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Abstract In this paper we analyze an ODE model for oncolytic dynamics
of exponential growth of tumor cells with slow-spread of virus, which was
modeled by Komarova and Wodarz but not discussed yet. The involved four
parameters render finding equilibria to be a difficult problem of algebraic va-
rieties. We discuss resultants of polynomials to give complete conditions for
distribution and qualitative properties of equilibria. We prove that the degen-
erate equilibrium is either a saddle-node or a cusp, which is of codimension
infinity. Moreover, we prove that the equilibrium of center type is either a
rough center or a weak center of order 1. Furthermore, analyzing equilibria
at infinity, showing existence of a homoclinic orbit and giving nonexistence
of limit cycles, we exhibit global phase portraits, which suggest strategies of
tumor control.
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1. Introduction
In recent years, oncolytic virotherapy entered clinical trials to tumor patients and
attracted increasing attention of clinicians (e.g. [12, 14, 27, 30]). The idea of this
therapy is to infect the tumor cells with engineered viruses who can infect and lyse
tumor cells, spread throughout the tumor, and leave healthy cells almost unharmed.
In order to describe the dynamics of oncolytic viruses, a number of ODE models
have been established in the past decades (e.g. [1, 7, 17, 21, 29]), one of which is of
the general predator-prey type

ẋ = xF (x, y)− βyG(x, y), ẏ = βyG(x, y)− ay (1.1)

considered by Komarova and Wodarz ([17]), where x and y denote the population
of the uninfected tumor cells and infected tumor cells respectively, the coefficient a
represents the virus-infected cells death rate, and the coefficient β represents the in-
fectivity of the virus. The function F , describing the growth of an uninfected tumor,
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and the function G, presenting the rate of infection, are both nonnegative polyno-
mials satisfying the F -condition of 4 items (shown in [17, p.531, 532]) and the G-
condition of 7 items (shown in [17, p.532]) respectively. In particular, F can be mod-
eled in the form Fexp(x, y) := 1 for exponential growth, Fℓ(x, y) := η/(η+x+y) for
linear growth and Flg(x, y) := 1−(x+y)/W for logistic growth. G can be modeled in
the form G1(x, y) := x/ ((x+ ε1) (y + ε2)), G2(x, y) := x/ (

√
x(y + c) + x+ ε) and

G3(x, y) :=x/
((√

xy+ε1
)
(
√
x+

√
y+

√
ε2)

)
, all of which satisfy lim

x→+∞
G(x, x/a) =

0, referred to as the slow-spread mode.
In 2010, Komarova and Wodarz ([17]) discussed model (1.1) in the slow-spread

mode with three matches, i.e., G1 matched with Fexp, Fℓ and Flg separately. For
F = Fexp, they found that system (1.1) has two interior equilibria for large β, one
of which is a saddle, and showed that the tumor can out-run the virus infection and
grow beyond control. For F = Fℓ, which adds saturation to the type F = Fexp,
they discussed with ε1 = ε2 in G1 and found that system (1.1) has a unique interior
equilibrium EI : (xI , yI) for large β and both xI and yI tend to 0, the state of
extinction, as β → +∞, which indicated that the tumor will be driven extinct for
large β. For F = Flg, which is limited by a carrying capacity, they found that there
exists an equilibrium describing tumor growth towards carrying capacity rather
than towards infinity, indicating that saturation of tumor growth at lower scales
contributes to successful virus therapy. Later, Si and Zhang ([26]) further inves-
tigated the first match, i.e., system (1.1) with G1 and Fexp, for its nonhyperbolic
cases and showed a saddle-node bifurcation on a center manifold, a Hopf bifurca-
tion from which exactly one limit cycle arises, and a Bogdanov-Takens bifurcation
in which a homoclinic orbit arises while the limit cycle disappears. Recently, Zhang
([31]) investigated system (1.1) with G2 and Fexp, discussing the distribution of
equilibria and giving a saddle-node bifurcation, a degenerate Hopf bifurcation at a
weak focus of multiplicity 3 and a Bogdanov-Takens bifurcation of codimension 2.

In this paper we consider the match of G3 with Fexp, which was not discussed
in literatures yet. With this match, system (1.1) can be presented as

ẋ =x− βy
x

(
√
xy + ε1)(

√
x+

√
y +

√
ε2)

,

ẏ =βy
x

(
√
xy + ε1)(

√
x+

√
y +

√
ε2)

− ay
(1.2)

in the closure of the first quadrant R2
+ := {(x, y) ∈ R2 : x > 0, y > 0}, where β, a,

ε1 and ε2 are all positive constants. In section 2 we investigate its equilibria, which
are determined by a cubic equation but the well-known formulae of cubic roots can
hardly help determine the number of positive roots because it involves irrational
expressions with four parameters. Using the resultant theory of polynomials ([10,
p.398]), we prove that system (1.2) has exactly one boundary equilibrium and at
most two interior equilibria, which have two non-hyperbolic cases: the degenerate
case (either one zero eigenvalue or two zero eigenvalues with nilpotent linear part)
and the center type case (a pair of pure imaginary eigenvalues). Section 3 is devoted
to the degenerate case, in which we prove that the equilibrium is either a saddle-node
or a nilpotent cusp of codimension ∞. In section 4 we discuss the case of center type
and prove that the equilibrium is either a rough center or a weak center of order 1,
using resultant elimination to compute period quantities. Moveover, we prove that
the system has no elementary first integrals in this case. In section 5, analyzing
equilibria at infinity, showing existence of a homoclinic orbit and giving nonexistence
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of limit cycles, we exhibit global phase portraits. We finally demonstrate the case
of a stable focus with a saddle and the case of a center with a homoclinic orbit with
numerical simulations in section 6, providing strategies of tumor control.

2. Analysis of equilibria
As the problems of distribution (i.e., the number and relative positions) and quali-
tative properties of equilibria can be reduced to real zeros of polynomials in R4

+, we
need the following lemma on Sylvester resultant ([10]) to deal with semi-algebraic
systems. For convenience, let R[x;λ] denote the ring of real polynomials in x pa-
rameterized by λ. Let lcoeff(f, x) denote the leading coefficient of polynomial f
with respect to the variable x and res(fi, fj , x) denote the Sylvester resultant of
polynomials fi and fj with respect to x.

Lemma 2.1. Let f1, ..., fk ∈ R[x;λ], where k ≥ 1 and λ = (λ1, ..., λℓ) ∈ Rℓ
+. If

there is a region U ⊂ Rℓ
+ such that for all λ ∈ U the conditions are true: (i)

lcoeff(fi, x) 6= 0 ∀i ∈ {1, ..., k}, (ii) res(fi, (fi)
′
x, x) 6= 0 and res(fi, fj , x) 6= 0

∀i 6= j ∈ {1, ..., k}, and (iii) fi|x=0 6= 0 ∀i ∈ {1, ..., k}, then the distribution of
positive (and negative) zeros of f1, ..., fk does not change as λ varies in U .

Proof. First, we consider each fi and claim that the number and relative positions
of its positive (and negative) zeros never change as λ ∈ U varies. Let deg(fi, x) = ni,
the degree of the polynomial in x, and x1(λ), ..., xni(λ) be all its complex zeros.
By (iii), x1(λ), ..., xni(λ) 6= 0 for all λ ∈ U . Moreover, by (i) and (ii), the Re-
sultant Theorem ([10, p.398]) shows that fi does not have a multiple zero since
lcoeff(fi, x) 6= 0 and res(fi, (fi)

′
x, x) 6= 0. Note that non-real zeros of the real poly-

nomial fi arise in conjugate pairs as indicated in [15, p.22]. Then, for λ∗ ∈ U we
can assume without loss of generality that

x1(λ∗) < · · · < xp(λ∗) < 0 < xp+1(λ∗) < · · · < xq(λ∗), (2.1)
xq+s(λ∗) = µs(λ∗) + iνs(λ∗), xq+r+s(λ∗) = µs(λ∗)− iνs(λ∗) (2.2)

for all s ∈ {1, ..., r}, where 0 ≤ p ≤ q ≤ ni, µs(λ∗), νs(λ∗) ∈ R and νs(λ∗) 6= 0 for
all s ∈ {1, .., r}, xq+i(λ∗) 6= xq+j(λ∗) for all i 6= j ∈ {1, ..., r}, and r := (ni − q)/2.
Then, our claim is equivalent to that (2.1) and (2.2) hold for all λ ∈ U . It is known
in [19, Theorem 1.4] that all zeros x1(λ), ..., xni(λ) are continuous in λ. Thus, as
λ ∈ U varies, real zeros x1(λ), ..., xq(λ) cannot become non-real; otherwise such
a real zero will first become a multiple real zero and then become a pair of non-
real zeros, a contradiction to the fact that fi has no multiple zeros, which is given
just before (2.1). Similarly, we also see that those non-real zeros in (2.2) cannot
become real ones. For the same reason of continuity, those positive (resp. negative)
zeros cannot become negative (resp. positive) ones; otherwise, such a zero will first
become 0 and then become negative (resp. positive), a contradiction to (iii). The
continuity also implies that the order of positive (and negative) zeros in (2.1) does
not change; otherwise, a multiple zero appears. Consequently, our claim is proved.

Next we consider relative positions of real zeros of different fi and fj , where
i 6= j. Let xm(λ) and x̃m̃(λ) be positive (or negative) zeros of fi and fj respectively.
Then xm(λ) 6= x̃m̃(λ) because by the Resultant Theorem ([10, p.398]) we see from
(ii) that fi and fj have no common zeros. If xm(λ∗) < x̃m̃(λ∗) (resp. > x̃m̃(λ∗))
at a point λ∗ ∈ U , then xm(λ) < x̃m̃(λ) (resp. > x̃m̃(λ)) for all λ ∈ U ; otherwise,
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by the continuity of zeros, there is a point λ′
∗ ∈ U such that xm(λ′

∗) = x̃m̃(λ′
∗), a

contradiction. Hence, the proof of this lemma is completed.
In order to use Lemma 2.1, we compute zeros of those leading coefficients, the

two resultants and the values of fi|x=0 as stated in conditions (i)-(iii) so as to
determine a region U mentioned in Lemma 2.1. Then, choosing a point λ∗ in U
arbitrarily, we implement the MAPLE command ‘realroot(fi, 10−n)’ to provide a
list of isolating intervals, each of which has a width ≤ 10−n, for all real roots of
the polynomial fi|λ=λ∗ in x, which by Lemma 2.1 gives the distribution of positive
(and negative) zeros of f1, ...fk for λ ∈ U .

Theorem 2.1. System (1.2) has exactly one boundary equilibrium O : (0, 0), which
is a saddle, and at most two interior equilibria. The numbers and properties of
interior equilibria are listed in Table 1, where β∗(a, ε1, ε2) is the only positive zero
of the cubic polynomial

B(β) :=4
√
ε2β

3 + ((
√
a+ 1)2ε1 − 12

√
aε2)β

2 − 4
√
aε2(5(

√
a+ 1)2ε1 − 3

√
aε2)β

− 4
√
a((

√
a+ 1)2ε1 +

√
aε2)

2.

