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ELLIPTIC SINGULAR WAVE SOLUTIONS
AND THEIR LIMITS OF A SIMPLE
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Abstract In this pager, we study the elliptic singular wave solutions of the
equation ut + 2kux − uxxt + u2ux − uuxxx = 0 which has been investigated
in some literatures. Firstly, for given wave speeds c1 = 1

2
(1 +

√
1− 8k) or

c2 = 1
2
(1 −

√
1− 8k), we show that there exist four types of elliptic singu-

lar wave solutions, two types of elliptic sine singular wave solutions and two
types of elliptic cosine singular wave solutions. Secondly, we confirm that
their limits are four types of other solutions, hyperbolic smooth solitary wave
solutions, hyperbolic singular wave solutions, fractional singular wave solution
and trigonometric singular wave solutions. Our works extend some previous
results.
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1. Introduction
This paper is concerned with the following simple equation

ut + 2kux − uxxt + u2ux − uuxxx = 0, (1.1)

which is the case of b = 0 in the equation

ut + 2kux − uxxt + (b+ 1)u2ux − buxuxx − uuxxx = 0. (1.2)

When k = 0, Eq.(1.2) changes to the following equation

ut − uxxt + (b+ 1)u2ux − buxuxx − uuxxx = 0. (1.3)

When parameter b and constant wave speed c equal some values, for example,
the traveling wave solutions of Eq.(1.3) have been studied as follows: When b = 2,
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Tian and Song [12] gave some peaked wave solutions. When b = 3, Shen and
Xu [11] investigated bifurcations of smooth and non-smooth wave solutions. When
c = 1, Khuri [4] obtained a singular wave solution composed of triangular functions.
Wazwaz [14, 15] used the method of determing coefficients to get some solutions
consisting of triangular functions or hyperbolic functions. When b = 3, He et al [3]
utilized bifurcation method to build some solutions. When b = 2, c = 1/3 or
c = 3, wang and Tang [13] constructed two solutions. Yomba [17,18] proposed two
methods to look for the exact solutions. When b = 2, Doros and Arruda [2] studied
the instability of elliptic traveling wave solutions. When b > 1, Liu [9] followed Li
and Liu [5, 6] to draw the bifurcation phase portraits and study the coexistence of
multifarious nonliner wave solutions. When b = 0, Li and Liu [7,8] gave bifurcation
of smooth solutions and blow-up solutions respectively. When b = 2 and k < 3/8,
Liu and Liang [10] studied the bifurcation of peakon solutions for Eq.(1.2). When
b ̸= 0, −1, −2, Chen et al. [1] studied the explicit periodic wave solutions and their
limit forms for Eq.(1.2). Yang et al. [16] investigated the bifurcation of solitary
waves for Eq.(1.1).

In view of previous work, we see that the singular wave solutions of Eq.(1.1)
have been rarely studied. Consequently, we would like to investigate the elliptic
singular wave solutions and their limits of Eq.(1.1) in this paper.

The rest part of the paper is organized as follows: In Section 2, we give the
traveling wave systems and bifurcation phase portraits. In Section 3, we derive the
first elliptic sine singular wave solution and its limits. In Section 4, we study the
second elliptic sine singular wave solution and its limits. In Section 5, we investigate
the first elliptic cosine singular wave solution and its limits. In Section 6, the second
elliptic cosine singular wave solution and its limits are given.

2. Traveling wave system and its bifurcation phase
portraits

For given parameter k ≤ 1

8
, letting

c0 =
1

2
(1±

√
1− 8k), (2.1)

and substituting u = φ(ξ) with ξ = x− c0t into Eq.(1.1), we have

−c0φ
′ + 2kφ′ + c0φ

′′′ + φ2φ′ − φφ′′′ = 0. (2.2)

Integrating (2.2) once, we get

(φ− c0)φ
′′ = g + (2k − c0)φ+

1

3
φ3 +

1

2
φ′ 2, (2.3)

where g is an integral constant.
Putting y = φ′, we have the following traveling wave system

dφ

dξ
= y,

dy

dξ
=

g + (2k − c0)φ+ 1
3φ

3 + 1
2y

2

φ− c0
.

