polynomial in z, and 1 (), ..., ., (A) be all its complex zeros.
By (iii), 1(A), ..., @n; (A) # 0 for all A € U. Moreover, by (i) and (ii), the Re-
sultant Theorem ([10, p.398]) shows that f; does not have a multiple zero since
lcoeff (fi,x) # 0 and res(f;, (fi),,x) # 0. Note that non-real zeros of the real poly-
nomial f; arise in conjugate pairs as indicated in [15, p.22]. Then, for A, € U we
can assume without loss of generality that

T1(AL) <o < @A) <0< zpr1(As) < -+ < mg(As), (2.1)
Tars(As) = ps(Xe) T1Ws(As), Zgprgs(As) = ps(As) —ivg(As) (22)

for all s € {1,...,r}, where 0 < p < ¢ < n;, us(As), Vs(As) € R and vs(Ay) # 0 for
all s € {1,..,7}, g4i(As) # gy (As) for all i # 5 € {1,...,r}, and r := (n; — q)/2.
Then, our claim is equivalent to that (2.1) and (2.2) hold for all A € . It is known
in [19, Theorem 1.4] that all zeros z1(X), ..., xn, (A) are continuous in A. Thus, as
A € U varies, real zeros x1(A), ..., 24(X) cannot become non-real; otherwise such
a real zero will first become a multiple real zero and then become a pair of non-
real zeros, a contradiction to the fact that f; has no multiple zeros, which is given
just before (2.1). Similarly, we also see that those non-real zeros in (2.2) cannot
become real ones. For the same reason of continuity, those positive (resp. negative)
zeros cannot become negative (resp. positive) ones; otherwise, such a zero will first
become 0 and then become negative (resp. positive), a contradiction to (iii). The
continuity also implies that the order of positive (and negative) zeros in (2.1) does
not change; otherwise, a multiple zero appears. Consequently, our claim is proved.

Next we consider relative positions of real zeros of different f; and f;, where
i # j. Let x,,(A) and Z,5(X) be positive (or negative) zeros of f; and f; respectively.
Then 2, (X) # Z7(A) because by the Resultant Theorem ([10, p.398]) we see from
(ii) that f; and f; have no common zeros. If z,,(Ay) < Zm(As) (resp. > T (Ay))
at a point A € U, then 2, (A) < Tz (A) (resp. > Tz (A)) for all A € U; otherwise,
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by the continuity of zeros, there is a point A, € U such that z,,(N,) = Z5(X\,), a
contradiction. Hence, the proof of this lemma is completed. O

In order to use Lemma 2.1, we compute zeros of those leading coefficients, the
two resultants and the values of f;|,—o as stated in conditions (i)-(iii) so as to
determine a region U mentioned in Lemma 2.1. Then, choosing a point A, in U
arbitrarily, we implement the MAPLE command ‘realroot(f;,107")’ to provide a
list of isolating intervals, each of which has a width < 107", for all real roots of
the polynomial f;|x=x, in x, which by Lemma 2.1 gives the distribution of positive
(and negative) zeros of f1,...fx for A € Y.

Theorem 2.1. System (1.2) has exactly one boundary equilibrium O : (0,0), which
is a saddle, and at most two interior equilibria. The numbers and properties of
interior equilibria are listed in Table 1, where B.(a,e1,e2) is the only positive zero
of the cubic polynomial

B(B) =428 + (Va +1)%e1 — 12Vae)8° — 4/ae5(5(Va + 1)%e1 — 3Vaes) 3
—4va((Va +1)%e; + Vaey)?.

Table 1. Numbers and qualitative properties of interior equilibria.
Parameters Equilibria Number
B < Bila,e1,e2) 0
B = Bu(a,e1,e2) .« (degenerate)

B> Bila,e1,62) a<1 1 (unstable node or focus), Ey (saddle)
(a,e1,€2)
( )

E 1
E 2
B> Bi(a,e1,62) a=1 E; (center type), E5 (saddle) 2
B > Bi(a,e1,62) a>1 E; (stable node or focus), Eo (saddle) 2

Proof. We first prove the existence and uniqueness of positive zero S, (a,e1,£2),
i.e., the cubic polynomial B has a unique positive zero. In fact, by Lemma 2.1, we
compute the resultant

res(B, By, B) = —64y/az2(va + 1)'ei{(Va + 1)%e; — 27V/ae,}?,

which has the only zero 61 =¢1(a, e2) :=27+/aga/(v/a+1)2. Note that lcoeff (B, 3) =
4,/22 > 0 and B(0) = —4v/a((v/a + 1)%e1 + /as2)? < 0. Fixing (a,e2) = (1,1) and
choosing e1 =26/4<27/4=£(1, 1), we implement the command ‘realroot(B,1073)’
with MAPLE ver.18 and find that B has only one real zero, which lies in the
internal [22413 123131 Oy the other hand, choosing ; = 28/4 > 27/4 = £,(1,1),

8102 * 1024 ;
we find that B has three zeros, covered by intervals [—SCHT 84271 /[ 33641 " 67a81)

and [540099665, lg%ggl] separately. By Lemma 2.1, the cubic polynomial ggﬂas asg)jir
of conjugate non-real zeros and one positive zero for all e1 < £;1(a,e2), but two
negative zeros and one positive zero for all e; > £&1(a,e2). For g1 = é1(a,e2),
the cubic polynomial B has a multiple zero because res(B, B;g, B) = 0. Moreover,
since zeros of a polynomial vary continuously as a function of the coefficients and
B(0) # 0, the conjugate non-real zeros of B for 1 < €;(a,e2) will first become one
double negative zero in the critical case €1 = é1(a,e2) and then the two negative
zeros for €1 > £1(a,e2); the simple positive zero of B for €1 < é1(a,e2) remains to
be a simple positive zero for e > £1(a,e3). Consequently, B has only one positive
zero, denoted by S.(a,e1,€2).
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In order to find equilibria of system (1.2), we use the transformation (z,y) —
(22,y?) and the time-rescaling ¢ — 2(xy +1)(z +y + /Z2)t to convert (1.2) to the
polynomial system

&= l’{H(CL’,y) - By2}7 y = y{ﬁmQ - OézH(xay)}ﬂ (23)

where H(z,y) := (zy + €1)(x + y + €2), @ := /a, €1 := €1 and €3 := /g5. Clearly,
in the closure of the first quadrant R? , system (1.2) is topologically equivalent to
system (2.3). Equilibria of system (2.3) are given by the following equations

x{?—[(x,y) - ByQ} =0, y{ﬂxZ - a2rH(x’y)} =0. (24)

On the half-axis y > 0, we see from (2.4) that —a?yH(0,y) = —a?y(y + €2) = 0,
implying that the origin O : (0,0) is the only equilibria. On the half-axis z > 0,
we see from (2.4) that 2H(x,0) = e1z(x + €2) = 0, implying that O is the only
equilibria. Thus O is a unique boundary equilibrium.

Next, we consider interior equilibria, which are determined by the equations

H(Ivy) - 52/2 = 07 B‘T2 - 0427-[(1;7y) =0. (25)

Eliminating H(z,y) in (2.5) shows that interior equilibria lie on the line y = z/a.
Substituting y = 2/« in the second equation of (2.5), we obtain the equation

F(z) = (a+1)2% + (aeg — B)2* + a(a+ D)eyz + a’erea =0, x>0, (2.6)

called the equilibrium equation. Clearly, we cannot use the well-known formulae of
cubic roots because those involved 4 parameters make the irrational expression of
the formulae too complicated to discuss which of those roots is real and positive.
Our strategy is to abandon determining coordinates of equilibria in convention but
give distribution of equilibria with the derivative F,. Compute

Fl(z) = 3(a+ 1)2? + 2(aes — Bz + a(a + 1)ey, (2.7)

which has the discriminant Ap, = 451(8), where S1(8) := 2 — 2ae28 — a(3(a +
1)%¢; — ae3). Clearly S; has two zeros B := aey + (a4 1)y/3e;. Thus,

(C1) in the case Ap <0, ie., B <3 < By, we have F’(x) > 0 for all z > 0,
implying that F(x) is increasing on [0, +00). Since F(0) = a?e1e2 > 0, F has
no positive zeros and therefore system (1.2) has no interior equilibria;

(C2) in the opposite case Aps > 0, i.e., either (C2.1) B < By or (C2.2) § > B,
derivative F has two real zeros

I B — aey £ /51(B)
o 3(a+1)

Note that z7z" = ae;/3 > 0 and = + 2zt = 2(8 — aea)/(3(aw + 1)). Then
T >0 (or < 0) if B> aey (or < ).

In subcase (C2.1), we have 2% < 0 since 3 < 37 < aez. Then F is increasing
for > 0. Noting F'(0) > 0, we see that F' has no positive zero and therefore system
(1.2) has no interior equilibria.