Table 1. Numbers and qualitative properties of interior equilibria.
Parameters Equilibria Number
β < β∗(a, ε1, ε2) 0
β = β∗(a, ε1, ε2) E∗ (degenerate) 1
β > β∗(a, ε1, ε2) a < 1 E1 (unstable node or focus), E2 (saddle) 2
β > β∗(a, ε1, ε2) a = 1 E1 (center type), E2 (saddle) 2
β > β∗(a, ε1, ε2) a > 1 E1 (stable node or focus), E2 (saddle) 2

Proof. We first prove the existence and uniqueness of positive zero β∗(a, ε1, ε2),
i.e., the cubic polynomial B has a unique positive zero. In fact, by Lemma 2.1, we
compute the resultant

res(B,B′
β , β) = −64

√
aε2(

√
a+ 1)4ε21{(

√
a+ 1)2ε1 − 27

√
aε2}3,

which has the only zero ε1= ε̂1(a, ε2) :=27
√
aε2/(

√
a+1)2. Note that lcoeff(B, β) =

4
√
ε2 > 0 and B(0) = −4

√
a((

√
a+ 1)2ε1 +

√
aε2)

2 < 0. Fixing (a, ε2) = (1, 1) and
choosing ε1=26/4<27/4= ε̂1(1, 1), we implement the command ‘realroot(B, 10−3)’
with MAPLE ver.18 and find that B has only one real zero, which lies in the
internal [ 987438192 ,

12343
1024 ]. On the other hand, choosing ε1 = 28/4 > 27/4 = ε̂1(1, 1),

we find that B has three zeros, covered by intervals [− 67417
8192 ,−

8427
1024 ], [−

33641
4096 ,−

67281
8192 ]

and [ 509654096 ,
101931
8192 ] separately. By Lemma 2.1, the cubic polynomial B has a pair

of conjugate non-real zeros and one positive zero for all ε1 < ε̂1(a, ε2), but two
negative zeros and one positive zero for all ε1 > ε̂1(a, ε2). For ε1 = ε̂1(a, ε2),
the cubic polynomial B has a multiple zero because res(B,B′

β , β) = 0. Moreover,
since zeros of a polynomial vary continuously as a function of the coefficients and
B(0) 6= 0, the conjugate non-real zeros of B for ε1 < ε̂1(a, ε2) will first become one
double negative zero in the critical case ε1 = ε̂1(a, ε2) and then the two negative
zeros for ε1 > ε̂1(a, ε2); the simple positive zero of B for ε1 < ε̂1(a, ε2) remains to
be a simple positive zero for ε1 ≥ ε̂1(a, ε2). Consequently, B has only one positive
zero, denoted by β∗(a, ε1, ε2).
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In order to find equilibria of system (1.2), we use the transformation (x, y) 7→
(x2, y2) and the time-rescaling t 7→ 2(xy+ ε1)(x+ y+

√
ε2)t to convert (1.2) to the

polynomial system

ẋ = x{H(x, y)− βy2}, ẏ = y{βx2 − α2H(x, y)}, (2.3)

where H(x, y) := (xy + ϵ1)(x + y + ϵ2), α :=
√
a, ϵ1 := ε1 and ϵ2 :=

√
ε2. Clearly,

in the closure of the first quadrant R2
+, system (1.2) is topologically equivalent to

system (2.3). Equilibria of system (2.3) are given by the following equations

x{H(x, y)− βy2} = 0, y{βx2 − α2H(x, y)} = 0. (2.4)

On the half-axis y ≥ 0, we see from (2.4) that −α2yH(0, y) = −α2y(y + ϵ2) = 0,
implying that the origin O : (0, 0) is the only equilibria. On the half-axis x ≥ 0,
we see from (2.4) that xH(x, 0) = ϵ1x(x + ϵ2) = 0, implying that O is the only
equilibria. Thus O is a unique boundary equilibrium.

Next, we consider interior equilibria, which are determined by the equations

H(x, y)− βy2 = 0, βx2 − α2H(x, y) = 0. (2.5)

Eliminating H(x, y) in (2.5) shows that interior equilibria lie on the line y = x/α.
Substituting y = x/α in the second equation of (2.5), we obtain the equation

F (x) := (α+ 1)x3 + (αϵ2 − β)x2 + α(α+ 1)ϵ1x+ α2ϵ1ϵ2 = 0, x > 0, (2.6)

called the equilibrium equation. Clearly, we cannot use the well-known formulae of
cubic roots because those involved 4 parameters make the irrational expression of
the formulae too complicated to discuss which of those roots is real and positive.
Our strategy is to abandon determining coordinates of equilibria in convention but
give distribution of equilibria with the derivative F ′

x. Compute

F ′
x(x) = 3(α+ 1)x2 + 2(αϵ2 − β)x+ α(α+ 1)ϵ1, (2.7)

which has the discriminant ∆F ′
x
= 4S1(β), where S1(β) := β2 − 2αϵ2β − α(3(α +

1)2ϵ1 − αϵ22). Clearly S1 has two zeros β±
1 := αϵ2 ± (α+ 1)

√
3αϵ1. Thus,

(C1) in the case ∆F ′
x
≤ 0, i.e., β−

1 ≤ β ≤ β+
1 , we have F ′

x(x) ≥ 0 for all x ≥ 0,
implying that F (x) is increasing on [0,+∞). Since F (0) = α2ϵ1ϵ2 > 0, F has
no positive zeros and therefore system (1.2) has no interior equilibria;

(C2) in the opposite case ∆F ′
x
> 0, i.e., either (C2.1) β < β−

1 or (C2.2) β > β+
1 ,

derivative F ′
x has two real zeros

x± :=
β − αϵ2 ±

√
S1(β)

3(α+ 1)
.

Note that x−x+ = αϵ1/3 > 0 and x− + x+ = 2(β − αϵ2)/(3(α + 1)). Then
x± > 0 (or < 0) if β > αϵ2 (or < αϵ2).

In subcase (C2.1), we have x± < 0 since β < β−
1 < αϵ2. Then F is increasing

for x ≥ 0. Noting F (0) > 0, we see that F has no positive zero and therefore system
(1.2) has no interior equilibria.

In subcase (C2.2), we have x± > 0 since αϵ2 < β+
1 < β. Then F is increasing

on the interval (0, x−) ∪ (x+,+∞) and decreasing on the interval (x−, x+). Since
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F (x−) > F (0) > 0, the number of positive zeros of F is determined by the sign
of the minimum F (x+). For the critical case that F (x+) = 0, we compute the
resultant

res(F, F ′
x, x) = −α2(α+ 1)ϵ1S2(β), (2.8)

where S2(β) is exactly the same cubic polynomial B(β), defined in the theorem in
terms of original parameters a, ε1 and ε2. As shown at the beginning of the proof,
S2(β) has a unique positive root β̃∗, which is equal to β∗(α2, ϵ1, ϵ

2
2) by the change

of parameters in (2.3). By the Resultant Theorem ([10, p.398]), F and F ′
x have a

common zero if and only if β = β̃∗ since the leading coefficient of F in x is not zero.
Further we claim that

β̃∗ > β+
1 , (2.9)

where β+
1 is the positive zero of S1 defined just below (2.7). Actually, we have

res(S1, S2, β) = α2(α+ 1)4ϵ21ϵ2{(α+ 1)2ϵ1 − 27αϵ22}2,

which implies by the Resultant Theorem ([10, p.398]) that S1 and S2 have a common
zero if and only if ϵ1 = ϵ̃1 := 27αϵ22/(α+ 1)2. Since

S1(β)|ϵ1=ϵ̃1 = (β + 8αϵ2)(β − 10αϵ2), S2(β)|ϵ1=ϵ̃1 = ϵ2(β + 8αϵ2)
2(4β − 49αϵ2),

polynomials S1 and S2 can only have a negative common zero, which implies that
the positive zero β+

1 is not equal to β̃∗ for all positive α, ϵ1 and ϵ2. Noticing that

β̃∗|ϵ1=ϵ̃1 = 49αϵ2/4 > 10αϵ2 = β+
1 |ϵ1=ϵ̃1 ,

we obtain β̃∗ > β+
1 for all positive α, ϵ1 and ϵ2. Thus the claimed (2.9) is proved.

Fixing (α, ϵ1, ϵ2) = (1, 27/4, 1) and choosing β = 12 < 49/4 = β̃∗(1, 27/4, 1), we
see that F has one real zero, covered by the interval [− 3085

8192 ,−
6169
16384 ]. Moreover,

choosing β = 25/2 > 49/4 = β̃∗(1, 27/4, 1), we find that F has three real zeros,
covered by intervals [− 6119

16384 ,−
3059
8192 ], [ 50812048 ,

20325
8192 ] and [ 298398192 ,

1865
512 ] separately. By

Lemma 2.1, we see from (2.6) and (2.8) that F has no positive zero for all β < β̃∗
and two positive zeros x1 < x2 for all β > β̃∗. For β = β̃∗, the cubic polynomial F
has a multiple zero because res(F, F ′

x, x) = 0. Moreover, since zeros of a polynomial
vary continuously as a function of the coefficients and F (0) > 0, the two positive
zeros x1 and x2 of F for β > β̃∗ will first become a double positive zero x+ defined
in (C2) at β = β̃∗ and then a pair of conjugate non-real zeros for β < β̃∗.

Summarily, we obtain the following distributions of interior equilibria: (E0) no
interior equilibria if β < β̃∗, (E1) one interior equilibrium Ẽ∗ : (x∗, x∗/α) if β = β̃∗,
where x∗ := x+, and (E2) two interior equilibria Ẽ1 : (x1, x1/α) and Ẽ2 : (x2, x2/α)

if β > β̃∗, where x1 ∈ (x−, x+) and x2 ∈ (x+,+∞). Further, we give qualitative
properties for those equilibria. Let (x, y) be an equilibrium in general. Then the
Jacobian matrix at (x, y) is given by

J(x, y) :=

H(x, y)−βy2+xH′
x(x, y) x(H′

y(x, y)−2βy)

y(2βx−α2H′
x(x, y)) βx2−α2H(x, y)−α2yH′

y(x, y)

 .
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Compute the determinant DetJ(0, 0) = −α2ϵ21ϵ
2
2 < 0, which implies that the only

boundary equilibrium O is a saddle. For an interior equilibrium (x, y), which lies
on the line y = x/α as indicated below (2.5), we compute the determinant and the
trace

DetJ :=
−2βx3F ′

x(x)

α2
, TrJ :=

1− α

α2
{(α+ 1)2x2 + α(1 + α)ϵ2x+ α2ϵ1}x.

(2.10)

Clearly, DetJ and TrJ have the same signs as −F ′
x(x) and 1 − α respectively.

In case (E1), since DetJ |x=x∗ = F ′
x(x+) = 0, equilibrium Ẽ∗ of system (2.3) is

degenerate, which implies line 2 of Table 1. In case (E2), since x1 ∈ (x−, x+) and
x2 ∈ (x+,+∞), we have F ′

x(x1) < 0 and F ′
x(x2) > 0 and therefore DetJ |x=x1 > 0

and DetJ |x=x2
< 0. Then equilibrium Ẽ2 : (x2, x2/α) is a saddle, which implies

lines 3, 4 and 5 of Table 1. Moreover, since TrJ |x=x1 has the same sign as 1 − α,
equilibrium Ẽ1 : (x1, x1/α) is an unstable node or focus for α < 1, of center type
for α = 1, and a stable node or focus for α > 1, which implies lines 3, 4 and 5 of
Table 1 respectively. This completes the proof.

In Table 1 there are a ‘degenerate’ case and a ‘center type’ case. We will further
determine qualitative properties in those cases in the following sections.

3. Degenerate case
As indicated on the second line in Table 1, equilibrium E∗ is degenerate for β =
β∗(a, ε1, ε2). In this section we give qualitative properties of equilibrium E∗.

Theorem 3.1. Equilibrium E∗ of system (1.2) is either a saddle-node when β =
β∗(a, ε1, ε2) and a 6= 1, or a cusp when β = β∗(a, ε1, ε2) and a = 1.

Proof. As indicated just below (2.3), system (1.2) is topologically equivalent to
system (2.3). Then, we see from case (E1) in the proof of Theorem 2.1 that it is
equivalent to investigate the degenerate equilibrium Ẽ∗ : (x∗, x∗/α) of system (2.3)
for β = β̃∗ = β∗(α

2, ε1, ε
2
2), defined before (2.9). Recall that parameters in (1.2)

and (2.3) satisfy that ε2 = ϵ22 and a = α2. For β = β̃∗ and α 6= 1, translating
Ẽ∗ to the origin and further normalizing the linear part with the transformation
x 7→ (c2x − αc1y)/(c2 − αc1) and y 7→ αc2(x − y)/(c2 − αc1) together with the
time-rescaling t 7→ (αc1 − c2)t, where c1 := x3∗ + ϵ2x

2
∗ + ϵ1(2α+ 1)x∗ + 2αϵ1ϵ2 and

c2 := (α+ 2)x3∗ + αϵ2x
2
∗ + αϵ1x∗, we change system (2.3) into the following{

ẋ = − ϕ2,0x
2 +O(xy) +O(y2) +O(|x, y|3) =: Φ(x, y),

ẏ = y − ψ2,0x
2 +O(xy) +O(y2) +O(|x, y|3) =: Ψ(x, y),

(3.1)

where

ϕ2,0 :=
4α4(α+ 1){(α+ 1)x∗ + 3αϵ2}{(α+ 3)x∗ + 2αϵ2}

(α− 1)3{(α2 + 4α+ 1)x∗ + 2αϵ2(α+ 1)}3
6= 0,

ψ2,0 :=
α4(α+ 1)(α2 + 1){(α+ 1)x∗ + 3αϵ2}{(α+ 3)x∗ + 2αϵ2}2

(α− 1)3{(α+ 1)x∗ + αϵ2}{(α2 + 4α+ 1)x∗ + 2αϵ2(α+ 1)}3
6= 0.