(2.4)
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System (2.4) has a singular line φ = c0, which brings difficult to our study. But
note that when φ ̸= c0, system (2.4) equals to the following system

(φ− c0)dφ

dξ
= (φ− c0)y,

(φ− c0)dy

dξ
= g + (2k − c0)φ+

1

3
φ3 +

1

2
y2.

(2.5)

Under the transformation

dτ =
dξ

φ− c0
, (2.6)

system (2.4) becomes 
dφ

dτ
= (φ− c0)y,

dy

dξ
= g + (2k − c0)φ+

1

3
φ3 +

1

2
y2.

(2.7)

We call system (2.7) is a accompany system of system (2.4). It is easy to see
that systems (2.4) and (2.7) have the same first integration

y2 =
1

3

[
(φ− c0)

3 + 6c0(φ− c0)
2 + h(φ− c0) + σ0

]
, (2.8)

where h is another integral constant, and

σ0 = 6c20 − 2c30 − 12kc0 − 6g. (2.9)

For given k <
1

8
, c0 (see (2.1)) and arbitrary real g, let

∆ =
√
6561g2 + 4(−9c0 + 18k)3, (2.10)

α =
3× 3

√
2(c0 − 2k)

3
√
−81g +∆

+
3
√
−81g +∆

3× 3
√
2

, (2.11)

β = −3(1− i
√
3)(c0 − 2k)

3
√
22 3

√
−81g +∆

− (1 + i
√
3) 3
√
−81g +∆

6× 3
√
2

, (2.12)

γ = −3(1 + i
√
3)(c0 − 2k)

3
√
22 3

√
−81g +∆

+
(−1 + i

√
3) 3
√
−81g +∆

6× 3
√
2

, (2.13)

α∗ = −3c0 − 2α, (2.14)
β∗ = −3c0 − 2β, (2.15)

and

g0 =
2

3
3
√

(c0 − 2k)2. (2.16)

Then from (2.7)–(2.8), we obtain the bifurcation phase portraits of system (2.4)
as Fig.1.
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Figure 1. The bifurcation phase portraits of system (2.4) for given k ≤
1

8
, and c0 =

1

2
(1 ±

√
1 − 8k).

For various g, let

I =



(−∞, α∗), when g ≤ −g0,

(−∞, α∗) or (β∗, γ) when |g| < g0,

(−∞,−2c0)/(−5c0) when g = g0,

(−∞, γ) when g > g0.

(2.17)

For given µ ∈ I, let µ be a root of the equation

(φ− c0)
3 + 6c0(φ− c0)

2 + hµ(φ− c0) + σ0 = 0, (2.18)

where

hµ =
(µ− c0)

3 + 6c0(µ− c0)
2 + σ0

c0 − µ
, (2.19)

and σ0 is given in (2.9).
Comparing the coefficients of the equation

(φ− c0)
3 + 6c0(φ− c0)

2 + hµ(φ− c0) + δ0 = (φ− µ)(φ− µ1)(φ− µ2), (2.20)

it follows that −µ− µ1 − µ2 = 3c0,

µµ1 + µµ2 + µ1µ2 = hµ − 9c20.
(2.21)

Solving (2.21) for µ1 and µ2, we get

µ1 =
1

2

(
−3c0 − µ+

√
45c20 − 6c0µ− 3µ2 − 4hµ

)
, (2.22)

and

µ2 =
1

2

(
−3c0 − µ−

√
45c20 − 6c0µ− 3µ2 − 4hµ

)
. (2.23)

Next we will use above information to look for singular wave solutions of Eq.(1.1).
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3. The first elliptic sine singular wave solution and
its limits

We give the first elliptic sine singular wave solution and its limits as follows.