In subcase (C2.2), we have zt > 0 since aey < ﬂf < . Then F is increasing
on the interval (0,27) U (x*, +00) and decreasing on the interval (z~—,z™). Since
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F(z=) > F(0) > 0, the number of positive zeros of F' is determined by the sign
of the minimum F(z*). For the critical case that F(z*) = 0, we compute the
resultant

res(F, Fl,x) = —a*(a + 1)e1S2(B), (2.8)

where S3(/3) is exactly the same cubic polynomial B(3), defined in the theorem in
terms of original parameters a, £; and €. As shown at the beginning of the proof,
S5(B3) has a unique positive root S, which is equal to B.(a?, €1, €35) by the change
of parameters in (2.3). By the Resultant Theorem ([10, p.398]), F' and F, have a
common zero if and only if § = E* since the leading coefficient of F' in x is not zero.
Further we claim that

B. > By, (2.9)
where $; is the positive zero of S; defined just below (2.7). Actually, we have
res(S1, S, B) = &?(a + 1) ex{(a + 1)%e; — 27l }?,

which implies by the Resultant Theorem ([10, p.398]) that S; and S3 have a common
zero if and only if €; = ¢ := 27ae3/(a + 1)%. Since

S1(B)]ey=z, = (B + 8ae2)(B — 10ae2), S2(B)|e,=z, = €2(B + 8ae)* (48 — 49aes),

polynomials Sy and Sz can only have a negative common zero, which implies that
the positive zero 3] is not equal to 3, for all positive a, €; and €. Noticing that

§*|51:g1 = 49aey /4 > 10aes = B |e,=2,

we obtain ,5’; > ﬁfr for all positive , €1 and €. Thus the claimed (2.9) is proved.
Fixing (a,€1,€2) = (1,27/4,1) and choosing 8 = 12 < 49/4 = £.(1,27/4,1), we

see that F' has one real zero, covered by the interval [—%, — 166136894]. Moreover,

choosing 8 = 25/2 > 49/4 = 5.(1,27/4,1), we find that F' has three real zeros,
. 6119 _ 30597 [5081 20325 29839 1865

covered by intervals [—{p=cr, —5105)> (501> s165) and [Fies»> 515 separately. By

Lemma 2.1, we see from (2.6) and (2.8) that F has no positive zero for all 8 < 3,
and two positive zeros x7 < xo for all § > E* For g = 5*, the cubic polynomial F'
has a multiple zero because res(F, F., z) = 0. Moreover, since zeros of a polynomial
vary continuously as a function of the coefficients and F(0) > 0, the two positive
zeros x1 and zo of F for § > 5* will first become a double positive zero x, defined
in (C2) at 8= 5* and then a pair of conjugate non-real zeros for 8 < 5*

Summarily, we obtain the following distributions of interior equilibria: (E0) no
interior equilibria if 8 < B, (E1) one interior equilibrium E, : (z,,z, /a) if 8 = Be,
where z, := 2, and (E2) two interior equilibria Ey : (z1, %1 /a) and Fs : (22, 22/a)
if 5> 5*, where z1 € (z_,z4) and xo € (x4, +00). Further, we give qualitative
properties for those equilibria. Let (x,y) be an equilibrium in general. Then the
Jacobian matrix at (x,y) is given by

H(z,y)—By*+aH, (z,y) x(H, (x,y)—28Yy)
y(2Br—*H(2,y))  Br’—a’H(z,y)—a’yH, (z,y)

J(x,y) =
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Compute the determinant Det.J(0,0) = —a?e?e3 < 0, which implies that the only
boundary equilibrium O is a saddle. For an interior equilibrium (z,y), which lies
on the line y = 2/« as indicated below (2.5), we compute the determinant and the
trace

—2B23F! (x 11—«
DetJ := ﬁT()’ TrJ = 2 {(a+1)%2% + a(1 + a)ear + e Ja.

(2.10)

Clearly, DetJ and TrJ have the same signs as —F/(x) and 1 — « respectively.
In case (E1), since DetJ|,—y, = F.(z4) = 0, equilibrium E, of system (2.3) is
degenerate, which implies line 2 of Table 1. In case (E2), since 1 € (z_,z4+) and
Z9 € (T4,400), we have F.(z1) < 0 and F.(z3) > 0 and therefore DetJ|,—,, > 0
and DetJ|;—,, < 0. Then equilibrium Eg ¢ (29,22/a) is a saddle, which implies
lines 3, 4 and 5 of Table 1. Moreover, since TrJ|,—,, has the same sign as 1 — «,
equilibrium E; : (z1,21/a) is an unstable node or focus for o < 1, of center type
for @« = 1, and a stable node or focus for o > 1, which implies lines 3, 4 and 5 of
Table 1 respectively. This completes the proof. O

In Table 1 there are a ‘degenerate’ case and a ‘center type’ case. We will further
determine qualitative properties in those cases in the following sections.

3. Degenerate case

As indicated on the second line in Table 1, equilibrium F, is degenerate for 5 =
By (a,e1,€2). In this section we give qualitative properties of equilibrium FE,.

Theorem 3.1. Equilibrium E,. of system (1.2) is either a saddle-node when [ =
Bi(a,e1,e2) and a # 1, or a cusp when B = Bi(a,e1,e2) and a = 1.

Proof. As indicated just below (2.3), system (1.2) is topologically equivalent to
system (2.3). Then, we see from case (E1) in the proof of Theorem 2.1 that it is
equivalent to investigate the degenerate equilibrium E, : (,, z, /) of system (2.3)
for B = E* = B.(a? e1,63), defined before (2.9). Recall that parameters in (1.2)
and (2.3) satisfy that eo = €3 and a = o?. For 8 = B* and a # 1, translating
E, to the origin and further normalizing the linear part with the transformation
z +— (cox — acry)/(ca — acy) and y — aca(z — y)/(ca — acy) together with the
time-rescaling t +— (ac; — ¢2)t, where ¢; := 22 + €222 + €1 (20 + 1)x4 + 2a€1 €2 and
ez = (a + 2)23 + aex? + aerxy, we change system (2.3) into the following

o= = 200"+ O(xy) + O(y*) + Oz, y’) = B(x,y), 3.1)
§ =y —201” + O(zy) + O(y*) + O(|z,y[*) = V(x,y), '
where
bno = 4ot (a+ D{(a + 1)z, + 3aea H(a + 3)zy + 206} 40
20T T @ =13 (e F da+ Dz, + 2ae(a+ 1)} ’
ro = atla+1)(a?+ D{(a+ Da, + 3ae H(a + 3)z. + 20e2}2 20

(a =13 (a+ 1)z + aea}H{(a? + da+ 1)z, + 2cea(a + 1)}3

Note that ¥(0,0) = 0 and 0¥(0,0)/0y = 1. By the Implicit Function Theorem,
there is a unique implicit function y = h(z) := ¥ 02? + O(23), analytic at z = 0,
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such that ¥(z,h(z)) = 0 near the origin O : (0,0). Since ®(z,h(z)) = —¢a02? +
O(z?), equilibrium O of system (3.1) is a saddle-node by Theorem IL.7.1 of [32], i.e.,
equilibrium E, of system (1.2) is a saddle-node for 8 = B.(a,e1,¢2) and a # 1.
For g = B* and a = 1, translating E, to the origin and further normalizing
the linear part with the transformation (x,y) — (z — y,x + y) together with the
time-rescaling ¢t — —222(27, + €2)?t/(x4 + €2), we change system (2.3) as

&=y +yN(e,y?), §=Na(z,y°), (3.2)
where
2 1022 + 1legx, + 262 Ty + €9
N 2 — * * 2,2 * 3
1@ y7) :c*x 222 (22, + €2)? * 222w, + 62)2x
3LE* + 262 2 Ty + €9 2
T 9.2 vy -3 2Ty
222 (22, + €2) 22 (22, + €2)
2z, + 3€2 4z, + Se2 Ty + €2
N 2y._ 2 3 4
2 ) = T o T amen )t T 2o t )t
1 2 €2 2 Ty + €2 2242

202z, + €2)° 22027, + )2 7 T 22(27s + €2)2

Further, using the transformation (x,y) — (x,y+ yNi(x,y?)), we reduce the above
system to the following Kukles form

2z, + 32 4 9z, + 4eg

. . 2 3
T = = e+ + O(|x .
4o 22z, + €3)? 22,2z, + Eg)y (I, 91%)

By Theorem I1.7.3 of [32], equilibrium O of the above system is a cusp, i.e., equi-
librium F, of system (1.2) is a cusp. Thus this theorem is proved. O

Remark that for 8 = B.(a,e1,e2) and a # 1 Theorem 3.1 indicates that equilib-
rium FE, of system (1.2) is a saddle-node, from which we easily dicsuss a saddle-node
bifurcation. In the case that 8 = S.(a,e1,e2) and a = 1, Theorem 3.1 indicates that
E. is a nilpotent cusp but none of known results (e.g. [2,8,28]) on Bogdanov-Takens
bifurcation and its degenerate versions can be applied because the following lemma
shows that the cusp is degenerate of codimension oc.

Lemma 3.1. Let P and Q be two analytic real functions near O : (0,0) such
that P(m7y)aQ('T7y) = O(|$79|2>7 P(x,y) = —P<.’L', _9)7 Q(%y) = Q(xa_y) and
Q(x,0) = apz™ + O(ax™Y) for an integer n and a nonzero constant a,,. Then the
following system

t=y+Pz,y), §=Qy) (3.3)
has the normal form & =y and § = a,z™ + O(x"*1).