Note that Ψ(0, 0) = 0 and ∂Ψ(0, 0)/∂y = 1. By the Implicit Function Theorem,
there is a unique implicit function y = h(x) := ψ2,0x

2 + O(x3), analytic at x = 0,
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such that Ψ(x, h(x)) ≡ 0 near the origin O : (0, 0). Since Φ(x, h(x)) = −ϕ2,0x2 +
O(x3), equilibrium O of system (3.1) is a saddle-node by Theorem II.7.1 of [32], i.e.,
equilibrium E∗ of system (1.2) is a saddle-node for β = β∗(a, ε1, ε2) and a 6= 1.

For β = β̃∗ and α = 1, translating Ẽ∗ to the origin and further normalizing
the linear part with the transformation (x, y) 7→ (x − y, x + y) together with the
time-rescaling t 7→ −2x2∗(2x∗ + ϵ2)

2t/(x∗ + ϵ2), we change system (2.3) as

ẋ = y + yN1(x, y
2), ẏ = N2(x, y

2), (3.2)

where

N1(x, y
2) :=

2

x∗
x+

10x2∗ + 11ϵ2x∗ + 2ϵ22
2x2∗(2x∗ + ϵ2)2

x2 +
x∗ + ϵ2

x2∗(2x∗ + ϵ2)2
x3

− 3x∗ + 2ϵ2
2x2∗(2x∗ + ϵ2)

y2 − x∗ + ϵ2
x2∗(2x∗ + ϵ2)2

xy2,

N2(x, y
2) :=

2x∗ + 3ϵ2
2(2x∗ + ϵ2)2

x2 +
4x∗ + 5ϵ2

2x∗(2x∗ + ϵ2)2
x3 +

x∗ + ϵ2
x2∗(2x∗ + ϵ2)2

x4

+
1

2(2x∗ + ϵ2)
y2 − ϵ2

2x∗(2x∗ + ϵ2)2
xy2 − x∗ + ϵ2

x2∗(2x∗ + ϵ2)2
x2y2.

Further, using the transformation (x, y) 7→ (x, y+ yN1(x, y
2)), we reduce the above

system to the following Kukles form

ẋ = y, ẏ =
2x∗ + 3ϵ2

2(2x∗ + ϵ2)2
x2 +

9x∗ + 4ϵ2
2x∗(2x∗ + ϵ2)

y2 +O(|x, y|3).

By Theorem II.7.3 of [32], equilibrium O of the above system is a cusp, i.e., equi-
librium E∗ of system (1.2) is a cusp. Thus this theorem is proved.

Remark that for β = β∗(a, ε1, ε2) and a 6= 1 Theorem 3.1 indicates that equilib-
rium E∗ of system (1.2) is a saddle-node, from which we easily dicsuss a saddle-node
bifurcation. In the case that β = β∗(a, ε1, ε2) and a = 1, Theorem 3.1 indicates that
E∗ is a nilpotent cusp but none of known results (e.g. [2,8,28]) on Bogdanov-Takens
bifurcation and its degenerate versions can be applied because the following lemma
shows that the cusp is degenerate of codimension ∞.

Lemma 3.1. Let P and Q be two analytic real functions near O : (0, 0) such
that P (x, y), Q(x, y) = O(|x, y|2), P (x, y) = −P (x,−y), Q(x, y) = Q(x,−y) and
Q(x, 0) = anx

n + O(xn+1) for an integer n and a nonzero constant an. Then the
following system

ẋ = y + P (x, y), ẏ = Q(x, y) (3.3)

has the normal form ẋ = y and ẏ = anx
n +O(xn+1).

Proof. As indicated in [5, Chapter 2], in order to reduce (3.3) to a Poincaré normal
form, we need to perform a sequence of near-identity transformations (x, y) →
(x+hi,1, y+hi,2) to eliminate those resonant terms, where i ≥ 2 and (hi,1, hi,2) ∈ Hi

2,
the vector space of homogeneous polynomials of degree i in two variables with values
in R2. We claim that the i-th order normal form of system (3.3) is of the form

ẋ = y + Pi+1(x, y), ẏ = Ri+1(x) +Qi+1(x, y), (3.4)
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where Pi+1(x, y), Qi+1(x, y) = O(|x, y|i+1), Pi+1(x, y) = −Pi+1(x,−y), Qi+1(x, y) =
Qi+1(x,−y), Qi+1(x, 0) ≡ 0 and Ri+1(x) = anx

n + O(xn+1). If the claim is true
then this lemma follows.

We prove the claim by induction. Clearly, it is true for i = 1. Assume that it is
true for i = k − 1. Consider the linear operator Lk

A : Hk
2 → Hk

2 defined by

Lk
Ahk := DhkA(x, y)

T −Ahk, hk ∈ Hk
2 ,

where Dhk is the Jacobian matrix of hk, matrix A is the linear part of system (3.3)
at the origin and T is the transpose. Notice that the linear space Hk

2 is (2k + 2)-
dimensional and has a group of bases {ek1 , ..., ek2k+2}, where

ek1 := (0, xk)T , ek2 := (0, xk−1y)T , ..., ekk+1 := (0, yk)T

ekk+2 := (xk, 0)T , ekk+3 := (xk−1y, 0)T , ..., ek2k+2 := (yk, 0)T .

We compute that

Lk
Ae

k
j =

{
(k + 1− j)ekj+1 − ekk+1+j , j = 1, ..., k + 1,

(2k + 2− j)ekj+1, j = k + 2, ..., 2k + 2.

Let hk(x, y) := (hk,1(x, y), hk,2(x, y)) ∈ Hk
2 , where

hk,1(x, y) :=

k∑
j=0

fk−j,jx
k−jyj and hk,2(x, y) :=

k∑
j=0

gk−j,jx
k−jyj .

Then we obtain that

Lk
Ahk =

k−1∑
j=0

(k − j)gk−j,je
k
j+2 − gk,0e

k
k+2 +

k−1∑
j=0

{(k − j)fk−j,j − gk−j−1,j+1}ekk+3+j .

Note that we need to choose an appropriate hk ∈ Hk
2 to eliminate all terms of degree

k except for the term xk in ẏ in (3.4) with i = k− 1. For this purpose, assume that

Pk(x, y) =

k∑
j=0

pk−j,jx
k−jyj +O(|x, y|k+1), Qk(x, y) =

k∑
j=0

qk−j,jx
k−jyj +O(|x, y|k+1).

Then those terms of degree k in (3.4) with i = k − 1 are given by

qk,0e
k
1 +

k−1∑
j=0

qk−j−1,j+1e
k
j+2 + pk,0e

k
k+2 +

k−1∑
j=0

pk−j−1,j+1e
k
k+3+j .

Therefore, we obtain the following equations

(k − j)gk−j,j = qk−j−1,j+1, j = 0, ..., k − 1,

− gk,0 = pk,0,

(k − j)fk−j,j − gk−j−1,j+1 = pk−j−1,j+1, j = 0, ..., k − 1.

Note that pk−j,j = 0 for all even j and qk−j,j = 0 for all odd j since Pk(x, y) =
−Pk(x,−y) and Qk(x, y) = Qk(x,−y), as indicated just below (3.4). Then the
above equations has a solution gk,0 = 0, f1,k−1 = g0,k + p0,k and

gk−j,j =
qk−j−1,j+1

k − j
, j = 1, ..., k − 1,
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fk−j,j =
(k − j − 1)pk−j−1,j+1 + qk−j−2,j+2

(k − j − 1)(k − j)
, j = 0, ..., k − 2.

Moreover, we choose g0,k = 0 and f0,k = 0. Then, gk−j,j = 0 for all even j and
fk−j,j = 0 for all odd j. It follows that

hk,1(x,−y) = hk,1(x, y) and hk,2(x,−y) = −hk,2(x, y). (3.5)

Under the near identity transformation (x, y) 7→ (x + hi,1, y + hi,2), system (3.4)
with i = k − 1 becomes ẋ = Pk(x, y)/Dk(x, y) and ẏ = Qk(x, y)/Dk(x, y) with

Pk(x, y) := A2,2(x, y){y + hk,2(x, y) + P̃k(x, y)} −A1,2(x, y){R̃k(x, y) + Q̃k(x, y)},

Qk(x, y) := −A2,1(x, y){y + hk,2(x, y) + P̃k(x, y)}+A1,1(x, y){R̃k(x, y) + Q̃k(x, y)},
Dk(x, y) := A1,1(x, y)A2,2(x, y)−A2,1(x, y)A1,2(x, y),

where A1,1(x, y) := 1 + ∂hk,1(x, y)/∂x, A1,2(x, y) := ∂hk,1(x, y)/∂y, A2,1(x, y) :=

∂hk,2(x, y)/∂x, A2,2(x, y) := 1 + ∂hk,2(x, y)/∂y, P̃k(x, y) := Pk(x + hk,1(x, y), y +

hk,2(x, y)), Q̃k(x, y) := Qk(x + hk,1(x, y), y + hk,2(x, y)) and R̃k(x, y) := Rk(x +
hk,1(x, y)). By (3.5) and properties given below (3.4), A1,2(x, y), A2,1(x, y) and
P̃k(x, y) are all odd functions in y, and A1,1(x, y), A2,2(x, y), Dk(x, y), Q̃k(x, y)

and R̃k(x, y) are all even functions in y. Note that Dk(x, y) = 1 + O(|x, y|) and
Qk(x, 0) = anx

n +O(xn+1). Then we can rewritten the k-th order normal form as

ẋ =
Pk(x, y)

Dk(x, y)
= y + Pk+1(x, y), ẏ =

Qk(x, y)

Dk(x, y)
= Rk+1(x) +Qk+1(x, y),

where Pk+1, Qk+1 and Rk+1 satisfy the same properties as Pi+1, Qi+1 and Ri+1

respectively given just below (3.4). Therefore, the claimed (3.4) is proved by induc-
tion. This completes the proof of this lemma.

Note that system (2.3), topologically equivalent to system (1.2), can be trans-
formed into the form (3.2), which is of the form (3.3). By Lemma 3.1, system (1.2)
has the normal form

ẋ = y, ẏ = ψ(x) := ωx2 +O(x3), (3.6)

where ω := (2x∗ + 3ϵ2)/{2(2x∗ + ϵ2)
2}. Further, under the transformation x 7→

ω(3Ψ(x)/ω)1/3 and the time-rescaling t 7→ (3Ψ(x)/ω)−2/3ψ(x)t, where Ψ(x) :=∫ x

0
ψ(s)ds, system (3.6) is changed as the system ẋ = y and ẏ = x2. As indicated

in [16], a system possessing a nilpotent cusp of codimension n has the orbital normal
form ẋ = y and ẏ = x2 ± xℓy with ℓ := [3(n− 1)/2], the largest integer not greater
than 3(n− 1)/2. Thus the cusp E∗ of system (1.2) is degenerate of codimension ∞.

4. Case of center type
Theorem 4.1. For β > β∗(a, ε1, ε2) and a = 1, equilibrium E1 of system (1.2) is
a center. Moreover, it is either a rough center or a weak center of order 1.