Proposition 3.1. For arbitrary given µ ∈ I, Eq.(1.1) has the first elliptic sine
singular wave solution

u1(ξ, µ) = µ2 +
µ1 − µ2

cn2(η1ξ,m1)
, (3.1)

where

ξ = x− c0t, (3.2)

η1 =

√
µ1 − µ

2
√
3

, (3.3)

m1 =
µ2 − µ

µ1 − µ
, (3.4)

and µ1, µ2 are given in (2.22)-(2.23). For u1(ξ, µ) there are the following limits:
(a)1 If g ≤ g0, then

lim
µ→α∗−0

u1(ξ, µ) = α, (3.5)

where α is given in (2.11).
(a)2 If −g0 < g < g0, then

lim
µ→β∗+0

u1(ξ, µ) = β, (3.6)

where β is given in (2.12).
(a)3 If g > −g0, then

lim
µ→γ−0

u1(ξ, µ) = γ − 3(c0 + γ) sec2η0ξ, (3.7)

which implies that Eq.(1.1) has trigonometic singular wave solution

u2(ξ) = γ − 3(c0 + γ) sec2η0ξ, (3.8)

where γ is given in (2.13) and

η0 =

√
−c0 − γ

2
. (3.9)

For the evolution of wave profiles of u1(ξ, µ) and u2(ξ), see Fig.2 (a), (b).

Proof. From (2.22)-(2.23) and µ ∈ I, we see that µ, µ1, µ2 are real and satisfy
inequality

µ < µ2 < µ1. (3.10)
Via Fig.1 and (3.10), we see that there are a closed orbit passing (µ, 0), (µ2, 0)

and a open orbit passing (µ1, 0). The open orbit is of expression

y2 =
1

3
(φ− µ1)(φ− µ2)(φ− µ), where µ1 ≤ φ. (3.11)
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Figure 2. The evolution of wave profiles of u1(ξ, µ) and u2(ξ), (a) that of u1(ξ, µ), (b) that of u2(ξ).

Letting φ(0) = µ1, substituting (3.11) into dφ

dξ
= y and integrating along the

open orbit, it follows that∫ φ

µ1

ds√
(s− µ1)(s− µ2)(s− µ)

=
|ξ|√
3
, (3.12)

where µ < µ2 < µ1 < φ.
Completing the integration, (3.12) changes to

2√
µ1 − µ

sn

(√
φ− µ1

φ− µ2
, m1

)
=

|ξ|√
3
. (3.13)

From (3.13) we obtain

φ =
µ1 − µ2 sn2η1ξ

1− sn2η1ξ
. (3.14)

This implies that

u1(ξ, µ) = µ2 +
µ1 − µ2

cn2(η1ξ, m1)
, (3.15)

is a elliptic singular wave solution of Eq.(1.1).
From (2.22)-(2.23) and (3.3)-(3.4), it is easy to see that the following limits.
(a)1 When g ≤ g0 and µ tends to α∗ − 0, we have

lim
µ→α∗−0

µ1 = lim
µ→α∗−0

µ2 = α, (3.16)

lim
µ→α∗−0

m1 =
α− α∗

α− α∗
= 1, (3.17)

and

lim
µ→α∗−0

η1 =

√
α− α∗

2
√
3

. (3.18)

Further we have

lim
µ→α∗−0

u1(ξ, µ) = α. (3.19)
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(a)2 When |g| < g0 and µ tends to β∗ + 0, it follows that

lim
µ→β∗+0

µ1 = lim
µ→β∗+0

µ2 = β, (3.20)

lim
µ→β∗+0

m1 = lim
µ→β∗+0

µ2 − µ

µ1 − µ
=

β − β∗

β − β∗
= 1, (3.21)

and

lim
µ→β∗+0

η1 = lim
µ→β∗+0

√
µ1 − µ

2
√
3

=

√
β − β∗

2
√
3

. (3.22)