Proof. Asindicated in [5, Chapter 2], in order to reduce (3.3) to a Poincaré normal
form, we need to perform a sequence of near-identity transformations (z,y) —
(z+h;1,y+hi2) to eliminate those resonant terms, where i > 2 and (h; 1, h; o) € HS,
the vector space of homogeneous polynomials of degree ¢ in two variables with values
in R2. We claim that the i-th order normal form of system (3.3) is of the form

t=y+Pi(z,y), ¥=Rip(x)+Qiti(z,y), (3.4)
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where P11 (2,9), Qiv1(z,y) = Oz, y["™), Pipa(2,y) = —Piyi (2, ~y), Qita(2,y) =
Qit1(2, 1Y), Qir1(2,0) = 0 and R4 1(z) = anz™ + O(z"1). If the claim is true
then this lemma follows.

We prove the claim by induction. Clearly, it is true for ¢ = 1. Assume that it is
true for i = k — 1. Consider the linear operator £% : HY — HJ defined by

LY hy, .= Dh A(z,y)T — Ahy, hy, € HY,

where Dhy, is the Jacobian matrix of hy, matrix A is the linear part of system (3.3)
at the origin and 7T is the transpose. Notice that the linear space HY is (2k + 2)-
dimensional and has a group of bases {e}, ..., e§k+2}, where

=(0,2")", ex:=(0,2"1y)T, e = (0,47
€Z+2 = (xk7O)T¥ 6£+3 = Crk71y70)7¥ s e§k+2 F::(ykaO)T'

We compute that

kb _ (k+1—j)es €j+1 €Il§+1+j’ J=1.k+1,
AT @k 42— ek, j=k+2, .. 2k+2

Let hi(z,y) := (hi1(z,y), hi2(z,y)) € HY, where

hkl :17 y ka ],]x ‘yj and hk2 I y ng j]z

Then we obtain that

k—1 k-1
k . k k . k
Lihi =Y (k= 7)gk—j€54+2 — Gro€hra + D {(k =) fr—ji = Gh—j—1,5+1 }eRsaj-
=0 Jj=0

Note that we need to choose an appropriate hy € HJ to eliminate all terms of degree
k except for the term ¥ in ¢ in (3.4) with 4 = k — 1. For this purpose, assume that

z,y) =Y pe-jat 0y + Oz, y"), Qulx,y) qu 37"y 4 O(lz, g ).

Then those terms of degree k in (3.4) with ¢ = k — 1 are given by

k—1 k—1
k k k k
qr0€1 t E Qk—j—1,j+1€j42 t Pr0€gi2 T E Ph—j—1j+1€Ck134j-
=0 7=0

Therefore, we obtain the following equations

(k= 3)Gk—jj = Qe—j—1,j+1, j=0,..,k—1,
_gk,O :pk,07
(k=) fe—jj = Gr—j—1,j+1 = Ph—j—1,j+1, j=0,.. k-1

Note that px_;; = 0 for all even j and gi—;; = 0 for all odd j since Py(z,y) =
—Py(z,—y) and Qk(x,y) = Qi(x,—y), as indicated just below (3.4). Then the
above equations has a solution gr o = 0, fi,k—1 = go,x + Po,r and

qdk 1,541 .
9k—j,5 = ﬁ7 ]:1,...71€—1,
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(k—J — Dpr—j—1,j+1 + Qh—j—2,j+2 ,
fr—ji= — : SR j=0,.. k-2
ko (k—j—1)(k—j)

Moreover, we choose ggr = 0 and fo = 0. Then, gi_;; = 0 for all even j and
fr—j.; = 0 for all odd j. It follows that

hia(z, —y) = hea(x,y) and  hpa(z, —y) = —hpa(z,y). (3.5)

Under the near identity transformation (x,y) — (z + hi1,y + hi2), system (3.4)
with 4 = k — 1 becomes & = Py(z,y)/Dr(z,y) and § = Ok (z,y)/Dx(z,y) with

Pi(2,y) = Aza(z,y){y + hra(2,y) + Pi(z,y)} — Ar2(e,y){Re(e,y) + Qu(z, )},

Qi(@,y) := —Aza (e, y){y + hi2(,y) + Pz, 9)} + Ava (e, y){Bi(e,y) + Qr(z,y)},

Di(z,y) := Ar1(,y)Az2(z,y) — A2 (7, y) Ar2(, y),
where Ay 1 (z,y) = 1+ Ohp(2,y)/0x, Ars(x,y) = Ohpa(2,y) /0y, Aza(a,y) =
Ohia(,y)/0x, Aza(x,y) =1+ Ohy2(2,y)/0y, Pr(x,y) == Pe(® + hia(z,y),y +
hi2(x,9)), Qi(z,y) = Qr(@ + hi1(,y),y + he2(z,y)) and Ry(z,y) = Ri(z +
hi1(z,y)). By (3.5) and properties given below (3.4), A1 2(z,y), A21(z,y) and
ﬁk(x,y) are all odd functions in y, and Ay 1(z,y), A22(z,y), Dr(x,y), ka(x,y)
and Ry (z,y) are all even functions in y. Note that Di(z,y) = 1 + O(|z,y|) and
Qi (z,0) = apz™ + O(x™*1). Then we can rewritten the k-th order normal form as

i = Pk(xay)
Dk(xvy)

where Pji1, Qr+1 and Ry satisfy the same properties as P11, Qi1 and R4
respectively given just below (3.4). Therefore, the claimed (3.4) is proved by induc-
tion. This completes the proof of this lemma. O

Note that system (2.3), topologically equivalent to system (1.2), can be trans-
formed into the form (3.2), which is of the form (3.3). By Lemma 3.1, system (1.2)
has the normal form

=y+ Peyi(r,y), 9= z) = Ryp1(7) + Qry1(z,y),

=y, y=1v):=ws?+0(>), (3.6)

where w = (22, + 3€2)/{2(2z. + €2)?}. Further, under the transformation =
w(3¥(x)/w)'/? and the time-rescaling ¢t + (3U(z)/w)~2/3¢(x)t, where ¥(x) :=
fow (s)ds, system (3.6) is changed as the system & = y and § = 2?. As indicated
in [16], a system possessing a nilpotent cusp of codimension n has the orbital normal
form & = y and ¢ = 22 4+ 2y with £ := [3(n — 1)/2], the largest integer not greater
than 3(n —1)/2. Thus the cusp E, of system (1.2) is degenerate of codimension co.

4. Case of center type

Theorem 4.1. For 8 > B.(a,e1,e2) and a = 1, equilibrium Ey of system (1.2) is
a center. Moreover, it is either a rough center or a weak center of order 1.

Proof. As indicated on line 4 of Table 1 in Theorem 2.1, equilibrium FE; of sys-
tem (1.2) is of center type for 8 > 8, and @ = 1. For convenience, we also apply the
transformation (z,y) — (22,9?) to system (1.2), as done in the proof of Theorem
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2.1, but do not use a time-rescaling because we will discuss the period function if
the equilibrium is proved to be a center. Thus we obtain the transformed system

where H(x,y) is given just below (2.3). Clearly, the system has the same equilibria
as system (2.3). Thus, we can equivalently investigate the center type equilibrium

Ep: (21,21 /) of system (4.1) for 8 > B, and a = 1, as indicated in the case (E2)
in the proof of Theorem 2.1. Since H(z,y) = H(y, ), we have
_ y{Hy,z) - ®} _ _ {8y’ — H(y,z)}

X(y7x) = ?—l(y,x) 7y(fb,y), y(y,l’) = W = 7')((:573/)5

which implies that system (4.1) is time-reversible with respect to the line y = .
As indicated just below (2.5), equilibrium E; lies on the line y=xasa=1 By
Theorem 3.5.5 of [25], equilibrium E; is a center.

We further determine the order (defined in [4, p.439-440]) of the center Ej.
Translating the center equilibrium of system (4.1) to the origin and then normalizing
the linear part with the transformation z — z and y — —c3/v/4cscex+cq/v/Aescs,
where c3 1= 21 (323 +ea1+€1), ¢4 1= T3 +ea23+3€171+2€1€2, ¢5 1= (23+€1) (271 +€2)
and cg := —a3 + €171 + €162, we reduce system (4.1) to the following

5 5
d=—y+) Xiwy) +O0(z,yl"), g=z+) Yilz,y)+O0(zyl"), (42)

=2 =2

where X;s and Y;s are homogeneous polynomials of degree i. Let T'(r) be the
minimum period of the periodic orbit around the center O through a nonzero point
(r,0). As indicated in [4, Lemma 2.1], the period function T'(r) has the following
expansion

+oo
T(r)=2m+ szk7“2k7
k=1

where coefficients pog s, called periodic quantities, are polynomials in parameters
of system (4.1). Using the software MAPLE ver.18, we compute the first and the
second periodic quantities

p2 = m(2w1 + €2)%(af + 1) Fi(a1) /27,

4.3
Py = 8647rx‘11(2x1 + 62)2(1‘% + 61)20303F2(x1), (43)

where polynomials F; and Fy are given in the Appendix. Clearly, po = 0 (resp.
pa = 0) if and only if Fy(z1) =0 (resp. Fa(x1) = 0).

