
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 12, Number 3, June 2022, 1186–1194 DOI:10.11948/20220178

LINEAR RECURSION FORMULAS OF
GENERALIZED FOCUS QUANTITIES AND
LOCAL INTEGRABILITY FOR A CLASS OF

THREE-DIMENSIONAL SYSTEMS∗

Qinlong Wang1, Wenyu Li1 and Wentao Huang2,†

Dedicated to Professor Jibin Li on the occasion of his 80th birthday.

Abstract In this paper, the local integrability of a class of three-dimensional
systems is studied. The recursive formulas to compute the generalized focus
quantities of the system are deduced firstly, then they are applied to a Lotka-
Volterra system. The integrable conditions of the system are obtained and the
local integrability is solved completely. The algorithm corresponding to the
above formulas is an extension and development of the power series method for
the planar differential systems with p : −q arbitrary resonant saddle point and
also readily done with using computer algebra system such as Mathematica or
Maple.
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1. Introduction
In this paper, we investigate the local integrability of the origin for the following
three-dimensional system with linear part of p : −q : r resonant singular point type

dx

dt
= px+ P (x, y, z),

dy

dt
= −qy +Q(x, y, z),

dz

dt
= rz +R(x, y, z) (1.1)

where p, q, r ∈ Z+, x, y, z, t ∈ R, P,Q and R are polynomials.
Restricting it to z = 0, R = 0, system (1.1) becomes the following planar poly-

nomial vector field in C2 with p : −q resonant elementary singular point

dx

dt
= px+ P (x, y),

dy

dt
= −qy +Q(x, y) (1.2)

†The corresponding author. Email: huangwentao@163.com(W. Huang)
1School of Mathematics and Computational Science, Guilin University of Elec-
tronic Technology, Guilin, Guangxi 541004, China

2Center for Applied Mathematics of Guangxi, College of Mathematics and
Statistics, Guangxi Normal University, Guilin 541006, China

∗The authors were supported by National Natural Science Foundation of
China (12061016, 12161023) and Nature Science Foundation of Guangxi
(2020GXNSFAA159138), and Guangxi Colleges and Universities Key Lab-
oratory of Data Analysis and Computation.

http://www.jaac-online.com
http://dx.doi.org/10.11948/20220178


Linear recursion formulas. . . 1187

where p, q ∈ Z+, P and Q are polynomials. We can see the above problem for (1.2)
as a natural generalization of the classical center problem was proposed by Dulac [11]
as early as 1908, see also [26] and Definition 3.3.7 of [20], and more if GCD(p, q) = 1,
one can calculate the supposed first integral H(x, y) = xqyp + · · · , and the p : −q
resonant focus number gk such that Ḣ =

∑
gk(x

qyp)k+1, and if all gk = 0, there
exists a local analytic first integral H(x, y), thus the p : −q resonant elementary
singular point is called a generalized center. This problem for system (1.2) was
considered by many authors, especially, for classic Lotka-Volterra systems, i.e. P
and Q are polynomials of degree 2 with respective factor x or y. All the integrable
conditions for 1 : −q or 2 : −q arbitrary resonant cases were given respectively by
Fronville et al. in [12] and Gravel et al. in [14]. But for 3 : −q arbitrary resonance
case, only part problems were solved [18, 21, 23]. As for the natural mechanisms
which lead to the origin being linearizable, integrable or normalizable for classic
L-V systems, Christopher et at. gave some valuable results in [9]. More work on
the integrability of planar differential systems with p : −q resonance can be found
in [8, 19, 26] for general quadratic systems, in [6, 15] for cubic systems, in [13] for
quintic systems, in [7,10] for more general systems. Recently the authors of [16,17]
also discussed the complex integrability and linearizability of cubic Z2 systems with
two 1 : q resonant singular points.