Further we have

lim
µ→β∗+0

u1(ξ, µ) = β. (3.23)

(a)3 When g > −g0 and µ tends to γ − 0, it is seen that

lim
µ→γ−0

µ2 = γ, (3.24)

lim
µ→γ−0

µ1 = −3c0 − 2γ, (3.25)

lim
µ→γ−0

m1 = 0, (3.26)

and

lim
µ→γ−0

η1 =

√
−3c0 − 2γ − γ

2
√
3

= η0. (3.27)

Further we have

lim
µ→γ−0

u1(ξ, µ) = γ +
−3c0 − 2γ − γ

cn2(η0ξ, 0)

= γ − 3(c0 + γ)

cos2η0ξ

= γ − 3(c0 + γ) sec2η0ξ. (3.28)

Via (3.28), we get a trigonometric singular wave solution u2(ξ) of Eq.(1.1) as
(3.8).

4. The second elliptic sine singular wave solution
and its limits

We give the second elliptic sine singular wave solution and its limits as follows.

Proposition 4.1. For arbitrary given µ ∈ I, Eq.(1.1) has the second elliptic sine
singular wave solution

u3(ξ, µ) = µ+
µ1 − µ

sn2(η1ξ,m1)
, (4.1)

where ξ, η1 and m1 are given in (3.2)-(3.4). For u3(ξ, µ) there are the following
limits:
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(b)1 If g ≤ g0, then

lim
µ→α∗−0

u3(ξ, µ) = α+ 3(α+ c0) csch
2η∗ξ, (4.2)

where

η∗ =

√
α+ c0
2

. (4.3)

(b)2 If −g0 < g < g0, then

lim
µ→β∗+0

u3(ξ, µ) = β + 3(β + c0) csch
2ηξ, (4.4)

where

η =

√
β + c0
2

. (4.5)

(b)3 If g > −g0, then

lim
µ→γ∗−0

u3(ξ, µ) = γ − 3(c0 + γ) csc2η0ξ, (4.6)

where η0 is given in (3.9).
The limits (4.2) and (4.4) imply that Eq.(1.1) has two hyperbolic singular wave

solutions

u4(ξ) = α+ 3(α+ c0) csch
2η∗ ξ, (4.7)

and

u5(ξ) = β + 3(β + c0) csch
2η ξ, (4.8)

where α and β are given in (2.11) and (2.12).
The limits (4.6) imply that Eq.(1.1) has trigonometic singular wave solution

u6(ξ) = γ − 3(c0 + γ) csc2η0ξ, (4.9)

where γ is given in (2.13).
For the evolution of wave profiles of u3(ξ, µ), u4(ξ), u5(ξ) and u6(ξ), see Fig.3

(a), (b) and Fig.4 (a), (b).

Proof. Letting φ(0) = +∞, similar to (3.12), we have∫ +∞

φ

ds√
(s− µ1)(s− µ2)(s− µ)

=
|ξ|√
3
, (4.10)

where µ < µ2 < µ1 ≤ φ < +∞.
In (4.10), completing the integration, it follows that

2√
µ1 − µ

sn−1

(√
µ1 − µ

φ− µ
, m1

)
=

|ξ|√
3
, (4.11)

where µ1 and m1 are given in (2.22) and (3.4) respectively.
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Figure 3. The evolution of wave profiles of u3(ξ, µ) and u4(ξ), (a) that of u3(ξ, µ), (b) that of u4(ξ).

Figure 4. The evolution of wave profiles of u5(ξ) and u6(ξ), (a) that of u5(ξ), (b) that of u6(ξ).