Let F := Fla=1, Sy 1= Sa]a=1 and E* = 5*|a:1, where F is defined in (2.6) and
S, and f, are given just before (2.9). In order to determine the sign of F} () for
8 > E* and o = 1, we need to investigate the distribution of positive zeros of Fy
and F' for 8 > .. By Lemma 2.1, we compute resultants

res(ﬁ,ﬁ;,x) = 61§2(ﬁ),
res(Fy, (F1),,x) = €1¢;° (4de1 + €3)° Ry (e1) Ra(e1), (4.4)
res(ﬁ,Fl,x) = e?egSg(ﬁ),
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where a non-zero constant factor in each formula is omitted for convenience, Ry (e1) :=
4e; — 2763, S3 and Ry are given in the Appendix. Further we need to discuss the

distribution of positive zeros of S, and Ss for B > B* By Lemma 2.1, we compute
resultants

res(Sa, (S2)f, B) = €261 RS (e1),
res(S3, (53)5, 8) = €13’ (4e1 + €3)"° Ry (e1) Ra(e1) R(e1), (4.5)
res(Ss, S, B) = s (der + €3)°RY (e1) Ra(er),

where a non-zero constant factor in each formula is omitted for convenience,

Ry(e1) :=1280€8 — 1278720€2¢> + 149068844cke? — 3288186800€5€’
1 14779202661c3¢2 — 1883917984810, + 1124864¢1

and Rj is given in the Appendix. We give the distribution of positive zeros of Ry,
R5, R3 and Ry in the following.

Claim 1. R; has one positive zero €19, Ro has four positive zeros €11 < €13 <
€13 < €14, R3 has three positive zeros €11 < €12 < €13 and Ry has four positive zeros
€1 < €12 < €13 < €14. Moreover, €11 < €11 < €12 < €13 < €11 < €14 < €19 < €12 <
€13 < €12 < €14 < €13.

In fact, one can check that lcoeff (R;, €1) # 0, res(R;, (R;):,, €1) #0 and res(R;, R;,
€1) #0 for all 4,5 = 1,2,3,4 and ¢ # j. By Lemma 2.1, the distribution of
positive zeros of Rj,...,R4 does not change as e; varies. Hence, choosing e; = 1
and using MAPLE ver.18 command ‘realroot(R;,1073)" for i = 1,2,3,4, we ob-
tain that R; has a unique positive zero, covered by the interval [e},, €];], where

- ._ 269 + . 27, " :
€10 = 5o and €]y = Z; R has four positive zeros, covered by the inter-
= 1 (i = - . & + . __ 3855
vals [ey;, ef;] (i = 1,2,3,4) separately, where €1; := j5506655065 €11 ‘= 3777483608
¢ .— 7063 o+ ._ 883  — ._ 5199 + ._ 10399 [~ ._ 9147 .4 o+ ._ 36589,
12 °= Terrr2160 €12 °= 20071520 €13 °= 40960 €13 °= 8192 v €14 °= 2048 14 "= 8192
R3 has three positive zeros, covered by the intervals [¢};,é;] (i = 1,2,3) sepa-
s— ._ 13841 ~+ ._ 6921 Z— ._ 220707 ~+ ._ 1765657 ~— ._ 53748983
rately, Whel"61 €121 = 8192 €117 30060 €12 7T T1024 0 €127 T®192 0 €13 °T T 8192
and &fy:= %8623 and R, has four positive zeros, covered by the intervals [é;, é];]
A . _ 4007  ~+ ._ _ 8015 = ~— ._ 177937
M O vy G T L R T i TR
€12 = 006 ¢ €13 7= “g102 0 €13 °= Tg0a8 » €14 Tgigp  and €y = 1024 - Note that

e <€l <En < <€ <ep<en <6<y <& <ey<ef;<ep<ep<
€ < & < e < & <&, <&, <é <éfy < &5 <& Then Claim 1 follows.

Having Claim 1, we further determine the distribution of zeros of S3 and S,
for B > P..

Claim 2. E* is the only positive zero of §2. In the interval (3*, +00), S3 has four

zeros 331 < B2 < B33 < B34 for e; < €11, where B31 = B3z if and only if e = €11,
two zeros B31 < 32 for €11 < €1 < €11, and one zero B3y for €1 > €11.

In fact, it is indicated before (2.9) that /3’* is the only positive zero of Sy. Then
ﬂ* is the only positive zero of Sz because B* B*|a 1 and Sg S2]a=1. Note that
S5(0) = —36(121€1 +36€3)(4e1 +€3)¢ < 0 and lcoeff(S3, B) = 5120€} > 0. Moreover,
those resultants given in (4.5) are all nonzero for all positive €; not equaling to those
12 zeros listed in Claim 1. By Lemma 2.1, the distribution of positive zeros of S3
and Sy does not change as €; varies in each one of the intervals divided by those
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12 zeros given in Claim 1. Thus, from the proof of Claim 1, we choose (€1, €2) =
(6“71) (elj, 1) and ( €, 1) forall i =0,1,2,3,4, j =1,2,3 and k = 1,2,3,4, and
then use MAPLE ver.18 command ‘realroot(Ss, 10_3)’ and ‘realroot(S,,1074)" to
investigate the distribution of real zeros of S5 and Ss. Choosing (e1,€2) = (€11, 1),
we obtain that 3, € [133889 67945] o4 in the interval (B,,+o0) the polynomial S

131072 65536
has four zeros, covered by the intervals [33;, 3%:] (i = 1,2,3,4) separately, where

— ._ 35749 4 ._ 142997 — ._ 143073 + ._ 71537 — ._ 18523
P31 = Spm6s < Ba1 = 1310m < B2 = 131072 < Ps2 = Gosas < 5334_ To3sd <
+ ._ 148185 1156409 + ._ 578205 : :
B33 = 131075 < B31:= T51075 < PB31:= Greag- Lhen, in the interval (8., +o0) the

polynomial S3 has four zeros 831 < f32 < 33 < f34 for all €; < €1;. Similarly,
choosing (e, €2) = (€], 1), we obtain that S5 has two zeros in the interval (ﬁ*, +00).
Then S3 has two zeros 531 < ﬂgg in the interval (5*,+oo) for all €; € (e11,€11)-
For €; = €11, the polynomial S3 has a multiple zero because res(Ss, (5’3)’5,5) =
0. Moreover, since zeros of a polynomial vary continuously as a function of the
coefficients and S5(0) < 0, the two positive zero 831 and B33 of Sz for all €; < €3
become a multiple zero, i.e., 831 = (32, in the critical case €; = €17 and then a pair
of conjugate non-real zeros for all €; € (€11, ¢€11). Further, from a similar discussion
on those choices (e1,e2) = (¢, 1), (€i, 1) and (¢, 1) for all i = 0,2,3,4, j = 1,2,3
and k = 2, 3,4, we obtain that S3 has one zero (3¢ in the interval (B*, +00) for all
€1 > €11. Thus Claim 2 is proved.

Having Claim 2, we further determine the distribution of positive zeros of F}
and F for g > f..

Claim 3. In the interval (B*,Jroo), F has two positive zeros x1 < x2, and F} has
three positive zeros x11 < x12 < 13 for all €1 < €11, where x11 = x12 if and only if
€ = ell,gnd a unique positive zero 1g for all eq > €11. The distribution of positive
zeros of F' and Fy for B > B, is listed in Table 2.

Table 2. The distribution of positive zeros of F and Fy for 8 > E*.

Parameters distribution

0<e <e€qn By < B < B31 11 < T2 <21 <22 < T13
B = B3 11 < T2 =21 < T2 < 13
B31 < B < P32 T < < T2 <22 <T13
B = P32 z11 =21 < T12 < T2 < T13
B2 < B < P31 Ty <11 <212 <2 <13
B = B34 1 <11 < T12 < T2 =T33
5>/534 r1 <711 < T12 <713 < T2

€1 = €11 ﬁ* <B<Par=P3 rii=2x10< <2< T13
B = P32 T11 = T12 =T1 < X2 < T13
B2 < B < P31 r1 <11 =212 <22 <13
B = B34 T1 <T11 =712 < T2 =T33
B> Baa Ty <11 = T2 <213 < T2

en <e <en S <B< P 21 < @2 < 10
B = B3 71 < T3 =7T10
B> Bz T < @10 < T2

€1 > € Be < B < B30 1 < x2 < T10
B = Bao T < T2 = T1o
B> B30 1 < x10 < T2

In fact, F1(0) = —32¢3¢5 < 0 and lcoeff(Fy,z) = 10 > 0. Moreover, we see

from (4.4) that res(Fi, (F1),,x) = 0 if and only if R;(e;)Ra(e1) = 0. From the
proof of Claim 1, choosing (€1, €3) = (elji-7 1) for all i = 0,1,2,3,4, we can similarly
obtain that F} has three positive zeros x11 < x12 < x13 for all €; < €11, one positive
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zero x1g for all e, > €11 and, moreover, F} has one double positive zero x11 = 19
and one simple positive zero x13 in the critical situation €; = €1;. Combined with
Claim 2, there are four situations:

€1 < €11, €1 =¢€11, €11<€ <€ and € > €.
In the situation €1 < €11, since F; is independent of parameter /3, choosing (€1, €2) =

(€11,1) and using MAPLE ver.18 command ‘realroot(Fy,107%)’, we obtain that
those three positive zeros x11, 12 and xy3 of F} lie in the intervals [xl_l,xﬂ],