Proof. As indicated on line 4 of Table 1 in Theorem 2.1, equilibrium E1 of sys-
tem (1.2) is of center type for β > β∗ and a = 1. For convenience, we also apply the
transformation (x, y) 7→ (x2, y2) to system (1.2), as done in the proof of Theorem
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2.1, but do not use a time-rescaling because we will discuss the period function if
the equilibrium is proved to be a center. Thus we obtain the transformed system

ẋ = X (x, y) :=
x{H(x, y)− βy2}

2H(x, y)
, ẏ = Y(x, y) :=

y{βx2 −H(x, y)}
2H(x, y)

, (4.1)

where H(x, y) is given just below (2.3). Clearly, the system has the same equilibria
as system (2.3). Thus, we can equivalently investigate the center type equilibrium
Ẽ1 : (x1, x1/α) of system (4.1) for β > β̃∗ and α = 1, as indicated in the case (E2)
in the proof of Theorem 2.1. Since H(x, y) = H(y, x), we have

X (y, x) =
y{H(y, x)− βx2}

H(y, x)
= −Y(x, y), Y(y, x) =

x{βy2 −H(y, x)}
H(y, x)

= −X (x, y),

which implies that system (4.1) is time-reversible with respect to the line y = x.
As indicated just below (2.5), equilibrium Ẽ1 lies on the line y = x as α = 1. By
Theorem 3.5.5 of [25], equilibrium Ẽ1 is a center.

We further determine the order (defined in [4, p.439-440]) of the center Ẽ1.
Translating the center equilibrium of system (4.1) to the origin and then normalizing
the linear part with the transformation x 7→ x and y 7→ −c3/

√
4c5c6x+c4/

√
4c5c6x,

where c3 := x1(3x
2
1+ϵ2x1+ϵ1), c4 := x31+ϵ2x

2
1+3ϵ1x1+2ϵ1ϵ2, c5 := (x21+ϵ1)(2x1+ϵ2)

and c6 := −x31 + ϵ1x1 + ϵ1ϵ2, we reduce system (4.1) to the following

ẋ = −y +
5∑

i=2

Xi(x, y) +O(|x, y|6), ẏ = x+

5∑
i=2

Yi(x, y) +O(|x, y|6), (4.2)

where Xi s and Yi s are homogeneous polynomials of degree i. Let T (r) be the
minimum period of the periodic orbit around the center O through a nonzero point
(r, 0). As indicated in [4, Lemma 2.1], the period function T (r) has the following
expansion

T (r) = 2π +

+∞∑
k=1

p2kr
2k,

where coefficients p2k s, called periodic quantities, are polynomials in parameters
of system (4.1). Using the software MAPLE ver.18, we compute the first and the
second periodic quantities

p2 = π(2x1 + ϵ2)
6(x21 + ϵ1)

7F1(x1)/x
2
1,

p4 = 864πx41(2x1 + ϵ2)
2(x21 + ϵ1)

2c44c
4
6F2(x1),

(4.3)

where polynomials F1 and F2 are given in the Appendix. Clearly, p2 = 0 (resp.
p4 = 0) if and only if F1(x1) = 0 (resp. F2(x1) = 0).

Let F̂ := F |α=1, Ŝ2 := S2|α=1 and β̂∗ := β̃∗|α=1, where F is defined in (2.6) and
S2 and β̃∗ are given just before (2.9). In order to determine the sign of F1(x1) for
β > β̃∗ and α = 1, we need to investigate the distribution of positive zeros of F1

and F̂ for β > β̂∗. By Lemma 2.1, we compute resultants

res(F̂ , F̂ ′
x, x) = ϵ1Ŝ2(β),

res(F1, (F1)
′
x, x) = ϵ191 ϵ

12
2 (4ϵ1 + ϵ22)

6R1(ϵ1)R2(ϵ1),

res(F̂ , F1, x) = ϵ61ϵ
4
2S3(β),

(4.4)
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where a non-zero constant factor in each formula is omitted for convenience, R1(ϵ1) :=
4ϵ1 − 27ϵ22, S3 and R2 are given in the Appendix. Further we need to discuss the
distribution of positive zeros of Ŝ2 and S3 for β > β̂∗. By Lemma 2.1, we compute
resultants

res(Ŝ2, (Ŝ2)
′
β , β) = ϵ2ϵ

2
1R

3
1(ϵ1),

res(S3, (S3)
′
β , β) = ϵ111 ϵ

16
2 (4ϵ1 + ϵ22)

12R1(ϵ1)R2(ϵ1)R3(ϵ1),

res(S3, Ŝ2, β) = ϵ61ϵ
4
2(4ϵ1 + ϵ22)

6R6
1(ϵ1)R4(ϵ1),

(4.5)

where a non-zero constant factor in each formula is omitted for convenience,

R4(ϵ1) :=1280ϵ61 − 1278720ϵ22ϵ
5
1 + 149068844ϵ42ϵ

4
1 − 3288186800ϵ62ϵ

3
1

+ 14779202661ϵ82ϵ
2
1 − 18839179848ϵ102 ϵ1 + 1124864ϵ122

and R3 is given in the Appendix. We give the distribution of positive zeros of R1,
R2, R3 and R4 in the following.

Claim 1. R1 has one positive zero ϵ10, R2 has four positive zeros ϵ11 < ϵ12 <
ϵ13 < ϵ14, R3 has three positive zeros ϵ̃11 < ϵ̃12 < ϵ̃13 and R4 has four positive zeros
ϵ̂11 < ϵ̂12 < ϵ̂13 < ϵ̂14. Moreover, ϵ11 < ϵ̂11 < ϵ12 < ϵ13 < ϵ̃11 < ϵ14 < ϵ10 < ϵ̂12 <
ϵ̂13 < ϵ̃12 < ϵ̂14 < ϵ̃13.

In fact, one can check that lcoeff(Ri, ϵ1) 6= 0, res(Ri, (Ri)
′
ϵ1 , ϵ1) 6=0 and res(Ri, Rj ,

ϵ1) 6= 0 for all i, j = 1, 2, 3, 4 and i 6= j. By Lemma 2.1, the distribution of
positive zeros of R1,...,R4 does not change as ϵ2 varies. Hence, choosing ϵ2 = 1
and using MAPLE ver.18 command ‘realroot(Ri, 10

−3)’ for i = 1, 2, 3, 4, we ob-
tain that R1 has a unique positive zero, covered by the interval [ϵ−10, ϵ

+
10], where

ϵ−10 := 269
40 and ϵ+10 := 271

40 ; R2 has four positive zeros, covered by the inter-
vals [ϵ−1i, ϵ

+
1i] (i = 1, 2, 3, 4) separately, where ϵ−11 := 7709

4294967296 , ϵ+11 := 3855
2147483648 ,

ϵ−12 :=
7063

16777216 , ϵ+12 := 883
2097152 , ϵ−13 := 5199

4096 , ϵ+13 := 10399
8192 , ϵ−14 := 9147

2048 and ϵ+14 :=
36589
8192 ;

R3 has three positive zeros, covered by the intervals [ϵ̃−1i, ϵ̃
+
1i] (i = 1, 2, 3) sepa-

rately, where ϵ̃−11 := 13841
8192 , ϵ̃+11 := 6921

4096 , ϵ̃−12 := 220707
1024 , ϵ̃+12 := 1765657

8192 , ϵ̃−13 := 53748983
8192

and ϵ̃+13 :=
6718623
1024 ; and R4 has four positive zeros, covered by the intervals [ϵ̂−1i, ϵ̂

+
1i]

(i = 1, 2, 3, 4) separately, where ϵ̂−11 := 4007
67108864 , ϵ̂+11 := 8015

134217728 , ϵ̂−12 := 177937
8192 ,

ϵ̂+12 :=
88969
4096 , ϵ̂−13 := 848147

8192 , ϵ̂+13 := 212037
2048 , ϵ̂−14 := 7112791

8192 and ϵ̂+14 :=
889099
1024 . Note that

ϵ−11 < ϵ+11 < ϵ̂−11 < ϵ̂+11 < ϵ−12 < ϵ+12 < ϵ−13 < ϵ+13 < ϵ̃−11 < ϵ̃+11 < ϵ−14 < ϵ+14 < ϵ−10 < ϵ+10 <
ϵ̂−12 < ϵ̂+12 < ϵ̂−13 < ϵ̂+13 < ϵ̃−12 < ϵ̃+12 < ϵ̂−14 < ϵ̂+14 < ϵ̃−13 < ϵ̃+13. Then Claim 1 follows.

Having Claim 1, we further determine the distribution of zeros of S3 and Ŝ2

for β > β̂∗.

Claim 2. β̂∗ is the only positive zero of Ŝ2. In the interval (β̂∗,+∞), S3 has four
zeros β31 ≤ β32 < β33 < β34 for ϵ1 ≤ ϵ11, where β31 = β32 if and only if ϵ1 = ϵ11,
two zeros β̃31 < β̃32 for ϵ11 < ϵ1 < ϵ̂11, and one zero β30 for ϵ1 ≥ ϵ̂11.

In fact, it is indicated before (2.9) that β̃∗ is the only positive zero of S2. Then
β̂∗ is the only positive zero of Ŝ2 because β̂∗ = β̃∗|α=1 and Ŝ2 = S2|α=1. Note that
S3(0) = −36(121ϵ1+36ϵ22)(4ϵ1+ϵ

2
2)

6 < 0 and lcoeff(S3, β) = 5120ϵ41 > 0. Moreover,
those resultants given in (4.5) are all nonzero for all positive ϵ1 not equaling to those
12 zeros listed in Claim 1. By Lemma 2.1, the distribution of positive zeros of S3

and Ŝ2 does not change as ϵ1 varies in each one of the intervals divided by those



1170 H. Xiong, J. Zhang & W. Zhang

12 zeros given in Claim 1. Thus, from the proof of Claim 1, we choose (ϵ1, ϵ2) =
(ϵ±1i, 1), (ϵ̃±1j , 1) and (ϵ̂±1k, 1) for all i = 0, 1, 2, 3, 4, j = 1, 2, 3 and k = 1, 2, 3, 4, and
then use MAPLE ver.18 command ‘realroot(S3, 10

−3)’ and ‘realroot(Ŝ2, 10
−4)’ to

investigate the distribution of real zeros of S3 and Ŝ2. Choosing (ϵ1, ϵ2) = (ϵ−11, 1),
we obtain that β̂∗ ∈ [ 135889131072 ,

67945
65536 ] and in the interval (β̂∗,+∞) the polynomial S3

has four zeros, covered by the intervals [β−
3i, β

+
3i] (i = 1, 2, 3, 4) separately, where

β−
31 := 35749

32768 < β+
31 := 142997

131072 < β−
32 := 143073

131072 < β+
32 := 71537

65536 < β−
33 := 18523

16384 <

β+
33 :=

148185
131072 < β−

34 :=
1156409
131072 < β+

34 :=
578205
65536 . Then, in the interval (β̂∗,+∞) the

polynomial S3 has four zeros β31 < β32 < β33 < β34 for all ϵ1 < ϵ11. Similarly,
choosing (ϵ1, ϵ2) = (ϵ+11, 1), we obtain that S3 has two zeros in the interval (β̂∗,+∞).
Then S3 has two zeros β̃31 < β̃32 in the interval (β̂∗,+∞) for all ϵ1 ∈ (ϵ11, ϵ̂11).
For ϵ1 = ϵ11, the polynomial S3 has a multiple zero because res(S3, (S3)

′
β , β) =

0. Moreover, since zeros of a polynomial vary continuously as a function of the
coefficients and S3(0) < 0, the two positive zero β31 and β32 of S3 for all ϵ1 < ϵ11
become a multiple zero, i.e., β31 = β32, in the critical case ϵ1 = ϵ11 and then a pair
of conjugate non-real zeros for all ϵ1 ∈ (ϵ11, ϵ̂11). Further, from a similar discussion
on those choices (ϵ1, ϵ2) = (ϵ±1i, 1), (ϵ̃±1j , 1) and (ϵ̂±1k, 1) for all i = 0, 2, 3, 4, j = 1, 2, 3

and k = 2, 3, 4, we obtain that S3 has one zero β30 in the interval (β̂∗,+∞) for all
ϵ1 ≥ ϵ̂11. Thus Claim 2 is proved.

Having Claim 2, we further determine the distribution of positive zeros of F1

and F̂ for β > β̂∗.

Claim 3. In the interval (β̂∗,+∞), F̂ has two positive zeros x1 < x2, and F1 has
three positive zeros x11 ≤ x12 < x13 for all ϵ1 ≤ ϵ11, where x11 = x12 if and only if
ϵ1 = ϵ11, and a unique positive zero x10 for all ϵ1 > ϵ11. The distribution of positive
zeros of F̂ and F1 for β > β̂∗ is listed in Table 2.