Solving Eq.(4.11) for φ, we get

φ = µ+
µ1 − µ

sn2η1ξ
, (4.12)

where η1 is given in (3.3).
From (4.12), we get another elliptic sine singular wave solution u3(ξ, µ) as (4.1).
Similarly, there are the following limits.
(b)1 When g ≤ g0 and µ tends to α∗ − 0, we have limits (3.16)-(3.18).
Further we have

lim
µ→α∗−0

u3(ξ, µ) = lim
µ→α∗−0

(
µ+

µ1 − µ

sn2η1ξ

)
=α∗ +

α− α∗

sn2(η∗ξ, 1)

=− 3c0 − 2α+
α+ 3c0 + 2α

tan2η∗ξ

=α+ 3(α+ c0)(coth
2η∗ξ − 1)

=α+ 3(α+ c0) csch
2η∗ξ. (4.13)

Via (4.13), we get a hyperbolic singular wave solution u4(ξ) of Eq.(1.1) as (4.7).
(b)2 When −g0 < g < g0 and µ tends to β∗ + 0, we have limits (3.20)-(3.22).

Further we have

lim
µ→β∗+0

u3(ξ, µ) = lim
µ→β∗+0

(
µ+

µ1 − µ

sn2η1ξ

)
=β∗ +

β − β∗

sn2(η ξ, 1)
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=β + 3(β + c0) csch
2 η ξ. (4.14)

Via (4.14), we get another hyperbolic singular wave solution u5(ξ) of Eq.(1.1)
as (4.8).

(b)3 When g > −g0 and µ tends to γ − 0, we have limits (3.24)-(3.27). Further
we have

lim
µ→γ−0

u3(ξ, µ) = lim
µ→γ−0

(
µ+

µ1 − µ

sn2η1ξ

)
=γ +

−3c0 − 2γ − γ

sn2(η0ξ, 0)

=γ − 3(c0 + γ)

sin2η0ξ

=γ − 3(c0 + γ) csc2η0ξ. (4.15)

Thus, we obtain another trigonometric singular wave solution u6(ξ) of Eq.(1.1)
as (4.9).

5. The first elliptic cosine singular wave solution
and its limits

We give the first elliptic cosine singular wave solution and its limits as follows.

Proposition 5.1. For some g < g0, let

J =


(α∗, c0), when g < −g0,

(−3c0 − 4
√
c0 − 2k,−

√
c0 − 2k), when g = −g0,

(α∗, β∗) when − g0 < g < g0.

(5.1)

When arbitrary given µ ∈ J , Eq.(1.1) has the first elliptic cosine singular wave
solution

u7(ξ, µ) =
A+ µ− (A− µ) cn

(√
A/3 ξ, m2

)
1 + cn

(√
A/3 ξ, m2

) , (5.2)

where

a21 = − (µ1 − µ2)
2

4
, (5.3)

b1 =
µ1 + µ2

2
, (5.4)

A =
√

(b1 − µ)2 + a21, (5.5)

and

m2 =
A+ b1 − µ

2A
. (5.6)
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For u7(ξ, µ) there are the following limits:
(c)1 If g < g0, then

lim
µ→α∗+0

u7(ξ, µ) = α− 3(α+ c0) sech
2η∗ ξ. (5.7)

(c)2 If |g| < g0, then

lim
µ→β∗−0

u7(ξ, µ) = β − 3(β + c0) sech
2η ξ. (5.8)

(c)3 If g = −g0, then

lim
µ→γ−0

u7(ξ, µ) = 0. (5.9)

The limits (5.7) and (5.8) imply that Eq.(1.1) has two smooth hyperbolic solitary
wave solutions

u8(ξ) = α− 3(α+ c0) sech
2η∗ ξ, (5.10)

and

u9(ξ) = β − 3(β + c0) sech
2η ξ. (5.11)

For the evolution of wave profiles of u7(ξ, µ), u8(ξ) and u9(ξ), see Fig.5 (a), (b).

Figure 5. The evolution of wave profiles of u7(ξ, µ), u8(ξ) and u9(ξ), (a) that of u7(ξ, µ), (b) that of
u8(ξ) and u9(ξ).