For the three-dimensional system (1.1) with p : −q : r resonant elementary
singular point, the results about the local integrability are not many. Though there
exist some researchers such as the authors of [3–5] who considered the integrability
of the 3D L-V systems, the resonant singular points at the origin aren’t belong to the
above classification. Only recently the authors of [1] considered this class of problem,
the necessary and sufficient conditions of both integrability and inheritability are
obtained for (1 : −1 : 1), (2 : −1 : 1) and (1 : −2 : 1) resonance cases of 3D
L-V systems. Further, they also pointed out that the problems for integrability
were much harder in this three-dimensional case. In fact, the complicated things
exist in two asides, namely determining the necessary conditions and proving the
sufficient conditions. For the latter, there exist all kinds of methods such as verifying
an algebraic symmetry, figuring out a Darboux integrating factor, blow-down to a
node, reduction to a Riccati equation and so on, but these still can not guarantee to
prove the sufficiency of the obtained integrable conditions for system (1.2). For the
former, it is also a challenging issue how to find a suitable algorithm to computing
generalized focus quantities. In this paper, we generalize and develop the algorithms
in [22, 25] for the planar system (1.2), from which the obtained formulas are linear
and also readily done with using computer algebra systems such as Mathematica
and Maple.

Similar to the case of the planar system (1.2), we have the following lemmas
and definitions about the local integrability of the three-dimensional system (1.1),
and some of these have been proposed for the three-dimensional L-V systems in [1],
here we will also extend theirs to the general case for system (1.1).

Lemma 1.1. There exists a variables substitution tangent to identity,

ξ = x+

∞∑
m+n+i=2

Amnix
mynzi,

η = y +

∞∑
m+n+i=2

Bmnix
mynzi, (1.3)
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ζ = z +

∞∑
m+n+i=2

Cmnix
mynzi

where Amni, Bmni, Cmni ∈ R and m,n, i ∈ N, such that system (1.1) can be reduced
to the normal form

dξ

dt
= pξ +

∑
(k,j,l)∈D1

p
kjl

U
(kjl)

,

dη

dt
= −qη +

∑
(k,j,l)∈D2

q
kjl

U
(kjl)

,

dζ

dt
= rζ +

∑
(k,j,l)∈D3

r
kjl

U
(kjl)

(1.4)

where p
kjl

, q
kjl

and r
kjl

are polynomials of the coefficients of system (1.1) with
rational coefficients, and U

(kjl)

= ξkηjζl with the respective exponential sets as
follows:

D1 = {(k, j, l) |p(k − 1)− qj + rl = 0, k + j + l ≥ 2, k, j, l ∈ N},
D2 = {(k, j, l) |pk − q(j − 1) + rl = 0, k + j + l ≥ 2, k, j, l ∈ N},
D3 = {(k, j, l) |pk − qj + r(l − 1) = 0, k + j + l ≥ 2, k, j, l ∈ N}.

(1.5)

Remark 1.1. In fact, if letting all resonant terms in substitution (1.3) vanish,
namely the coefficients Amni = Bmni = Cmni = 0 for (m,n, i) ∈ D, then the substi-
tution (1.3) can be determined uniquely, where D={(m,n, i)

∣∣pm− qn+ ri = 0, m+
n+ i ≥ 2}.

As for the conclusion of the lemma 1.1, the similar statement can be seen in the
early references, such as [2, 20]. Since the strict proof of the lemma is almost the
same as the one of the planar system (see [24]), we omit it here.

Lemma 1.2. The system (1.1) is integrable at the origin if the above normal forms
in (1.4) satisfy

dξ

dt
= pξ(1 +M(ξ, η, ζ)),

dη

dt
= −qη(1 +M(ξ, η, ζ)),

dζ

dt
= rζ(1 +M(ξ, η, ζ))

(1.6)

where M(ξ, η, ζ) is a formal series in (ξ, η, ζ).

Furthermore, from the Lemma 1.1 and the Lemma 1.2, we have the following
conclusion.