Table 2. The distribution of positive zeros of F̂ and F1 for β > β̂∗.
Parameters distribution
0 < ϵ1 < ϵ11 β̂∗ < β < β31 x11 < x12 < x1 < x2 < x13

β = β31 x11 < x12 = x1 < x2 < x13
β31 < β < β32 x11 < x1 < x12 < x2 < x13
β = β32 x11 = x1 < x12 < x2 < x13
β32 < β < β34 x1 < x11 < x12 < x2 < x13
β = β34 x1 < x11 < x12 < x2 = x13
β > β34 x1 < x11 < x12 < x13 < x2

ϵ1 = ϵ11 β̂∗ < β < β31 = β32 x11 = x12 < x1 < x2 < x13
β = β32 x11 = x12 = x1 < x2 < x13
β32 < β < β34 x1 < x11 = x12 < x2 < x13
β = β34 x1 < x11 = x12 < x2 = x13
β > β34 x1 < x11 = x12 < x13 < x2

ϵ11 < ϵ1 < ϵ̂11 β̂∗ < β < β̃32 x1 < x2 < x10
β = β̃32 x1 < x2 = x10
β > β̃32 x1 < x10 < x2

ϵ1 ≥ ϵ̂11 β̂∗ < β < β30 x1 < x2 < x10
β = β30 x1 < x2 = x10
β > β30 x1 < x10 < x2

In fact, F1(0) = −32ϵ21ϵ
4
2 < 0 and lcoeff(F1, x) = 10 > 0. Moreover, we see

from (4.4) that res(F1, (F1)
′
x, x) = 0 if and only if R1(ϵ1)R2(ϵ1) = 0. From the

proof of Claim 1, choosing (ϵ1, ϵ2) = (ϵ±1i, 1) for all i = 0, 1, 2, 3, 4, we can similarly
obtain that F1 has three positive zeros x11 < x12 < x13 for all ϵ1 < ϵ11, one positive
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zero x10 for all ϵ1 > ϵ11 and, moreover, F1 has one double positive zero x11 = x12
and one simple positive zero x13 in the critical situation ϵ1 = ϵ11. Combined with
Claim 2, there are four situations:

ϵ1 < ϵ11, ϵ1 = ϵ11, ϵ11 < ϵ1 < ϵ̂11 and ϵ1 ≥ ϵ̂11.

In the situation ϵ1 < ϵ11, since F1 is independent of parameter β, choosing (ϵ1, ϵ2) =
(ϵ−11, 1) and using MAPLE ver.18 command ‘realroot(F1, 10

−4)’, we obtain that
those three positive zeros x11, x12 and x13 of F1 lie in the intervals [x−11, x

+
11],

[x−12, x
+
12] and [x−13, x

+
13] respectively, where x−11 := 78777

16777216 , x+11 := 39389
8388608 , x−12 :=

79079
16777216 , x+12 := 9885

2097152 , x−13 := 128167
32768 and x+13 := 512669

131072 . We see from Claim 2 that S3

or equivalently the resultant res(F̂ , F1, x) has four real zeros β31 < β32 < β33 < β34
in the interval (β̂∗,+∞). By Lemma 2.1, the distribution of positive zeros of F1

and F̂ does not change as β varies in each one of intervals divided by β3i s. From
the proof of Claim 2, choosing (β, ϵ1, ϵ2) = (β−

31, ϵ
−
11, 1) and using MAPLE ver.18

command ‘realroot(F̂ , 10−4)’, we obtain that F̂ has two positive zeros x1 and x2,
lying in the intervals [x−131, x+131] and [x−231, x

+
231] respectively, where x−131 := 79081

16777216 ,
x+131 :=

39541
8388608 , x−231 := 94379

2097152 and x+231 :=
23595
524288 . Note that x−11 < x+11 < x−12 <

x+12 < x−131 < x+131 < x−231 < x+231 < x−13 < x+13. Then, x11 < x12 < x1 < x2 < x13
for all ϵ1 < ϵ11 and all β ∈ (β̂∗, β31), as indicated on line 1 in Table 2. Moveover,
choosing (β, ϵ1, ϵ2) = (β+

31, ϵ
−
11, 1), (β−

3i, ϵ
−
11, 1) and (β+

3i, ϵ
−
11, 1) for all i = 2, 3, 4, we

similarly obtain the result stated on lines 3, 5 and 7 in Table 2. Since zeros of a
polynomial vary continuously as a function of the coefficients, F1 and F̂ have one
common positive zero x12 = x1 in the critical case β = β31, one common positive
zero x11 = x1 in the critical case β = β32 and one common positive zero x13 = x4 in
the critical case β = β34, as indicated on lines 2, 4 and 6 in Table 2. Consequently,
we obtain the distribution of positive zeros of F1 and F̂ in the situation ϵ1 < ϵ11.
The situation ϵ11 < ϵ1 < ϵ̂11, the situation ϵ1 ≥ ϵ̂11 and the critical situation
ϵ1 = ϵ11 can be discussed similarly. Then Claim 3 is proved.

By Claim 3, p2 = F1(x1) = 0, i.e., equilibrium O of system (4.2) is a rough
center, if and only if either β = β31 and ϵ1 ≤ ϵ11, or β = β32 and ϵ1 ≤ ϵ11.

Finally, we show that if O is a weak center then its order is at most 1, i.e.,
p4 6= 0 when p2 = 0, which is equivalent to show that F2(x1) 6= 0 when F1(x1) = 0
by (4.3). Actually, we compute the resultant

res(F1, F2, x) = ϵ561 ϵ
40
2 (4ϵ1 + ϵ22)

24R4
1(ϵ1)R

2
5(ϵ1)R6(ϵ1), (4.6)

where a non-zero constant factor is omitted for convenience, R5(ϵ1) := 11236ϵ41 −
187731ϵ22ϵ

3
1 + 14004ϵ42ϵ

2
1 − 14154ϵ62ϵ1 − 300ϵ82 and R6 is given in the Appendix. One

can check that lcoeff(Ri, ϵ1) 6= 0, res(Ri, (Ri)
′
ϵ1 , ϵ1) 6= 0 and res(Ri, Rj , ϵ1) 6= 0,

where i, j = 1, 5, 6 and i 6= j. By Lemma 2.1, the distribution of positive zeros
of R1, R2, R5 and R6 does not change as ϵ2 varies. Note that ϵ1 ≤ ϵ11 when
p2 = 0, as indicated in the last paragraph. Choosing ϵ2 = 1 and using MAPLE
ver.18 command ‘realroot(Ri, 10

−3)’ for i = 1, 2, 5, 6, we find that R1, R5 and R6

has no real zeros in the interval [0, ϵ11]. It follows that R1(ϵ1), R5(ϵ1), R6(ϵ1) 6= 0
for all ϵ1 ≤ ϵ11 and therefore, p4 6= 0 if p2 = 0. Thus the proof of this theorem is
completed.

An interesting problem about the center E1 is: Does a change of parameters near
a = 1 produces limit cycles from the annulus of periodic orbits around the center
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in system (1.2)? For this problem, an effective method is to compute zeros of the
Melnikov function ([11,13,20]), which is an integral along a periodic orbit of system
(1.2) with a = 1. This is usually completed by finding the first integral of the system
in the center case and reducing to Abelian integrals ([3, 6, 18]). Unfortunately, we
are disappointed by the following result, where a first integral is referred to as an
elementary first integral if is expressible in terms of exponentials, logarithms and
algebraic functions as indicated in [24],

Theorem 4.2. System (1.2) with a = 1 has no elementary first integrals.

Proof. As indicated just below (2.3), we only need to prove that system (2.3) with
α = 1 has no elementary first integrals. For convenience, we rewrite system (2.3)
with α = 1 as

ẋ = P (x, y) :=

4∑
i=1

Pi(x, y), ẏ = Q(x, y) :=

4∑
i=1

Qi(x, y),

where P1(x, y) := ϵ1ϵ2x, P2(x, y) := ϵ1x(x+y), P3(x, y) := xy(ϵ2x−βy), P4(x, y) :=
x2y(x+ y), Q1(x, y) := −ϵ1ϵ2y, Q2(x, y) := −ϵ1y(x+ y), Q3(x, y) := xy(βx− ϵ2y)
and Q4(x, y) := −xy2(x+y). For an indirect proof, we assume that system (2.3) has
an elementary first integral. Then, by Propositions 1 and 2 of [24] or Proposition 2.4
of [22], system (2.3) has an invariant algebraic curve f(x, y) = 0 such that

P (x, y)f ′x(x, y) +Q(x, y)f ′y(x, y) = K(x, y)f(x, y), (4.7)

where K(x, y) := m(P ′
x+Q

′
y) = m(x−y)(xy+β(x+y)+ϵ1) for an integer m. Direct

computation shows that neither f(x, y) = x nor f(x, y) = y is a solution of equation
(4.7). Except for the lines x = 0 and y = 0, there are no orbits connecting with
the equilibrium O since it is a saddle as indicated before (2.10). Then the invariant
curve f(x, y) = 0 in (4.7) does not pass through the origin O and therefore we
assume without loss of generality that

f(x, y) = 1 +

n∑
i=1

fi(x, y)

for an integer n ≥ 1, where each fi is a homogeneous polynomial of degree i and
fn 6= 0. We also rewrite K as K(x, y) = K1(x, y) + K2(x, y) + K3(x, y), where
K1(x, y) := mϵ1(x− y), K2(x, y) := mβ(x2 − y2) and K3(x, y) := mxy(x− y).

In the case n ≤ 2, direct computation shows that equation (4.7) has no poly-
nomial solutions. In the oppositive case n ≥ 3, substituting expansions of P , Q, f
and K in (4.7) and equaling the homogeneous polynomials of the same degree, we
obtain that

P4(x, y)
∂fi(x, y)

∂x
+Q4(x, y)

∂fi(x, y)

∂y
−K3(x, y)fi(x, y) = Λi(x, y) (4.8)

for all i = 1, ..., n− 3, where Λn(x, y) := 0,

Λn−1(x, y) :=K2fn − P3∂fn/∂x−Q3∂fn/∂y

Λn−2(x, y) :=K2fn−1 +K1fn − P3
∂fn−1

∂x
− P2

∂fn
∂x

−Q3
∂fn−1

∂y
−Q2

∂fn
∂y

,
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Λi(x, y) :=K2fi+1 +K1fi+2 − P3
∂fi+1

∂x
− P2

∂fi+2

∂x
− P1

∂fi+3

∂x

−Q3
∂fi+1

∂y
−Q2

∂fi+2

∂y
−Q1

∂fi+3

∂y
.

As done in [9], we make the change w = x and u = y/x in the above homogeneous
polynomial equations. Considering the homogeneity of the involved polynomials,
we define polynomials P ∗

i (u) := Pi(w, uw)/w
i, Q∗

i (u) := Qi(w, uw)/w
i, f∗i (u) :=

fi(w, uw)/w
i, K∗

i (u) := Ki(w, uw)/w
i and Λ∗

i (u) := Λi(w, uw)/w
i+3. Note that

∂fi(w, uw)

∂x
=
∂fi(w, uw)

∂w
− u

w

∂fi(w, uw)

∂u
= iwi−1f∗i (u)− uwi−1 df

∗
i (u)

du
,

∂fi(w, uw)

∂y
=

1

w

∂fi(w, uw)

∂u
= wi−1 df

∗
i (u)

du
.

Then equation (4.8) becomes

Γ(u)
df∗i (u)

du
+ Γi(u)f

∗
i (u) = Λ∗

i (u),

where Γ(u) := Q∗
4(u) − uP ∗

4 (u) and Γi(u) := iP ∗
4 (u) − K∗

3 (u). If we obtain the
polynomial solution f∗i (u) of the above equation, then fi(x, y) = xif∗i (y/x). By the
variation of constants formula,

f∗i (u) = Ai(u)

(
Ci +

∫
Bi(u)du

)
, (4.9)

where Ci is a constant, Ai(u) := exp
(
−
∫ Γi(u)

Γ(u) du
)

and Bi(u) :=
Λ∗

i (u)
Γ(u)Ai(u)

. Solving
recursively for polynomials f∗n, f∗n−1 and f∗n−2, we obtain that n = 3m and

f∗n(u) = (1 + u)mumCn,

f∗n−1(u) = (1 + u)m−1umCnm(β + ϵ2),

f∗n−2(u) = (1 + u)m−2um−1{Cn−2 + · · ·+ Cn−2u
2},

where Cn 6= 0 since we assumed that fn(x, y) = xnf∗n(y/x) 6= 0. Then, the inequal-
ity n = 3m implies that equation (4.7) has no polynomial solutions in the subcase
n ≥ 3 and n 6= 3m.