Proof. If given µ ∈ J , then there is a open orbit passing (µ, 0) (see Fig.1) and
owning expression

y2 =
1

3
(φ− µ)(φ− d)(φ− d), (5.12)

where d = µ1 and d = µ2 (see (2.22)-(2.23)) are conjugate complex.
Letting φ(0) = µ, substituting (5.12) into dφ

y
= dξ and integrating along the

open orbit, it follows that∫ φ

µ

ds√
(s− µ)(s− µ1)(s− µ2)

=
|ξ|√
3
. (5.13)
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In (5.13) completing the integration, we have

1√
A

cn−1

(
A+ µ− φ

A− µ+ φ
, m2

)
=

|ξ|√
3
. (5.14)

Solving Eq.(5.14) for φ, we get

φ =
A+ µ− (A− µ) cn

(√
A/3 ξ, m2

)
1 + cn

(√
A/3 ξ, m2

) . (5.15)

This implies that Eq.(1.1) has a elliptic cosine singular wave solution u7(ξ, µ) as
(5.2).

Similarly, there are the following limits.
(c)1 When g < g0 and µ tends to α∗ + 0, we have:

lim
µ→α∗+0

µ1 = lim
µ→α∗+0

µ2 = α, (5.16)

lim
µ→α∗+0

a21 = 0, (5.17)

lim
µ→α∗+0

b1 = α, (5.18)

lim
µ→α∗+0

A = 3(α+ c0), (5.19)

and

lim
µ→α∗+0

m2 = 1. (5.20)

Further we have

lim
µ→α∗+0

u7(ξ, µ) =
α− (6c0 + 5α) cn (

√
α+ c0 ξ, 1)

1 + cn (
√
α+ c0 ξ, 1)

=
α− (6c0 + 5α) sech

√
α+ c0 ξ

1 + sech
√
α+ c0 ξ

=2α− 3c0 + 3(α+ c0) tanh
2η∗ ξ

=α− 3(α+ c0) sech
2η∗ ξ. (5.21)

Via (5.21), we see that Eq.(1.1) has a hyperbolic smooth solitary wave solution
u8(ξ) as (5.10).

(c)2 When −g0 < g < g0 and µ tends to β∗ − 0, we have:

lim
µ→β∗−0

µ1 = lim
µ→β∗−0

µ2 = β, (5.22)

lim
µ→β∗−0

a21 = 0, (5.23)

lim
µ→β∗−0

b1 = β, (5.24)

lim
µ→β∗−0

A = 3(β + c0), (5.25)

and

lim
µ→β∗−0

m2 = 1. (5.26)
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Further we have

lim
µ→β∗−0

u7(ξ, µ) =
β − (6c0 + 5β) cn

(√
β + c0 ξ, 1

)
1 + cn

(√
β + c0 ξ, 1

)
=
β − (6c0 + 5β) sech

√
β + c0 ξ

1 + sech
√
β + c0 ξ

=β − (β + c0) sech
2η ξ. (5.27)

From (5.27) we learn that Eq.(1.1) has another hyperbolic smooth solitary wave
solution u9(ξ) as (5.11).

(c)3 When g = −g0, µ tends to γ − 0 = −
√
c0 − 2k, we have:

lim
µ→γ−0

µ1 = lim
µ→γ−0

µ2 = −
√
c0 − 2k, (5.28)

lim
µ→γ−0

a21 = 0, (5.29)

lim
µ→γ−0

b1 = −
√

c0 − 2k, (5.30)

and

lim
µ→γ−0

A = 0. (5.31)

Further we have

lim
µ→γ−0

u7(ξ, µ) = lim
µ→γ−0

A+ µ+ (A− µ)
(
1−Aξ2/6 + o(1)

)
1 + (1−Aξ2/6 + o(1))

= lim
µ→γ−0

2A−A(A− µ) ξ2/6 + o(1)

2−Aξ2/6 + o(1)

=0. (5.32)

6. The second elliptic cosine singular wave solution
and its limits

We give the second elliptic cosine singular wave solution as follows.