R 2 . — ._ _T8TTT 4+ ._ 30389 —

[x15, 775] and [x73, 73] respectively, where x7) := 5250, 17 = gig50050 T12 =
79079 + ._ 9885 — ._ 128167 + ._ 512669 s

To77516° L12 °= 3007153 £13 = 53768 and o73:= 737575 We see from Claim 2 that S3

or equivalently the resultant res(ﬁ , F1, z) has four real zeros 831 < 832 < B33 < (34
in the interval (E*, +00). By Lemma 2.1, the distribution of positive zeros of F;
and F does not change as ( varies in each one of intervals divided by £3;s. From
the proof of Claim 2, choosing (8, €1,€2) = (B31,€17,1) and using MAPLE ver.18
command ‘realroot(ﬁ, 10~%)’, we obtain that F has two positive zeros x1 and xs,
lying in the intervals [z75,, 23] and [z53,, ©33,] respectively, where 74, 1= oo,
Ty = 8322‘6%8, Tozy 1= % and x4, == 2. Note that z7; < #f; < 27, <
Ty < @y < Tl < o3 < w4y < 213 < 3. Then, 211 < 212 < 71 < T2 < 713
for all ¢ < €17 and all 8 € (@,ﬁgl), as indicated on line 1 in Table 2. Moveover,
choosing (3, €1,€2) = (831, €11, 1), (Bais €115 1) and (Bg;, €77, 1) for all i = 2,3,4, we
similarly obtain the result stated on lines 3, 5 and 7 in Table 2. Since zeros of a
polynomial vary continuously as a function of the coefficients, F} and F' have one
common positive zero x1o = x1 in the critical case 8 = 31, one common positive
zero x11 = X1 in the critical case 8 = B3 and one common positive zero 13 = x4 in
the critical case 8 = 34, as indicated on lines 2, 4 and 6 in Table 2. Consequently,
we obtain the distribution of positive zeros of F; and F' in the situation e; < €17.
The situation €17 < €1 < €11, the situation €; > €; and the critical situation
€1 = €11 can be discussed similarly. Then Claim 3 is proved.

By Claim 3, po = Fi(z1) = 0, i.e., equilibrium O of system (4.2) is a rough
center, if and only if either 8 = 31 and €; < €11, or 8 = 33 and €1 < €17.

Finally, we show that if O is a weak center then its order is at most 1, i.e.,
ps # 0 when ps = 0, which is equivalent to show that Fy(z1) # 0 when Fj(xz1) =0
by (4.3). Actually, we compute the resultant

res(Fl, FQ, l‘) = 6?6630(461 + 6%)24R%(61)R§(61)R6(61), (46)
where a non-zero constant factor is omitted for convenience, Rs(e;) := 11236¢] —

187731626} + 14004e5€3 — 14154€Se; — 30065 and Rg is given in the Appendix. One
can check that lcoeff(R;,e1) # 0, res(R;, (R;);,,€1) # 0 and res(R;, Rj,e1) # 0,
where 7,5 = 1,5,6 and ¢ # j. By Lemma 2.1, the distribution of positive zeros
of Ry, Ry, R; and Rg does not change as e varies. Note that €; < €17 when
p2 = 0, as indicated in the last paragraph. Choosing ez = 1 and using MAPLE
ver.18 command ‘realroot(R;, 1072)" for i+ = 1,2,5,6, we find that Ry, Rs and Rg
has no real zeros in the interval [0,€11]. It follows that Ri(e1), Rs(e1), Re(e1) # 0
for all €; < €17 and therefore, py # 0 if po = 0. Thus the proof of this theorem is
completed. O

An interesting problem about the center F; is: Does a change of parameters near
a = 1 produces limit cycles from the annulus of periodic orbits around the center
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in system (1.2)? For this problem, an effective method is to compute zeros of the
Melnikov function ([11,13,20]), which is an integral along a periodic orbit of system
(1.2) with @ = 1. This is usually completed by finding the first integral of the system
in the center case and reducing to Abelian integrals ([3,6,18]). Unfortunately, we
are disappointed by the following result, where a first integral is referred to as an
elementary first integral if is expressible in terms of exponentials, logarithms and
algebraic functions as indicated in [24],

Theorem 4.2. System (1.2) with a = 1 has no elementary first integrals.

Proof. Asindicated just below (2.3), we only need to prove that system (2.3) with
a = 1 has no elementary first integrals. For convenience, we rewrite system (2.3)
with « =1 as

4

i=1

where Py (z,y) := €162z, Pa(z,y) := erz(x+y), Ps(z,y) = zy(eax—By), Pa(z,y) :=
2y(z +9), Q1(wy) == —e162y, Qa(z) = —e1y(z +1), Qs(z,y) = 2y(Bz  e2p)
and Q4(,y) := —zy*(z+y). For an indirect proof, we assume that system (2.3) has
an elementary first integral. Then, by Propositions 1 and 2 of [24] or Proposition 2.4
of [22], system (2.3) has an invariant algebraic curve f(z,y) = 0 such that

P(z,y) fr(x,y) + Qx,y) fy(x,y) = K(z,9) f (z,y), (4.7)

where K(z,y) := m(P,+Q;) = m(x—y)(zy+B(z+y)+e1) for an integer m. Direct
computation shows that neither f(z,y) = z nor f(z,y) = y is a solution of equation
(4.7). Except for the lines z = 0 and y = 0, there are no orbits connecting with
the equilibrium O since it is a saddle as indicated before (2.10). Then the invariant
curve f(z,y) = 0 in (4.7) does not pass through the origin O and therefore we
assume without loss of generality that

f($>y) =1 +Zfz(x7y)

i=1

for an integer n > 1, where each f; is a homogeneous polynomial of degree i and
fn # 0. We also rewrite K as K(z,y) = Ki(z,y) + Kao(z,y) + Ks(x,y), where
Ki(z,y) :=mer(x —y), Ka(x,y) := mB(x? — y?) and K3(x,y) := may(z —y).

In the case n < 2, direct computation shows that equation (4.7) has no poly-
nomial solutions. In the oppositive case n > 3, substituting expansions of P, @, f
and K in (4.7) and equaling the homogeneous polynomials of the same degree, we
obtain that

P4($7y)7 + Q4(x7y)

8%@”—&@@ﬁ@@=mmw (4.8)

for alli =1,...,n — 3, where A, (x,y) :=0,

An_l(iU, y) ::Kan - P3afn/ax - QSafn/ay

O fn_ Ofn Ofn_
An72(xay) ::Kanfl +K1fn - PS f ! - PQL f !

ox ox  °° y

Afn

_Q287y7
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3fz+1 _ pOfiva  p, Ofiss

Oz > ox A Ox
Ofits

- oy

Ai(z,y) =K fir1 + Kifigzo — P

Ofit1 Ofito
oy dy

- Qs

- Q2

As done in [9], we make the change w = z and u = y/x in the above homogeneous
polynomial equations. Considering the homogeneity of the involved polynomials,
we define polynomials P/ (u) := Pi(w,uw)/w’, Qf(u) := Q;(w,uw)/wt, ff(u) =

filw,vw) /wt, Kf(u) := K;(w,uw)/w" and A} (u) := A;(w,uw)/w'*3. Note that

Afi(w,uw) _ dfi(w,uw)  udfi(w,uw) uwifldfi*(u)

= it ()

Ox o ow w ou du ’
dfi(w, uw) o l@fi(w,uw) -1 dfz*(u)
Oy Cw Ou v du

Then equation (4.8) becomes

o) T ) = A3 (),

where T'(u) 1= Q}(u) — uP;(u) and T';(u) := iPf(u) — Ki(u). If we obtain the

polynomial solution f;(u) of the above equation, then f;(x,y) = x'f}(y/z). By the
variation of constants formula,

fi(w) = Ai(u) <Ci + /Bi(u)du> , (4.9)

where C} is a constant, A;(u) := exp ( il 1;((5) du) and B;(u) := % Solving

recursively for polynomials fn, fr_, and fr_,, we obtain that n = 3m and
fa(w) = (1 4+u)"u™C,
_(w) = (14 u)™ um Cam(B + €2),
o(u) =14 u)" 2" Y Crg + - + Cgu®},

where C), # 0 since we assumed that f,(z,y) = 2™ f(y/x) # 0. Then, the inequal-
ity n = 3m implies that equation (4.7) has no polynomial solutions in the subcase
n > 3 and n # 3m.