Lemma 1.3. The system (1.1) is integrable at the origin if and only if there exist
two first integrals which have the following respective forms

F (x, y, z) = xqyp +

∞∑
α+β+γ=p+q+1

cαβγx
αyβzγ , (1.7)

H(x, y, z) = yrzq +

∞∑
α+β+γ=r+q+1

dαβγx
αyβzγ . (1.8)
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The paper is organized as follows: In section 2, by using the power formal series
method, we research the algorithm of generalized focus quantities for the general
system (1.1) and deduce the linear recursion formulas. In section 3, by applying
the algorithm, we discuss integrable conditions for a class of three-dimensional L-V
systems, which is a special case of systems (1.1) with 1 : −1 : r resonance, r ∈ Z+,
then the integrability of the systems is solved completely.

2. Linear recursion formulas of generalized focus
quantities

We discuss the method of computing generalized focus quantities here. A good
computational method of the generalized focus quantities for the two-dimensional
system (1.2) has been introduced in [22, 25]. The algorithm corresponding to the
above formulas will be developed from the planar differential systems with p : −q
arbitrary resonance to the three-dimensional differential systems with p : −q : r
arbitrary resonance.

Theorem 2.1. For the system (1.1), using the program of term by term calcula-
tions, we can determine two formal power series

F (x, y, z) = xqyp +

∞∑
α+β+γ=p+q+1

cαβγx
αyβzγ , (2.1)

H(x, y, z) = yrzq +

∞∑
α+β+γ=r+q+1

dαβγx
αyβzγ (2.2)

such that
dF

dt

∣∣∣∣
(1.1)

=
∑

(k,j,l)∈D1

µk,j,lx
kyjzl, (2.3)

dH

dt

∣∣∣∣
(1.1)

=
∑

(k,j,l)∈D2

λk,j,lx
kyjzl (2.4)

where

D1 = {(k, j, l) |pk − qj + rl = 0, k + j + l > p+ q, k, j, l ∈ N},

D2 = {(k, j, l) |pk − qj + rl = 0, k + j + l > q + r, k, j, l ∈ N},

and when (k, j, l) ∈ D1, let ck,j,l = 0, when (k, j, l) ∈ D2, let dk,j,l = 0, and more,
µk,j,l for (k, j, l) ∈ D1 and λk,j,l for (k, j, l) ∈ D2 are called the generalized focus
quantities of origin of the system (1.1).

Theorem 2.1 gives the method to find the generalized focus quantities µk,j,l and
λk,j,l, which are the key to determine the integrability of system (1.1). Obviously,
system (1.1) is integrable at the origin if and only if µk,j,l = λk,j,l = 0 from Lemma
1.2.

Considering a concrete kind of system (1), we can obtain the recursive formulas
to compute generalized focus quantities µk,j,l and λk,j,l from Theorem 2.1. Lotka-
Volterra system is a very classic and common model. As an application of our
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method, we consider the following three-dimensional Lotka-Volterra system with
p : −q : r resonance

ẋ = x(p+ a1x+ b1y + c1z),

ẏ = y(−q + a2x+ b2y + c2z),

ż = z(r + a3x+ b3y + c3z).

(2.5)

Without loss of generality, we can let q = 1 in system (2.5), and have the
following conclusion.

Theorem 2.2. For the system (2.5) with q = 1, using the program of term by term
calculations, we can determine two formal power series

F (x, y, z) = xyp +

∞∑
α+β+γ=p+2

cαβγx
αyβzγ , (2.6)

H(x, y, z) = yrz +

∞∑
α+β+γ=r+2

dαβγx
αyβzγ (2.7)

such that

dF

dt

∣∣∣∣
(2.5)

=

∞∑
m=2

m∑
n=0

µn,m−nx
nynp+(m−n)rzm−n, (2.8)

dH

dt

∣∣∣∣
(2.5)