In the opposite subcase n ≥ 3 and n = 3m, we have either m = 1 or m ≥ 2. In
the first situation m = 1, we have n = 3. Direct computation shows that equation
(4.7) has no polynomial solutions in this situation. In the opposite situation m ≥ 2,
we further solve f∗n−3 and f∗n−4 and obtain that

f∗n−3(u) =(1 + u)m−3um−2{Cn−2β + · · ·+ Cn−2βu
4},

f∗n−4(u) =(1 + u)m−4um−3{Cn−2β
2 + · · ·+ Cn−2β

2u6}

with
Cn−2 = −mβϵ1Cn

β + ϵ2
6= 0. (4.10)

Moreover, we claim that for all k = 2, ...,m,

f∗n−k(u) = (1 + u)m−kum−k+1Ξk(u), (4.11)
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where Ξk(u) := Cn−2β
k−2 + · · · + Cn−2β

k−2u2k−2, a polynomial in u of degree
2k− 2. In fact, (4.11) holds obviously for k = 2, 3 and 4. Suppose that (4.11) holds
for k = 2, 3, ..., ℓ − 1 with ℓ ≥ 5. By (4.9), we compute that Γ(u) = −2(1 + u)u2,
Γn−ℓ(u) = (2m− ℓ)u+ (4m− ℓ)u2 and

An−ℓ(u) = exp

(∫
−Γ3m−ℓ(u)

Γ(u)
du

)
= (1 + u)mum−ℓ/2.

Moreover, since f∗n−ℓ+1, f∗n−ℓ+2 and f∗n−ℓ+3 are all of form (4.11), by expression of
Λi(x, y) given just below (4.8), we obtain that

Λ∗
n−ℓ(u) = (1 + u)m−ℓum−ℓ+2Υℓ(u),

where Υℓ(u) := (ℓ − 2)Cn−2β
ℓ−2 + · · · + (2 − ℓ)Cn−2β

ℓ−2u2ℓ−1, a polynomial in u
of degree 2ℓ− 1. Then

Bn−ℓ(u) =
Λ∗
i (u)

Γ(u)Ai(u)
=

Υℓ(u)

−2(1 + u)ℓ+1uℓ/2
.

When ℓ is even, Bn−ℓ(u) is a rational function and can be decomposed as

Bn−ℓ(u) = ϕℓ(u) +

ℓ/2∑
i=1

Ai

ui
+

ℓ+1∑
i=1

Bi

(1 + u)i
,

where ϕℓ is a polynomial of degree (ℓ− 4)/2 with leading coefficient lcoeff(ϕℓ, u) :=
(ℓ − 2)Cn−2β

ℓ−2/2, Ai s and Bi s are polynomials in β, ϵ1 and ϵ2, and Aℓ/2 =

(2− ℓ)Cn−2β
ℓ−2/2. Let Φℓ(u) :=

∫ u

0
ϕℓ(s)ds. We see from (4.9) that

f∗
n−ℓ(u) =(1 + u)mum−ℓ/2

C3m−ℓ +Φℓ(u) +A1 ln |u|+
ℓ/2∑
i=2

Ai

(1− i)ui−1

+B1 ln |1 + u|+
ℓ+1∑
i=2

Bi

(1− i)(1 + u)i−1

}

=
(1 + u)mum−ℓ/2

(1 + u)ℓuℓ/2−1

{
2Aℓ/2

2− ℓ
+ · · ·+ 2lcoeff(ϕℓ, u)

ℓ− 2
u2ℓ−1

}
=(1 + u)m−ℓum−ℓ+1{Cn−2β

ℓ−2 + · · ·+ Cn−2β
ℓ−2u2ℓ−1},

the same form as (4.11), where A1 = B1 = 0 since f∗n−ℓ needs to be a polynomial.
It follows that the claimed (4.11) holds for even ℓ.

When ℓ is odd, changing variable u = ν2, we obtain that∫
Bn−ℓ(u)du =

∫
−Υℓ(ν

2)

(1 + ν2)ℓ+1νℓ−1
dν

=

∫ {
ϕ̃ℓ(ν) +

ℓ−1∑
i=1

Ãi

νi
+

ℓ+1∑
i=1

B̃iν + C̃i

(1 + ν2)i

}
dν

=Φ̃ℓ(ν) + Ã1 ln |ν|+
ℓ−1∑
i=2

Ãi

(1− i)νi−1
+

B̃1

2
ln(1 + ν2) + C̃1 arctan ν

+

ℓ+1∑
i=2

{
B̃i

2(1− i)(1 + ν2)i−1
+ µi,0C̃i arctan ν +

i−1∑
j=1

µi,jC̃iν

(1 + ν2)j

}
,
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where ϕ̃ℓ(ν) is a polynomial in ν of degree ℓ−3 with leading coefficient lcoeff(ϕ̃ℓ, ν) :=
(ℓ − 2)βℓ−2Cn−2, Φ̃ℓ(ν) :=

∫ ν

0
ϕ̃ℓ(s)ds, Ãi s, B̃i s and C̃i s are all polynomials in β,

ϵ1 and ϵ2, µi,j s are constants and Ãℓ−1 = (2− ℓ)βℓ−2Cn−2. Further, since f∗n−ℓ(ν
2)

needs to be a polynomial, we see from (4.9) that Ã1 = B̃1 = C̃1 +
∑ℓ+1

i=2 µi,0C̃i = 0
and therefore

f∗n−ℓ(ν
2) =(1 + ν2)mν2m−ℓ

{
Φ̃ℓ(ν) +

ℓ−1∑
i=2

Ãi

(1− i)νi−1

+

ℓ+1∑
i=2

 B̃i

2(1− i)(1 + ν2)i−1
+

i−1∑
j=1

µi,jC̃iν

(1 + ν2)j


=
(1 + ν2)mν2m−ℓ

(1 + ν2)ℓνℓ−2

{
Ãℓ−1

2− ℓ
+ · · ·+ lcoeff(ϕ̃ℓ)

ℓ− 2
ν4ℓ−2

}
=(1 + ν2)m−ℓν2(m−ℓ)+2{Cn−2β

ℓ−2 + · · ·+ Cn−2β
ℓ−2ν4ℓ−2}.

Then f∗n−ℓ(u) is of the form (4.11) when ℓ is odd and therefore the claimed (4.11)
is proved. By claim (4.11), computing similarly to the above for i = m+ 1, we get

f∗n−m−1(u) = (m− 1)Cn−2β
m−1 + · · ·+ m− 1

2m− 3
Cn−2β

m−1u2m−1.

Similar to the above computation,

f∗n−m−2(u) = u−1{m(m− 1)Cn−2β
m/2 +O(u)}.

Since f∗n−m−2 needs to be a polynomial and m(m− 1)βm > 0, we have Cn−2 = 0,
a contradiction to (4.10). Hence equation (4.7) has no polynomial solutions in the
subcase n = 3m and m ≥ 2.

As above, equation (4.7) has no polynomial solutions, a contradiction to our
assumption given before (4.7). Hence, system (2.3) with α = 1, i.e., system (1.2)
with a = 1, has no elementary first integrals. Thus, Theorem 4.2 is proved.

5. Global dynamics
In order to obtain the global phase portraits of system (1.2) in the closure of the
first quadrant, we first investigate equilibria at infinity.

Theorem 5.1. System (1.2) has exactly two equilibria Ix and Iy at infinity, which
lie on the positive x-axis and the positive y-axis at infinity respectively. Moreover,
Ix is asymptotically stable and Iy is unstable but asymptotically stable if the time is
reversed.

Proof. As indicated just below (2.3), system (1.2) is topologically equivalent to
system (2.3). Hence we only need to consider equilibria of system (2.3) at infinity.
Under the Poincaré transformation ( [23, p.248]) x = 1/z and y = ϑ/z and the
time-rescaling t 7→ z3t, system (2.3) becomes

ϑ̇ =− (α2 + 1)ϑ2 + βϑz − (α2 + 1)ϑ3 − (α2 + 1)ϵ2ϑ
2z − (α2 + 1)ϵ1ϑz

2

+ βϑ3z − (α2 + 1)ϵ1ϑ
2z2 − (α2 + 1)ϵ1ϵ2ϑz

3 := U(ϑ, z),

ż =− ϑz − ϑ2z − ϵ2ϑz
2 − ϵ1z

3 + βϑ2z2 − ϵ1ϑz
3 − ϵ1ϵ2z

4 := Z(ϑ, z).

(5.1)
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System (5.1) has a unique non-negative equilibrium O1 : (0, 0) on the ϑ-axis, which
corresponds to the equilibrium Ĩx of system (2.3) on the positive x-axis at in-
finity, i.e., the equilibrium Ix of system (1.2) on the positive x-axis at infinity.
Obviously, equilibrium O1 is degenerate. Using the Briot-Bouquet transformation
([32, Chapter II]) z = ϑω together with the time-rescaling t 7→ ϑt to desingularize
the degenerate equilibrium O1, we reduce system (5.1) to the form

ϑ̇ =− (α2 + 1)ϑ− (α2 + 1)ϑ2 + βϑω − (α2 + 1)ϵ2ϑ
2ω + βϑ3ω − (α2 + 1)

× ϵ1ϑ
2ω2 − (α2 + 1)ϵ1ϑ

3ω2 − (α2 + 1)ϵ1ϵ2ϑ
3ω3 := U(ϑ, ω),

ω̇ =α2ω + α2ϑω − βω2 + α2ϵ2ϑω
2 + α2ϵ1ϑω

3 + α2ϵ1ϑ
2ω3

+ α2ϵ1ϵ2ϑ
2ω4 := W(ϑ, ω).

(5.2)

System (5.2) has equilibria O∗
1 : (0, 0) and I∗1 : (0, α2/β) on the ω-axis. Equilibrium

O∗
1 has eigenvalues α2 and −(α2 + 1) with eigenvectors (0, 1)T and (1, 0)T respec-

tively, where T is the transpose, implying that O∗
1 is a saddle. Equilibrium I∗1 has

eigenvalues −1 and −α2 with eigenvectors ((α2−1)β3, α4(β2+α2βϵ2+α
4ϵ1))

T and
(0, 1)T respectively, implying that I∗1 is a stable node, as shown in Figure 1(b).
By the geometric property of the Briot-Bouquet transformation, system (5.1) has
a unique orbit approaching to O1 in the direction of the ϑ-axis and infinitely many
orbits approaching to O1 in the direction of θ = arctan

(
α2/β

)
. In order to de-

termine whether there is an orbit connecting to O1 in the direction of the positive
z-axis, we use another Briot-Bouquet transformation v = νz and the time-rescaling
t 7→ zt, which rewrites system (5.4) as{

ν̇ =βν−α2ν2−α2ϵ1νz−α2ϵ2ν
2z−α2ϵ1ϵ2νz

2−α2ν3z−α2ϵ1ν
2z2 := V(ν, z),

ż =−νz−ϵ1z
2−ϵ2νz

2−ϵ1ϵ2z
3−ν2z2−ϵ1νz

3+βν3z3 := Z(ν, z).
(5.3)

Clearly, the equilibrium Õ∗
1 : (0, 0) of the above system has exactly one zero eigen-

value, and ν = 0 is a center manifold since the first equation of (5.2) has a common
factor ν. Restricted to the center manifold, system (5.3) becomes the equation
ż = −ϵ1z2 − ϵ1ϵ2z

3, implying that the equilibrium Õ∗
1 is a saddle-node, as shown

in Figure 1(c). By the geometric property of the Briot-Bouquet transformation,
system (5.1) has a unique orbit approaching to O1 in the direction of the z-axis.
Then equilibrium O1 : (0, 0) of system (5.1) is asymptotically stable, as shown in
Figure 1(a), i.e., the equilibrium Ix of system (1.2) is asymptotically stable.