In the opposite subcase n > 3 and n = 3m, we have either m =1 or m > 2. In
the first situation m = 1, we have n = 3. Direct computation shows that equation
(4.7) has no polynomial solutions in this situation. In the opposite situation m > 2,
we further solve f_5 and f;_, and obtain that

frig(w) =1 +u)™3u" 2{CpaB + - + Cp—2Bu'},
c () =1+ w) ™3O 0B + -+ Cyma B2}

with
mﬁel Cn
B+ e

Moreover, we claim that for all k = 2,...,m,

o) = (1 +w)y™ Fum=rFHE, (u), (4.11)

Cro = — £0. (4.10)
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where Zp(u) := C,_28% 2 + - + O, 2B 2u?*=2 a polynomial in u of degree
2k —2. In fact, (4.11) holds obviously for k = 2, 3 and 4. Suppose that (4.11) holds
for k = 2,3,....,4 — 1 with £ > 5. By (4.9), we compute that I'(u) = —2(1 + u)u?
Tye(u) = (2m — Ou+ (4m — £)u? and

Apn—o(u) = exp (/ Wdu) = (1 +u)"um™ "2

Moreover, since fr_,, 1, fr_so and f_,. 5 are all of form (4.11), by expression of
A;(z,y) given just below (4.8), we obtain that

A p(u) = (L4 )™ ™ =20 (),

where Yy(u) := (£ — 2)Cp,_2B8 2+ -+ + (2 — £)Cp 2872421 a polynomial in u
of degree 2¢ — 1. Then

Aj(w) To(u)

By () = D(u)A;(u)  —2(1 +u)tHiut/2’

When £ is even, B,,_¢(u) is a rational function and can be decomposed as

/2

S| _
Bt = i) + 3+ Y P

=1 =1

where ¢ is a polynomial of degree (¢ —4)/2 with leading coefficient lcoeff (¢, u) :
(¢ —2)C,_2p72/2, A;s and B;s are polynomials in 3, €; and ez, and Ao

2 —0)Cp_25t2/2. Let Dy(u (bg )ds. We see from (4.9) that
0
02 A,
* m_m—AL
Fmel) =(1 )" G o Bela) + Al + 3 (=5
£+1 B
+Blln|1+u|+;(1—i)(1+u)“}
:(1+u)mumfé/2 2Az/2 . 21CO€H(¢£,U) ugg,1
(14 u)tut/2-1 2—/ {—2

:(1 + u)m—lum—l+1{cn_264—2 N Cn_252_2u2£_1}7

the same form as (4.11), where A; = By = 0 since f_, needs to be a polynomial.
It follows that the claimed (4.11) holds for even £.
When ¢ is odd, changing variable u = 12, we obtain that

/Bn,e(u)du:/m_;\;—gif)ﬂ_ldl/

TR
Biv + C;
S RECES TS of =4
. £—1 A B 5
=d,(v) + Ay 1n|y|+Zﬁ+7lln(l+u2)+Cl arctan v
=2

+H21 5 + Wi C"arctanquSM
2(1 —4)( 1+1/2)’ T ot o A+ ]
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where 454( )isa polynomlal in v of degree /-3 with leading coefficient lcoeﬂ“(ggg, V)=
(¢ —2)B72C, _, <I>g fo gbg )ds, A;s, Bys and C;s are all polynomials in 3,

€1 and €2, p1; 5 s are Constants and 4y, = (2—0)B*72C,_5. Further, since i (v v?)
needs to be a polynomial, we see from (4.9) that Ay = By =C; + Zf;rzl i oCi =0
and therefore

2(1 —4)( 1+1/2)l 1 < (1+v2)

Jj=

:(1 T V2)my2m*£ Apy . lcoeﬁ(qgg)yu,z
(1+v2)f=2 12—4 0—2

(1 + )02, B2 L 2R,

Then f_,(u) is of the form (4.11) when ¢ is odd and therefore the claimed (4.11)
is proved. By claim (4.11), computing similarly to the above for i = m + 1, we get

m—1
Ch—
2m — 3

f;—m—l(u) = (m - 1)071—26"1_1 + -+ ﬁm_1u2m_1.

Similar to the above computation,

Frem—a(u) = v H{m(m — 1)Cp 2™ /2 + O(u)}.

Since f_,,_ o needs to be a polynomial and m(m — 1)8™ > 0, we have C,,_y = 0,
a contradiction to (4.10). Hence equation (4.7) has no polynomial solutions in the
subcase n = 3m and m > 2.

As above, equation (4.7) has no polynomial solutions, a contradiction to our
assumption given before (4.7). Hence, system (2.3) with a = 1, i.e., system (1.2)
with a = 1, has no elementary first integrals. Thus, Theorem 4.2 is proved. O

5. Global dynamics

In order to obtain the global phase portraits of system (1.2) in the closure of the
first quadrant, we first investigate equilibria at infinity.

Theorem 5.1. System (1.2) has exactly two equilibria I, and I, at infinity, which
lie on the positive x-axis and the positive y-axis at infinity respectively. Moreover,
I, is asymptotically stable and I, is unstable but asymptotically stable if the time is
reversed.

Proof. As indicated just below (2.3), system (1.2) is topologically equivalent to
system (2.3). Hence we only need to consider equilibria of system (2.3) at infinity.
Under the Poincaré transformation ([23, p.248]) x = 1/z and y = 9J/z and the
time-rescaling ¢ — 23, system (2.3) becomes

D =—(a?+1)9% + B0z — (a? + 1)9° — (a? + 1)eg?9?z — (a® + 1)e192>
+ B9z — (@ + 1)e19?2? — (a® + 1)ere292% := U (9, z) (5.1)
Z=— 9z — 9%z — €92 — €12% + B9%2% — 192° — €1602° Z(9,2).
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System (5.1) has a unique non-negative equilibrium O : (0,0) on the ¥-axis, which
corresponds to the equilibrium INm of system (2.3) on the positive z-axis at in-
finity, i.e., the equilibrium I, of system (1.2) on the positive z-axis at infinity.
Obviously, equilibrium O is degenerate. Using the Briot-Bouquet transformation
([32, Chapter II]) z = dw together with the time-rescaling ¢ — ¥t to desingularize
the degenerate equilibrium Oy, we reduce system (5.1) to the form

D =—(a?+1)9 — (a® + 1)9% 4 Bw — (® + 1)ex9w + f3w — (a® + 1)
x 10%w? — (@ + Der?3w? — (o + 1)eea9w® = U9, w),

W =a?w + a*w — ﬂwz + a?ex0w? 4+ ae 9w + e 93w’
+ derea?wt := W, w).

(5.2)

System (5.2) has equilibria O : (0,0) and I5 : (0,?/3) on the w-axis. Equilibrium
O% has eigenvalues o and —(a? 4 1) with eigenvectors (0,1)” and (1,0)7 respec-
tively, where T is the transpose, implying that O is a saddle. Equilibrium I} has
eigenvalues —1 and —a? with eigenvectors ((a?—1)83%, a*(82+a?Bes+ater))T and
(0,1)T respectively, implying that I} is a stable node, as shown in Figure 1(b).
By the geometric property of the Briot-Bouquet transformation, system (5.1) has
a unique orbit approaching to O; in the direction of the ¥-axis and infinitely many
orbits approaching to Oy in the direction of # = arctan (a?/8). In order to de-
termine whether there is an orbit connecting to Op in the direction of the positive
z-axis, we use another Briot-Bouquet transformation v = vz and the time-rescaling
t — zt, which rewrites system (5.4) as

3

2 2 2
z—a“ev 2z =V (v, 2),
' (v2) (5.3)

v :ﬂV—aQVZ—()é2€1l/Z—a2€21/22—a261621/22—a211
z = —l/Z—6122—€2V22—€1€2Z3—V2Z2—61l/23+ﬁu3z3 = Z(v, 2).
Clearly, the equilibrium 61‘ : (0,0) of the above system has exactly one zero eigen-
value, and v = 0 is a center manifold since the first equation of (5.2) has a common
factor v. Restricted to the center manifold, system (5.3) becomes the equation
32 = —€12%2 — €1622°, implying that the equilibrium 61‘ is a saddle-node, as shown
in Figure 1(c). By the geometric property of the Briot-Bouquet transformation,
system (5.1) has a unique orbit approaching to Oy in the direction of the z-axis.
Then equilibrium O; : (0,0) of system (5.1) is asymptotically stable, as shown in
Figure 1(a), i.e., the equilibrium I, of system (1.2) is asymptotically stable.

Z AN
21 @ !
| ¥ i
! , !
v B !
i A
. /
!
|
= —_—> e — = = — = ——>
(] 07

(a) (b)

Figure 1. (a) Phase portrait of system (5.1) near O;. (b) Phase portrait of system (5.2) near the

w-axis. (c) Phase portrait of system (5.3) near OF.
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02i

Figure 2. (a) Phase portrait of system (5.4) near Os. (b) Phase portrait of system (5.5) near the

n-axis. (c) Phase portrait of system (5.6) near O;.