=

∞∑
m=2

m∑
n=0

λn,m−nx
nynp+(m−n)rzm−n (2.9)

where when β = αp + γr, let c1,p,0 = 1, cn,np+mr−nr,m−n = 0 and d0,r,1 =
1, dn,np+mr−nr,m−n = 0 for 0 ≤ n ≤ m, m = 2, 3, · · · , and when β ̸= αp + γr,
cαβγ and dαβγ are determined uniquely by the following recursive formula respec-
tively:

cαβγ = [(a1(α− 1) + a2β + a3γ)cα−1,β,γ + (b1α+ b2(β − 1) + b3γ)cα,β−1,γ

+(c1α+ c2β + c3(γ − 1))cα,β,γ−1]/(β − αp− γr),

(2.10)

dαβγ = [(a1(α− 1) + a2β + a3γ)dα−1,β,γ + (b1α+ b2(β − 1) + b3γ)dα,β−1,γ

+(c1α+ c2β + c3(γ − 1))dα,β,γ−1]/(β − αp− γr),

(2.11)

and for any positive integer 0 ≤ n ≤ m, m = 2, 3, · · · , µn,m−n and λn,m−n are
determined uniquely by the following recursive formula respectively:

µn,m−n = [(a1(α− 1) + a2β + a3γ)cα−1,β,γ + (b1α+ b2(β − 1) + b3γ)cα,β−1,γ

+(c1α+ c2β + c3(γ − 1))cα,β,γ−1],

(2.12)
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λn,m−n = [(a1(α− 1) + a2β + a3γ)dα−1,β,γ + (b1α+ b2(β − 1) + b3γ)dα,β−1,γ

+(c1α+ c2β + c3(γ − 1))dα,β,γ−1]

(2.13)

where α = n, γ = m − n, β = np + (m − n)r, and in the above all expressions,
if α < 0 or β < 0 or γ < 0, cαβγ = 0, then µn,m−n and λn,m−n are called the
generalized focus quantities of origin of the system (2.5) with q = 1.

3. Integrability for a class of Lotka-Volterra system
The method of computing generalized focus quantities has been discussed in this
section. Thus by applying the formulas of generalized focus quantities to investigate
a class of three-dimensional Lotka-Volterra systems (2.5) with p = q = 1, c1 = c2 =
c3 = 0, namely the corresponding form as follows

ẋ = x(1 + a1x+ b1y),

ẏ = y(−1 + a2x+ b2y),

ż = z(r + a3x+ b3y).

(3.1)

For the system (3.1), by using the formulas in Theorem 2.2, we can compute the
first enough generalized focus quantities for any given values of r, for example when
r = 1, 2, · · · , 20, we can obtain the first corresponding generalized focus quantities
for m = 9 as follows:

µ20 = a2b2 − a1b1, µ11 = µ02 = 0,

µ30 = µ12 = µ21 = µ03 = 0, · · · , µ90 = µ81 = · · · = µ09 = 0,

λ20 = ra2(b2 − b1) + a2b3 − a3b1, λ11 = λ02 = 0,

λ30 = λ12 = λ21 = λ03 = 0, · · · , λ90 = λ81 = · · · = λ09 = 0

(3.2)

where for each µi,l−i (0≤ i≤ l) in the above expression, we have already letµi,l−1−i =
0 (0 ≤ i ≤ l − 1), for each λi,l−i (0 ≤ i ≤ l), we have already letµi,l−1−i = 0 =
λi,l−1−i = 0 (0 ≤ i ≤ l − 1), l = 2, 3, · · · , 9.

According to the above calculating results, we can find the law, then we have

Theorem 3.1. System (3.1) is integrable at the origin if and only if the following
conditions is satisfied:

a2b2 − a1b1 = 0, ra2(b2 − b1) + a2b3 − a3b1 = 0. (3.3)

We first consider the sufficient conditions of the theorem 3.1.