(a) (b) (c)

Figure 1. (a) Phase portrait of system (5.1) near O1. (b) Phase portrait of system (5.2) near the
ω-axis. (c) Phase portrait of system (5.3) near Õ∗

1 .
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(a) (b) (c)

Figure 2. (a) Phase portrait of system (5.4) near O2. (b) Phase portrait of system (5.5) near the
η-axis. (c) Phase portrait of system (5.6) near Õ∗

2 .

Applying another Poincaré transformation x = v/z and y = 1/z and the time-
rescaling t 7→ z3t, we change system (2.3) into the form

v̇ = −U(v, z), ż = −α2Z(v, z) + (α2 − 1)βv2z2. (5.4)

It suffices to discuss the equilibrium O2 : (0, 0) of system (5.4), which corresponds
to the equilibrium Ĩy of system (2.3) on the positive y-axis at infinity, i.e., the
equilibrium Iy of system (1.2) on the positive y-axis at infinity. Note that the
equilibrium O2 is degenerate. Using the Briot-Bouquet transformation z = vη and
the time-rescaling t 7→ vt to desingularize the degenerate equilibrium O2, we reduce
system (5.4) to the following

v̇ = −U(v, η), η̇ = −α2W(v, η) + (α2 − 1)βη2. (5.5)

Similar to system (5.2), system (5.5) has two equilibria on the positive η-axis: saddle
O∗

2 : (0, 0) and unstable node I∗2 : (0, 1/β), as shown in Figure 2(b). Then system
(5.4) has a unique orbit leaving from O2 in the direction of the v-axis and infinitely
many orbits leaving from O2 in the direction of θ = arctan (1/β). Using another
Briot-Bouquet transformation v = ζz and the time-rescaling t 7→ zt, we rewrite
system (5.4) as

ζ̇ = −V(ζ, z)/α2 + (α2 − 1)βζ/α2, ż = α2Z(ζ, z) + (α2 − 1)βζ2z3. (5.6)

Similarly to system (5.3), we reduce system (5.6) to the center manifold ζ = 0 and
see that the origin Õ∗

2 is a saddle-node and the phase portrait is given in Figure
2(c). Then system (5.4) has a unique orbit leaving from O2 in the direction of the
z-axis. It follows that the equilibrium O2 of system (5.4) is unstable and all orbits
nearby approach to O2 as the time tends to −∞, as shown in Figure 2(a), i.e., the
equilibrium Iy of system (1.2) is unstable but asymptotically stable if the time is
reversed. Thus the proof of this theorem is completed.

For each (ε1, ε2) ∈ R2
+, we define the following curves and regions

Υ0 := {(β, a) ∈ R2
+ : β > β∗(a, ε1, ε2), a = 1},

Υ− := {(β, a) ∈ R2
+ : β = β∗(a, ε1, ε2), a < 1},

Υ+ := {(β, a) ∈ R2
+ : β = β∗(a, ε1, ε2), a > 1},
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B1 := {(β, a) ∈ R2
+ : β < β∗(a, ε1, ε2)},

B2 := {(β, a) ∈ R2
+ : β > β∗(a, ε1, ε2), a < 1},

B3 := {(β, a) ∈ R2
+ : β > β∗(a, ε1, ε2), a > 1},

and moreover let M denote the point (β, a) = (β∗(1, ε1, ε2), 1). Clearly, the first
quadrant of the (β, a)-plane is divided as the union Υ0 ∪Υ± ∪ B1 ∪ B2 ∪ B3 ∪M .

Theorem 5.2. For all (β, a) ∈ Υ0 ∪ Υ± ∪ B1 ∪ M and all positive ε1 and ε2,
system (1.2) has no limit cycles and its global phase portraits are given in Figure 3.
Moreover, for all (β, a) ∈ Υ0 and all positive ε1 and ε2, system (1.2) has an orbit
homoclinic to the saddle E2 and the open region inside the homoclinic orbit is fully
filled with a continuous family of periodic orbits around the center E1.

Figure 3. Global phase portraits of system (1.2).

Proof. By Theorem 5.1, system (1.2) has only two equilibria at infinity, i.e., Ix
and Iy, where Ix is asymptotically stable and Iy is unstable but asymptotically
stable if the time is reversed. As indicated in Theorem 2.1, system (1.2) has only
one boundary equilibrium, i.e., the origin O : (0, 0), which is a hyperbolic saddle and
its stable manifold and unstable manifold are the y-axis and the x-axis respectively.
However, the distribution of interior equilibria changes as (β, a, ε1, ε2) varies.

For all (β, a) ∈ B1 and all positive ε1 and ε2, there are no interior equilibria as
indicated in Theorem 2.1. By Property 2 of [32, p.148], which says that the open
region inside a limit cycle contains an equilibrium, system (1.2) has no limit cycles.
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It follows that each orbit in the interior of the first quadrant approaches to Ix as
the time tends to +∞ and approaches to Iy as the time tends to −∞.

For all (β, a) =M and all positive ε1 and ε2, system (1.2) has a unique interior
equilibrium, i.e., the cusp E∗, by Theorems 2.1 and 3.1. As indicated in [32, Prop-
erty 2, p.148], the sum of indices of equilibria of system (1.2) in the region enclosed
by a limit cycle is exact 1. In order to show the nonexistence of limit cycles, we em-
ploy the Bendixson’s formula (see [32, Chapter III, Section 6]) I(E∗) = 1+(e−h)/2,
where I(E∗) denotes the Poincaré index of the equilibrium E∗, e is the number of
elliptic sectors and h is the number of hyperbolic sectors adjacent to the equilib-
rium E∗. Thus I(E∗) = 0 since the cusp E∗ has only two hyperbolic sectors and
no other sectors. It follows that there are no limit cycles. On the other hand, the
stable manifold and unstable manifold of the cusp cannot coincide and form an orbit
homoclinic to the cusp E∗; otherwise, the open region inside the homoclinic orbit
contains an equilibrium by Property 2 of [32, p.148], a contradiction. Therefore,
the stable manifold of the cusp E∗ connects Iy and the unstable manifold connects
Ix and, moreover, other orbits in the first quadrant all approach to Ix as the time
tends to +∞ and approach to Iy as the time tends to −∞.

In order to investigate global phase portraits of system (1.2) for all (β, a) ∈
Υ±∪Υ0 and all positive ε1 and ε2, we consider its topological equivalent system (2.3)
for all (β, α) ∈ Υ̃± ∪ Υ̃0 and all positive ϵ1 and ϵ2, where Υ̃− := {(β, α) ∈ R2

+ : β =

β̃∗, α < 1}, Υ̃+ := {(β, α) ∈ R2
+ : β = β̃∗, α > 1}, Υ̃0 := {(β, α) ∈ R2

+ : β > β̃∗, α =

1} and β̃∗ is defined just before (2.9). Note that the two equilibria Ĩx and Ĩy of
system (2.3) at infinity correspond to equilibria Ix and Iy of system (1.2) at infinity
respectively, as indicated in the proof of Theorem 5.1. For (β, α) ∈ Υ̃±, there is a
unique interior equilibria Ẽ∗, which is a saddle-node, by Theorem 3.1. Since the
index of a saddle-node is 0, there are no limit cycles similar to the above situation.
We see from (2.10) that the trace of the Jacobian matrix of system (2.3) at the
saddle-node Ẽ∗ has the same sign as 1 − α. It follows that the nonzero eigenvalue
is positive (resp. negative) as α < 1 (resp. > 1). Then for α < 1 (resp. α > 1)
orbits in the parabolic sector of the saddle-node Ẽ∗ all approach to Ẽ∗ as the time
tends to −∞ (resp. +∞) and approach to Ĩx (resp. Ĩy) as the time tends to +∞
(resp. −∞); the orbit that separates the two hyperbolic sectors of the saddle-node
Ẽ∗ approaches to Ẽ∗ as the time tends to +∞ (resp. −∞) and approaches to Ĩy
(resp. Ĩx) as the time tends to −∞ (resp. +∞); other orbits all approach to Ĩx as
the time tends to +∞ and approach Ĩy as the time tends to −∞.

For all (β, α) ∈ Υ̃0 and all positive ε1 and ε2, we see from the proof of Theorem
2.1 and Theorem 4.1 that the equivalent system (2.3) has two interior equilibria
Ẽ1 : (x1, x1) and Ẽ2 : (x2, x2), which are center and saddle respectively. We see
from (2.10) that the Jacobian matrix of system (2.3) at the saddle Ẽ2 has eigenvalues
λ± = ±

√
c27 − c28 with eigenvectors v± = (−c8,−c7 ±

√
c27 − c28) respectively, where

c7 := x2(3x
2
2 + ϵ2x2 + ϵ1) and c8 := x32 + ϵ2x

2
2 + 3ϵ1x2 + 2ϵ2ϵ1. We claim that the

orbit Γ1 (resp. Γ2) approaching to Ẽ2 as the time tends to +∞ (resp. −∞) in Ω1

(resp. Ω2) along the eigenvector v− (resp. v+) approaches to the equilibria Ĩy (resp.
Ĩx) as the time tends to −∞ (resp. +∞) in the region Ω1 (resp. Ω2), where

Ω1 := {(x, y) ∈ R2
+ : 0 < x < y} and Ω2 := {(x, y) ∈ R2

+ : 0 < y < x}.
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Actually, on the line y = x, we have

ẋ|y=x = xF (x)|α=1 and ẏ|y=x = −xF (x)|α=1,

where F is defined in (2.6). Note that F (x)|α=1 > 0 (resp. < 0) for x ∈ (0, x1) ∪
(x2,+∞) (resp. x ∈ (x1, x2)) because x1 and x2 are the only two positive zero
of cubic F |α=1 and F (0) > 0. It follows that orbit starting from the point (x, x)
leaves (resp. enters) the region Ω1 and enters (resp. leaves) the region Ω2 for all
x ∈ (0, x1)∪ (x2,+∞) (resp. x ∈ (x1, x2)). If the claim is not true, then, according
to the direction of orbits on the line y = x, the orbit Γ1 enters Ω1 from the linear
segment S := {(x, x) ∈ R2

+ : x1 < x < x2}. As indicated just below (4.1), the phase
portrait of system (2.3) is symmetric with respect to the line y = x. Hence, the
orbit Γ2 leaves Ω2 from S. Because of the symmetry of the phase portrait, orbits
Γ1 and Γ2 coincide and form an orbit homoclinic to the saddle Ẽ2. However, as
indicated in [32, Property 2, p.148], the open region inside the homoclinic orbit
contains an equilibrium, a contradiction. Thus our above claim is proved. By the
claim, the orbit Γ3 (resp. Γ4) approaching to Ẽ2 as the time tends to −∞ (resp.
+∞) in Ω1 (resp, Ω2) along the eigenvector v+ (resp. v−) leaves (resp. enters)
Ω1 (resp. Ω2) from the segment {(x, x) ∈ R2 : 0 < x < x1}. Therefore, Γ3 and
Γ4 coincide because of the symmetry and form an orbit homoclinic to the saddle
Ẽ2, and the open region inside the homoclinic orbit is fully filled with a continuous
family of periodic orbits around the center Ẽ1. Thus, there are no limit cycles.

As above, we obtain the global phase portraits of system (1.2) for all (β, a) ∈
Υ0 ∪Υ± ∪ B1 ∪M and all positive ε1 and ε2, as illustrated in Figure 3. Thus, this
theorem is proved.

6. Simulations and conclusions
Remark that it is still unknown whether there exists a limit cycle in the case that
(β, a) ∈ B2 ∪ B3, i.e., β > β∗(a, ε1, ε2) and a 6= 1. Many simulations (see Figures
4(a)-4(c)) to the phase portraits of system (1.2) suggest nonexistence of limit cycles
in this case, but we fail to prove the nonexistence by the well-known Bendixson-
Dulac Criterion ([23, p.264] or [32, Theorem 1.7, p195]) with Dulac functions of the
forms xmyn and exp(mx+ ny).
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Figure 4. Simulations of system (1.2). (a) No cycles for (β, a, ε1, ε2) = (26/5, 16/9, 1/2, 1/4).
(b) No cycles for (β, a, ε1, ε2) = (315/100, 4/9, 1/2, 1). (c) No cycles for (β, a, ε1, ε2) =
(14/5, 25/36, 1/2, 1/16).