Applying another Poincaré transformation 2 = v/z and y = 1/z and the time-
rescaling t — 23, we change system (2.3) into the form

v=—-U(v,2), 2=-a?Z(v,2)+ (a®—1)Bv?22 (5.4)

It suffices to discuss the equilibrium Os : (0,0) of system (5.4), which corresponds
to the equilibrium :fy of system (2.3) on the positive y-axis at infinity, i.e., the
equilibrium I, of system (1.2) on the positive y-axis at infinity. Note that the
equilibrium O; is degenerate. Using the Briot-Bouquet transformation z = vn and
the time-rescaling t — vt to desingularize the degenerate equilibrium O, we reduce
system (5.4) to the following

U= —U(Uan)7 n= —OéZW(U, 77) + (042 - 1)6772~ (55)

Similar to system (5.2), system (5.5) has two equilibria on the positive n-axis: saddle
03 : (0,0) and unstable node I3 : (0,1/8), as shown in Figure 2(b). Then system
(5.4) has a unique orbit leaving from Os in the direction of the v-axis and infinitely
many orbits leaving from O, in the direction of § = arctan (1/8). Using another
Briot-Bouquet transformation v = (z and the time-rescaling t — 2zt, we rewrite
system (5.4) as

= V(G 2)fo? +(0* —1)C/?, =a’Z(C.2) + (> — 1B (56)

Similarly to system (5.3), we reduce system (5.6) to the center manifold ¢ = 0 and
see that the origin 6; is a saddle-node and the phase portrait is given in Figure
2(c). Then system (5.4) has a unique orbit leaving from O in the direction of the
z-axis. It follows that the equilibrium Os of system (5.4) is unstable and all orbits
nearby approach to Os as the time tends to —oo, as shown in Figure 2(a), i.e., the
equilibrium I, of system (1.2) is unstable but asymptotically stable if the time is
reversed. Thus the proof of this theorem is completed. O

For each (e1,e2) € R%, we define the following curves and regions

TO = {(6,&) c Ri : 6 > 6*(01751752)704 = 1}3
T_:= {(ﬂaa) S Ra_ :ﬂ = ﬂ*(a3517€2)3a < 1}3
T+ = {(6701) € Rﬁ- : B = 6*(a7€1a52)7a’ > 1}7
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Bl = {(ﬂ,a) S Ra_ : ﬂ < 6*(6%51352)}7
By :={(B,a) €R2 : B > B.(a,e1,62),a < 1},
B3 = (Bva) S Ri . B > B*(a751752)7a > 1}7

and moreover let M denote the point (5,a) = (B«(1,e1,£2),1). Clearly, the first
quadrant of the (3, a)-plane is divided as the union Yo UYL U By U By U B3 U M.

Theorem 5.2. For all (B,a) € ToUYTyL UBy UM and all positive €1 and e,
system (1.2) has no limit cycles and its global phase portraits are given in Figure 3.
Moreover, for all (8,a) € Yo and all positive €1 and 3, system (1.2) has an orbit
homoclinic to the saddle Es and the open region inside the homoclinic orbit is fully
filled with a continuous family of periodic orbits around the center Fy.

a

Figure 3. Global phase portraits of system (1.2).

Proof. By Theorem 5.1, system (1.2) has only two equilibria at infinity, i.e., I,
and I, where I, is asymptotically stable and I, is unstable but asymptotically
stable if the time is reversed. As indicated in Theorem 2.1, system (1.2) has only
one boundary equilibrium, i.e., the origin O : (0,0), which is a hyperbolic saddle and
its stable manifold and unstable manifold are the y-axis and the z-axis respectively.
However, the distribution of interior equilibria changes as (3, a,e1,£2) varies.

For all (8,a) € By and all positive 1 and €9, there are no interior equilibria as
indicated in Theorem 2.1. By Property 2 of [32, p.148], which says that the open
region inside a limit cycle contains an equilibrium, system (1.2) has no limit cycles.
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It follows that each orbit in the interior of the first quadrant approaches to I, as
the time tends to +oo and approaches to I, as the time tends to —oo.

For all (8,a) = M and all positive £; and &5, system (1.2) has a unique interior
equilibrium, i.e., the cusp E,, by Theorems 2.1 and 3.1. As indicated in [32, Prop-
erty 2, p.148], the sum of indices of equilibria of system (1.2) in the region enclosed
by a limit cycle is exact 1. In order to show the nonexistence of limit cycles, we em-
ploy the Bendixson’s formula (see [32, Chapter 111, Section 6]) Z(E,) = 1+(e—h)/2,
where Z(E,) denotes the Poincaré index of the equilibrium FE, e is the number of
elliptic sectors and h is the number of hyperbolic sectors adjacent to the equilib-
rium E,. Thus Z(E.) = 0 since the cusp E. has only two hyperbolic sectors and
no other sectors. It follows that there are no limit cycles. On the other hand, the
stable manifold and unstable manifold of the cusp cannot coincide and form an orbit
homoclinic to the cusp F,; otherwise, the open region inside the homoclinic orbit
contains an equilibrium by Property 2 of [32, p.148], a contradiction. Therefore,
the stable manifold of the cusp F, connects I, and the unstable manifold connects
I, and, moreover, other orbits in the first quadrant all approach to I, as the time
tends to +oo and approach to I, as the time tends to —oo.

In order to investigate global phase portraits of system (1.2) for all (8,a) €
T_LUY, and all positive 1 and €5, we consider its topological equivalent system (2.3)
for all (3, ) € T1 UTY, and all positive ¢; and e, where T_ 1= {(B,a) eR2 : B =
B*,a<1} T, :={(B,0) eR::f=F.,a>1}, To:={(,a) e R : B>B*,a—
1} and B, is defined just before (2.9). Note that the two equilibria I, and I of
system (2.3) at infinity correspond to equilibria I, and I, of system (1.2) at 1nﬁn1ty
respectively, as indicated in the proof of Theorem 5.1. For (8,a) € Ti, there is a
unique interior equilibria E*, which is a saddle-node, by Theorem 3.1. Since the
index of a saddle-node is 0, there are no limit cycles similar to the above situation.
We see from (2.10) that the trace of the Jacobian matrix of system (2.3) at the
saddle-node E* has the same sign as 1 — «. It follows that the nonzero eigenvalue
is positive (resp. negative) as a < 1 (resp. > 1). Then for a <1 (resp. a > 1)
orbits in the parabolic sector of the saddle-node E. all approach to E, as the time
tends to —oco (resp. 4o00) and approach to I, (resp. I, ) as the time tends to +oco
(resp. —o0); the orbit that separates the two hyperbolic sectors of the saddle-node
E, approaches to E, as the time tends to +oo (resp. —o0) and approaches to I
(resp. E) as the time tends to —oo (resp. 400); other orbits all approach to I$ as
the time tends to 400 and approach E, as the time tends to —oo.

For all (B,«) € T, and all positive €1 and €q, we see from the proof of Theorem
2.1 and Theorem 4.1 that the equivalent system (2.3) has two interior equilibria
Ep (z1,21) and Esy : (22, x2), which are center and saddle respectively. We see
from (2. 10) that the Jacobian matrix of system (2.3) at the saddle E has eigenvalues
Ay = £/ — ¢ with eigenvectors vi = (—cs, —c7 = /% — ¢2) respectively, where

cr i= 12(373 + 2wy + €1) and cg := T3 + €223 + 3€172 + 2€2¢1. We claim that the
orbit T'; (resp. I's) approaching to FEs as the time tends to +oo (resp. —o0) in 4
(resp. §23) along the eigenvector v_ (resp. vy ) approaches to the equilibria INy (resp.
I,,) as the time tends to —oco (resp. +o00) in the region Qy (resp. ), where

O ={(z,y) eRT:0<z <y} and Q:={(z,y) eRI:0<y <z}
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Actually, on the line y = x, we have
Ely=p = TF(2)|a=1 and gly=p = —F(x)|a=1,

where F is defined in (2.6). Note that F(z)|o=1 > 0 (resp. < 0) for x € (0,21) U
(xg,+00) (resp. = € (x1,22)) because x1 and zo are the only two positive zero
of cubic Flna=1 and F(0) > 0. It follows that orbit starting from the point (z,z)
leaves (resp. enters) the region ; and enters (resp. leaves) the region Qs for all
x € (0,21) U (z2,400) (resp. = € (x1,x2)). If the claim is not true, then, according
to the direction of orbits on the line y = x, the orbit I'y enters 2; from the linear
segment S := {(z,x) € RZ : 21 < < 22}. As indicated just below (4.1), the phase
portrait of system (2.3) is symmetric with respect to the line y = . Hence, the
orbit I'y leaves €2 from S. Because of the symmetry of the phase portrait, orbits
I'y and I's coincide and form an orbit homoclinic to the saddle E5. However, as
indicated in [32, Property 2, p.148], the open region inside the homoclinic orbit
contains an equilibrium, a contradiction. Thus our above claim is proved. By the
claim, the orbit I's (resp. I'4) approaching to Es as the time tends to —oo (resp.
+00) in Qp (resp, 22) along the eigenvector vy (resp. v_) leaves (resp. enters)
Q1 (resp. Q2) from the segment {(z,z) € R? : 0 < < z1}. Therefore, I's and
Iy coincide because of the symmetry and form an orbit homoclinic to the saddle
E», and the open region inside the homoclinic orbit is fully filled with a continuous
family of periodic orbits around the center F;. Thus, there are no limit cycles.

As above, we obtain the global phase portraits of system (1.2) for all (8,a) €
ToUTYL UB; UM and all positive e; and €5, as illustrated in Figure 3. Thus, this
theorem is proved. O

6. Simulations and conclusions

Remark that it is still unknown whether there exists a limit cycle in the case that
(B,a) € Bo U Bs, ie., > fi(a,e1,e2) and a # 1. Many simulations (see Figures
4(a)-4(c)) to the phase portraits of system (1.2) suggest nonexistence of limit cycles
in this case, but we fail to prove the nonexistence by the well-known Bendixson-
Dulac Criterion ([23, p.264] or [32, Theorem 1.7, p195]) with Dulac functions of the
forms x™y™ and exp(mx + ny).

of 7 ! ! ,Q)_ﬂ‘, 1sf ]

o8|
08|
04

(2) (b) (c)

Figure 4. Simulations of system (1.2). (a) No cycles for (8,a,e1,e2) = (26/5,16/9,1/2,1/4).
(b) No cycles for (B,a,e1,e2) = (315/100,4/9,1/2,1). (c) No cycles for (B,a,e1,e2) =
(14/5,25/36,1/2,1/16).