Lemma 3.1. System (3.1) is integrable at the origin if one of the following condi-
tions is satisfied:

(i) a2 = b1 = 0, (3.4)
(ii) a1 = pa2, b2 = pb1, a2b3 = a3b1 − r(p− 1)a2b1, (3.5)

where for the condition (3.5), a22 + b21 ̸= 0 holds and p is a real number.
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Proof. In fact, the conditions (3.4) and (3.5) are completely from the conditions
(3.3). When the condition (3.4) holds, the conditions (3.3) holds. But when the
condition (3.4) doesn’t holds, namely a22 + b21 ̸= 0, from a2b2 − a1b1 = 0, there must
exist certain real number p such that a1 = pa2, b2 = pb1, then a2b3 = a3b1 − r(p−
1)a2b1 in the conditions (3.3) holds, and more we may as well assume that a2 ̸= 0,
thus we have

b3 =
a3b1 − r(p− 1)a2b1

a2
. (3.6)

Now we prove this lemma. Case (i): if the condition (3.4) holds, the system (3.1)
has the following form

ẋ = x(1 + a1x), ẏ = y(−1 + b2y), ż = z(r + a3x+ b3y). (3.7)

Obviously, f1 = x, f2 = y and f3 = z are three invariant planes of this system
with cofactor 1+a1x, 1− b2y and r+a3x+ b3y, respectively. Moreover, the system
has other two invariant algebraic surfaces f4 = 1 + a1x and f5 = 1 − b2y with the
cofactor a1x and b2y respectively. Thus we obtain two Darboux first integral as
follows

H1 = xyf−1
4 f−1

5 ,

H2 = yrzf
− a3

a1
4 f

− b2r+b3
b2

5 .

So system (3.7) is integrable at the origin.
Case (ii): if the condition (3.5) holds, and from (3.6), obviously, the system (3.1)

has the following form

ẋ = x(1 + pa2x+ b1y),

ẏ = y(−1 + a2x+ pb1y),

ż = z(r + a3x+ a3b1−r(p−1)a2b1
a2

y).

(3.8)

Obviously, f1 = x, f2 = y and f3 = z are three invariant planes of this system
with cofactor 1+pa2x+b1y, 1−a2x−pb1y and r+a3x+

a3b1−r(p−1)a2b1
a2

y, respectively.
Moreover, the system has another invariant algebraic surface f4 = 1 + pa2x− pb1y
with the cofactor p(a2x+b1y). Thus we obtain two Darboux first integral as follows

H1 = xyf
− 1+p

p

4 ,

H2 = yrzf
− ra2+a3

pa2
4 .

So system (3.8) is integrable at the origin. We complete the proof of this lemma.

Next we consider the necessary conditions of the theorem 3.1.

Lemma 3.2. If system (3.1) is integrable at the origin, then the conditions (3.3)
hold necessarily.

Proof. Firstly, it is easy to see that the first and second equations of the system
(3.1) are independent with respect to z, that is, the two equations forms a planar
system, for which the integrability at the origin can be determined completely by
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calculating generalized focus quantities via the formal power series with the follow-
ing form

F (x, y) = xy +

∞∑
α+β=3

cαβx
αyβ (3.9)

and more we can figure out the necessary condition: µ20 = a2b2 − a1b1 = 0 for the
existence of the first integral with the same form as (3.9), it’s the H1 obtained in
the proof of Lemma 3.1

Then we figure out the necessary conditions for the existence of the first integral
with the same form as (2.7) for any r ∈ Z+, namely the obtained H2 in the proof
of Lemma 3.1. In fact, by a simple application of induction, we can obtain the
first generalized focus quantities λ20 = λ20(a1, a2, b1, b2, a3, b3) is a homogeneous
quadrati polynomial in a1, a2, b1, b2, a3, b3. On the other hand, if µ20 = a2b2−a1b1 =
0, and ra2(b2−b1)+a2b3−a3b1 = 0, then system (3.1) is integrable, hence ra2(b2−
b1)+ a2b3 − a3b1 is a factor of λ20. So there exists a polynomial R1(a1, a2, b1, b2) so
that λ20(a1, a2, b1, b2, a3, b3) = R1(a1, a2, b1, b2)(ra2(b2 − b1) + a2b3 − a3b1). Since
ra2(b2 − b1) + a2b3 − a3b1 is a homogeneous polynomial of degree 2, so R1 must be
non-zero constant. Thus we complete the proof of the lemma.
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