Our Theorem 5.2 indicates two interesting phenomena: a stable focus or node
and a saddle for all (β, a) ∈ B3 and all positive ε1 and ε2; a center surrounded by
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a homoclinic orbit for all (β, a) ∈ Υ0 and all positive ε1 and ε2. In what follows,
we demonstrate the two phenomena with numerical simulations. With the choice
(β, a, ε1, ε2) = (13/2, 21/20, 1, 1), which lies in the region B3, we use MATLAB
ver.12 to plot the phase portrait of system (1.2) in Figure 5(a), which shows that
system (1.2) has a stable focus and a saddle, the same as displayed in Figure 3.
With the choice (β, a, ε1, ε2) = (6, 1, 1, 1) lying on the curve Υ0, similar simulation
produces Figure 5(b), showing that system (1.2) has both a homoclinic orbit and a
center, the same as displayed in Figure 3.
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Figure 5. Simulations of system (1.2). (a) One saddle and one stable focus when (β, a, ε1, ε2) =
(13/2, 21/20, 1, 1). (b) Coexistence of homoclinic orbit and center when (β, a, ε1, ε2) = (6, 1, 1, 1).

Our results of this paper provide thresholds to control the exponential growth
of tumor cells with slow spread of oncolytic virus. More concretely,
• For all (β, a) ∈ B3 and all positive ε1 and ε2, Theorem 5.2 gives the original system
(1.2) a threshold for the appearance of a stable node or focus E1, giving a method
to control tumor cells: if the death rate a of infected tumor cells is not equal to 1,
the viral replication rate β is beyond a definite quantity β∗, the ratio of the initial
value of uninfected tumor cells to infected tumor cells, i.e., x/y, is equal to a definite
quantity

√
a, and the initial number of infected tumor cells x lies in a definite interval

(
√
x10,

√
x20), where x10 := x1(β, ε1,

√
ε2,

√
a) and x20 := x2(β, ε1,

√
ε2,

√
a), then

the population of infected tumor cells is controlled within a bounded range.
• For all (β, a) ∈ Υ0 and all positive ε1 and ε2, Theorem 5.2 gives the original
system (1.2) a threshold for the appearance of a center and a homoclinic orbit,
which suggests that if the viral replication rate β is beyond a definite quantity β∗,
the initial value of uninfected tumor cells is equal to the initial value of infected
tumor cells, and the initial value of infected tumor cells x lies in a definite interval
(
√
x10,

√
x20), then the population of infected tumor cells is controlled within a

bounded range. In this case the death rate of infected tumor cells is 1, and the
population of uninfected tumor cells oscillates periodically and coexists together
with the infected tumor cells.

Appendix. Some complicated formulae
The function F1, F2 in (4.3) have the form

F1(x) :=10x10−34ϵ2x
9+(−20ϵ22−282ϵ1)x

8−520ϵ1ϵ2x
7+3ϵ1(58ϵ1−83ϵ22)x

6

+ϵ1ϵ2(−29ϵ22+394ϵ1)x
5−2ϵ21(31ϵ1−167ϵ22)x

4−ϵ21ϵ2(200ϵ1−99ϵ22)x
3

−ϵ21ϵ22(265ϵ1−4ϵ22)x
2−154ϵ31ϵ

3
2x−32ϵ31ϵ

4
2,
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F2(x) :=336x26+6048ϵ2x
25+(6816ϵ22+55480ϵ1)x

24+4ϵ2(−1612ϵ22+34217ϵ1)x
23

−(13152ϵ42+22176ϵ22ϵ1+432096ϵ21)x
22−2ϵ2(1362500ϵ

2
1+160009ϵ22ϵ1

+3360ϵ42)x
21−(1120ϵ62 +341304ϵ42ϵ1+6713278ϵ22ϵ

2
1+1469480ϵ31)x

20

−ϵ1ϵ2(6996436ϵ21+8481797ϵ22ϵ1+149484ϵ42)x
19+2ϵ1(326352ϵ

3
1−6825162ϵ22ϵ

2
1

−3011135ϵ42ϵ1−13524ϵ62)x
18+2ϵ1ϵ2(1902192ϵ

3
1−6824920ϵ22ϵ

2
1−1226639ϵ42ϵ1

−607ϵ62)x
17+ϵ21(229608ϵ

3
1+10091550ϵ22ϵ

2
1−7087167ϵ42ϵ1−557948ϵ62)x

16

+ϵ21ϵ2(962428ϵ
3
1+15469077ϵ22ϵ

2
1−1508130ϵ42ϵ1−66165ϵ62)x

15−ϵ21(130208ϵ41
−1302952ϵ22ϵ

3
1−14398847ϵ42ϵ

2
1−150134ϵ62ϵ1+3624ϵ82)x

14−2ϵ31ϵ2(420020ϵ
3
1

+242285ϵ22ϵ
2
1−3999861ϵ42ϵ1−59186ϵ62)x

13−ϵ31(84856ϵ41+2732322ϵ22ϵ
3
1

+3724878ϵ42ϵ
2
1−2434750ϵ62ϵ1−14397ϵ82)x

12−ϵ31ϵ2(632396ϵ41+5486187ϵ22ϵ
3
1

+5127276ϵ42ϵ
2
1−294941ϵ62ϵ1−250ϵ82)x

11+ϵ41(31632ϵ
4
1−2005620ϵ22ϵ

3
1

−7002664ϵ42ϵ
2
1−3592638ϵ62ϵ1−19347ϵ82)x

10+2ϵ41ϵ2(131512ϵ
4
1−1732338ϵ22ϵ

3
1

−2826957ϵ42ϵ
2
1−698119ϵ62ϵ1−2730ϵ82)x

9+ϵ41ϵ
2
2(991010ϵ

4
1−3467483ϵ22ϵ

3
1

−2783084ϵ42ϵ
2
1−281648ϵ62ϵ1+38ϵ82)x

8+ϵ51ϵ
3
2(−21802ϵ62−742086ϵ42ϵ1

−1885326ϵ22ϵ
2
1−2194699ϵ31)x

7+ϵ51ϵ
4
2(3148903ϵ

3
1−296764ϵ22ϵ

2
1−59820ϵ42ϵ1

+276ϵ62)x
6+2ϵ61ϵ

5
2(1529411ϵ

2
1+134859ϵ22ϵ1+7672ϵ42)x

5+2ϵ61ϵ
6
2(1019311ϵ

2
1

+92256ϵ22ϵ1+1420ϵ42)x
4+4ϵ71ϵ

7
2(11758ϵ

2
2+230035ϵ1)x

3

+16ϵ71ϵ
8
2(283ϵ

2
2+16801ϵ1)x

2+45824ϵ81ϵ
9
2x+3456ϵ102 ϵ

8
1.

The function R2 in (4.4) is of the form

R2(ϵ1) :=87305046639627599356608000ϵ131 −2112890418207653579326771200ϵ22ϵ
12
1

+18858406795303278623451716160ϵ42ϵ
11
1 −111915790087631757377044411936ϵ62ϵ

10
1

+986605067653275612361634934414ϵ82ϵ
9
1−2380569063301592122364663626002ϵ102 ϵ

8
1

−4523901740555240974000494648196ϵ122 ϵ
7
1+3444155338225024283562741132747ϵ142 ϵ

6
1

+4332380419332176966339501745936ϵ162 ϵ
5
1+1375765545518973623757118431564ϵ182 ϵ

4
1

+170130580137317580811182175536ϵ202 ϵ
3
1+6840397093522452481603652544ϵ222 ϵ

2
1

−2922636886266499872797952ϵ242 ϵ1+5224132890685440000ϵ262 .

The function S3 in (4.4) is of the form

S3(β) :=5120ϵ42β
10+124ϵ32(125ϵ1−704ϵ22)β

9+ϵ22(16465ϵ
2
1−1034416ϵ22ϵ1+523088ϵ42)β

8

+ϵ2(6580ϵ
3
1−2599992ϵ22ϵ

2
1+6707007ϵ42ϵ1−1646752ϵ62)β

7

+(620ϵ41−2563756ϵ22ϵ
3
1+38008266ϵ42ϵ

2
1−18046753ϵ62ϵ1+3137824ϵ82)β

6

−2ϵ2(493040ϵ
4
1−39261668ϵ22ϵ

3
1+46753436ϵ42ϵ

2
1−12020293ϵ62ϵ1+1914512ϵ82)β

5

−(91776ϵ51−70229520ϵ22ϵ
4
1+377711968ϵ42ϵ

3
1−53223957ϵ62ϵ

2
1+14458038ϵ82ϵ1

−3022016ϵ102 )β4+ϵ2(25467648ϵ
5
1−697696000ϵ22ϵ

4
1−231417440ϵ42ϵ

3
1

+22743888ϵ62ϵ
2
1+317219ϵ82ϵ1−1492448ϵ102 )β3+(145152ϵ41−36466896ϵ22ϵ

3
1

−14636920ϵ42ϵ
2
1+324811ϵ62ϵ1+415712ϵ82)(ϵ

2
2+4ϵ1)

2β2−24ϵ2(32532ϵ
2
1

+16877ϵ22ϵ1+1956ϵ42)(ϵ
2
2+4ϵ1)

4β−36(36ϵ22+121ϵ1)(ϵ
2
2+4ϵ1)

6.
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The function R3 in (4.5) is of the form

R3(ϵ1) :=279544320000000000ϵ181 −2396514621611335680000ϵ22ϵ
17
1

+4087394570165184479232000ϵ42ϵ
16
1 −2715095392745924451391488000ϵ62ϵ

15
1

+713914839434115240963632240640ϵ82ϵ
14
1 −84419030845670732042645968314880ϵ102 ϵ

13
1

+5144476828691196370710907684957952ϵ122 ϵ
12
1 −153080132913998051765831487300057536ϵ142 ϵ

11
1

+2262218457076920275374225156485173492ϵ162 ϵ
10
1 −15995771185621919181518213748037651007ϵ182 ϵ

9
1

+59093324654412993538992764747233114841ϵ202 ϵ
8
1−113356650394881241911639806230394233751ϵ222 ϵ

7
1

+91114191063083555448417933778722674375ϵ242 ϵ
6
1+13302968728887868565243683016634749314ϵ262 ϵ

5
1

−38390893414533393312710308157668476800ϵ282 ϵ
4
1−9644248889312296744954553617399829688ϵ302 ϵ

3
1

−2745651784830864129554944737382560ϵ322 ϵ
2
1−1672011850514556312771089338368ϵ342 ϵ1

−68500253002433705073967104ϵ362 .

The function R6 in (4.6) is of the form
R6(ϵ1) :=808718173470720000000000ϵ362 −80656679832985562148035887104ϵ342 ϵ1

+3159785909712974275125715990192128ϵ322 ϵ
2
1−8151682564969199321739242792040474624ϵ302 ϵ

3
1

−221869328877592484738689374113832989184ϵ282 ϵ
4
1−1967952514563482968059339865674265483968ϵ262 ϵ

5
1

−6105139194809113598752061342915793852288ϵ242 ϵ
6
1+4177457437374659338112014657331303792016ϵ222 ϵ

7
1

+53218838410790533500956343094277170239168ϵ202 ϵ
8
1+50827698752204231253879525237335263215372ϵ182 ϵ

9
1

−64463042496757485172047694412983256411784ϵ162 ϵ
10
1 −19408209429659740313884009147172106131589ϵ142 ϵ

11
1

+17248106288306129146925269877022027990078ϵ122 ϵ
12
1 −5608594318156630502136818025178342245609ϵ102 ϵ

13
1

+1026011484832250013784739977191430519068ϵ82ϵ
14
1 −124479914915802026733172682260510714528ϵ62ϵ

15
1

+12163772001383558966606352516407712128ϵ42ϵ
16
1 −806251185268088034678395165219196160ϵ22ϵ

17
1

+26942653115498102927949434654796800ϵ181 .
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