Our Theorem 5.2 indicates two interesting phenomena: a stable focus or node
and a saddle for all (8,a) € B3 and all positive £; and e2; a center surrounded by
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a homoclinic orbit for all (8,a) € Ty and all positive €1 and e5. In what follows,
we demonstrate the two phenomena with numerical simulations. With the choice
(B,a,e1,e2) = (13/2,21/20,1,1), which lies in the region Bz, we use MATLAB
ver.12 to plot the phase portrait of system (1.2) in Figure 5(a), which shows that
system (1.2) has a stable focus and a saddle, the same as displayed in Figure 3.
With the choice (8,a,e1,e2) = (6,1,1,1) lying on the curve Yg, similar simulation
produces Figure 5(b), showing that system (1.2) has both a homoclinic orbit and a
center, the same as displayed in Figure 3.

Figure 5. Simulations of system (1.2). (a) One saddle and one stable focus when (8, a,e1,¢2) =
(13/2,21/20,1,1). (b) Coexistence of homoclinic orbit and center when (3,a,e1,e2) = (6,1,1,1).

Our results of this paper provide thresholds to control the exponential growth
of tumor cells with slow spread of oncolytic virus. More concretely,
e For all (8,a) € B3 and all positive 1 and €3, Theorem 5.2 gives the original system
(1.2) a threshold for the appearance of a stable node or focus Ej, giving a method
to control tumor cells: if the death rate a of infected tumor cells is not equal to 1,
the viral replication rate § is beyond a definite quantity (., the ratio of the initial
value of uninfected tumor cells to infected tumor cells, i.e., z/y, is equal to a definite
quantity /a, and the initial number of infected tumor cells x lies in a definite interval
(V/T10,+/T20), where x19 := z1(8, €1, /2, Va) and xa9 := 2(5,€1,/22, Va), then
the population of infected tumor cells is controlled within a bounded range.
e For all (8,a) € YTy and all positive €1 and e2, Theorem 5.2 gives the original
system (1.2) a threshold for the appearance of a center and a homoclinic orbit,
which suggests that if the viral replication rate § is beyond a definite quantity S,
the initial value of uninfected tumor cells is equal to the initial value of infected
tumor cells, and the initial value of infected tumor cells z lies in a definite interval
(v/%10,/T20), then the population of infected tumor cells is controlled within a
bounded range. In this case the death rate of infected tumor cells is 1, and the
population of uninfected tumor cells oscillates periodically and coexists together
with the infected tumor cells.

Appendix. Some complicated formulae

The function Fi, F» in (4.3) have the form
Fi(2):=102"" —34ey2° + (20€2 — 282¢1 )2 —520€1 €22 +3¢; (581 — 83€2 ) 2®
+e162(-29€24-394€1 )2® — 263 (31e; —167¢2)* — 2 €2(200€; —99¢3 )23

—€765(265¢; —4e3)x? — 15465 e —32¢5 €,
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Fy(x):=336226 +6048¢222° + (6816¢3 +55480¢1 )24 +4eo (—1612¢3 43421 7€, )23
—(1315263+22176e§q+432096e§) 22—262(13625006%+160009e§61
+3360¢5) 22! — (11205 +341304€3¢, +6713278¢3€7 +1469480¢ )
—€162(6996436¢2 +-8481797€2e14-149484¢5) 2" +2¢1 (32635263 — 6825162¢2¢?
—3011135€5¢; —13524€5) 218 42€1 €2 (190219263 — 6824920€3¢3 — 12266396261
—607€5) ' 4¢3 (229608¢€; +10091550€3¢5 — 708716762e1—55794862)
+€7€2(962428¢3 415469077 e3e7 — 15081306261—6616562) 5 —¢2(130208¢]
—1302952¢3¢3 — 143988475t — 1501346261-1-362462) 4 263¢5(420020€3
+242285¢3¢2 — 3999861 ¢3¢, —59186€5) 2" — €} (84856¢] +-2732322¢3 ¢}
+3724878¢5¢? —2434750€5¢1 — 1439765 )22 — €35 (632396¢; +5486187€2 ¢
+5127276€5¢2 —294941€5e; —250€3 )21 4-€] (31632€] —2005620€3¢5
—7002664¢5¢2 —3592638¢5¢; —19347€5) 210 +-2¢F €2 (131512¢] — 1732338€3¢€5
—2826957€5¢ —698119e5¢; —2730€3) " +€1€3(991010¢] —3467483€3¢5
—2783084€5€? —281648€5e; +38¢5) % + €0 €3 (—21802€5 — 742086 €3¢,
—1885326€5¢% —2194699¢5 )27 + €5 €5 (3148903€F — 296 764e2¢3 —59820¢5¢;
+276€5) 25 +2e8€5 (152941162 +134859€3€; 4+ 7672€53 ) 2° +2€5¢5(1019311€2
+92256¢5¢; +1420€3 )z 447 €5 (117583 4-230035¢1 ) 2
+16¢€]€5(283¢5+16801¢; )z +45824€5 ) +3456€3 €.

The function Ry in (4.4) is of the form

Ry(e1) :=87305046639627599356608000€1 —2112890418207653579326771200€2¢ 12
+18858406795303278623451716160e4¢1! —1119157900876317573770444119365¢1°
+986605067653275612361634934414€5¢) — 2380569063301592122364663626002¢5°¢5
—4523901740555240974000494648196€5% €7 +3444155338225024283562741132747€5 %€
+4332380419332176966339501745936¢4%€5 +1375765545518973623757118431564€5% ¢}
+170130580137317580811182175536¢3° ¢; +6840397093522452481603652544¢2%¢2
—2022636886266499872797952¢3 ¢ +5224132890685440000€36.

The function Ss in (4.4) is of the form

S3(3):=5120€5 30 +124¢3(125¢; — 704¢3) 87 +€3(16465¢% —1034416€2¢; +523088¢5) 5

+€2(6580€3 —2599992¢2€2 +6707007e5¢1 —1646752€5) 57
4 (620€] —2563756€2¢3 +-38008266¢5¢2 — 180467535 €1 +3137824¢5) 35

—265(493040€] —39261668€2¢5 +46753436¢5¢2 —12020293¢5¢; +1914512¢5)3°
—(91776€5 —70229520€3€] +377711968¢5€5 — 532239575 €2+ 14458038€5 ¢,
—3022016€2°) 34 +€2(25467648¢5 —697696000€2€] —231417440€5€3
+22743888¢5 €7 431721965 €1 —1492448¢5°) 3% 4 (145152¢ —36466896¢5¢5
—14636920e5 €2 +324811e5e; +415712€¢5) (€3 +4€1)? % —24€5(32532¢2
+16877€2e; +1956€ ) (€3 +4e1)* B—36(36€2+121€; ) (€2 +4€1)°.
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The function Rz in (4.5) is of the form

Rs3(€1):=279544320000000000€1® —2396514621611335680000€2¢1 "

+4087394570165184479232000¢5 ¢ 5—2715095392745924451391488000¢ 5 ¢1°
+713914839434115240963632240640€5 14 — 84419030845670732042645968314880€4 1
+5144476828691196370710907684957952¢5% €12 — 153080132913998051765831487300057536¢3 €1+
+2262218457076920275374225156485173492¢35¢1° — 15995771185621919181518213748037651007¢45¢)
+59093324654412993538992764747233114841¢20¢5 — 113356650394881241911639806230394233751€3%¢]
+91114191063083555448417933778722674375¢24€§ 4 13302968728887868565243683016634749314¢20 €3
—38390893414533393312710308157668476800¢2° ¢} —9644248889312296744954553617399829688¢3 ¢
—2745651784830864129554944737382560¢52 €2 —1672011850514556312771089338368¢5 ¢,
—68500253002433705073967104¢5°.

The function Rg in (4.6) is of the form

Re(e1) :=808718173470720000000000¢3° —80656679832985562148035887104¢5%¢,

+3159785909712974275125715990192128¢52 €2 — 8151682564969199321739242792040474624€5 3
—221869328877592484738689374113832989184€2% €1 — 1967952514563482968059339865674265483968¢20 ¢}
—6105139194809113598752061342915793852288¢24€$ +4177457437374659338112014657331303792016¢22€]
+53218838410790533500956343094277170239168€2° 5 + 50827698752204231253879525237335263215372¢5 €]
— 64463042496 757485172047694412983256411784€5%¢1° — 19408209429659740313884009147172106131589¢5 e 1*
+17248106288306129146925269877022027990078¢32e12 — 5608594318156630502136818025178342245609¢5 €13
+1026011484832250013784739977191430519068€5 11 —124479914915802026733172682260510714528€5¢1°
+12163772001383558966606352516407712128¢5¢16 —806251185268088034678395165219196160¢3¢1 7
+26942653115498102927949434654796800¢ 5.
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