Proposition 6.1. For arbitrary given µ ∈ J , Eq.(1.1) has the second elliptic cosine
singular wave solution

u10(ξ, µ) =
A+ µ+ (A− µ) cn

(√
A/3 ξ, m2

)
1− cn

(√
A/3 ξ, m2

) , (6.1)

where a21, b, A and m2 are given in (5.3)-(5.6).
For u10(ξ, µ) there are the following limits:
(d)1 If g < g0, then

lim
µ→α∗+0

u10(ξ, µ) = u4(ξ) ( see (4.7)). (6.2)
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(d)2 If |g| < g0, then

lim
µ→β∗−0

u10(ξ, µ) = u5(ξ) ( see (4.8)). (6.3)

(d)3 If g = −g0, then

lim
µ→γ−0

u10(ξ, µ) = −
√
c0 − 2k +

12

ξ2
. (6.4)

The limit (6.4) implies that Eq.(1.1) has fractional singular wave solution

u11(ξ) = −
√
c0 − 2k +

12

ξ2
. (6.5)

For the evolution of wave profiles of u10(ξ, µ) and u11(ξ), see Fig.6 (a), (b).

Figure 6. The evolution of wave profiles of u10(ξ, µ) and u11(ξ), (a) that of u10(ξ, µ), (b) that of u11(ξ).

Proof. When µ ∈ J , let φ(0) = +∞. Similarly, we have∫ +∞

φ

ds√
(s− µ)(s− d)(s− d)

=
|ξ|√
3
. (6.6)

Completing the integration, Eq.(6.6) becomes

1√
A

cn−1

(
φ− µ−A

φ− µ+A
, m2

)
=

|ξ|√
3
, (6.7)

which implies that

φ− µ−A

φ− µ+A
= cn

√
A

3
ξ. (6.8)

Solving Eq.(6.10) for φ, it follows that

φ =
A+ µ+ (A− µ) cn

(√
A/3 ξ, m2

)
1− cn

(√
A/3 ξ, m2

) . (6.9)

From (6.9), we see that Eq.(1.1) has another elliptic cosine singular wave solution
u10(ξ, µ) as (6.1).

Similarly, there are the following limits.
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(d)1 When g < g0 and µ tends to α∗+0, we have limits (5.16)-(5.20). Further,
we have

lim
µ→α∗+0

u10(ξ, µ) =
3(α+ c0)− 3c0 − 2α+ (6c0 + 5α) cn (

√
α+ c0 ξ, 1)

1− cn (
√
α+ c0 ξ, 1)

=
α+ (6c0 + 5α) sech

√
α+ c0 ξ

1− sech
√
α+ c0 ξ

=− (2α+ 3c0)
3(α+ c0)

tanh2 [(
√
α+ c0)/2] ξ

=α+ 3(α+ c0)
(
coth2η∗ ξ − 1

)
=α+ 3(α+ c0) csch

2η∗ ξ. (6.10)

This implies that Eq.(1.1) has a hyperbolic singular wave solution u4(ξ) as (4.7).
(d)2 When −g0 < g < g0 and µ tends to β∗ − 0, we have limits (5.22)-(5.26).

Further we have

lim
µ→β∗−0

u10(ξ, µ) =
3(β + c0)− 3c0 − 2β + (6c0 + 5β) cn

(√
β + c0 ξ, 1

)
1− cn

(√
β + c0 ξ, 1

)
=
β + (6c0 + 5β) sech

√
β + c0 ξ

1− sech
√
β + c0 ξ

=β + 3(β + c0)
(
coth2η ξ − 1

)
=β + 3(β + c0) csch

2η ξ. (6.11)

This explain that Eq.(1.1) has another hyperbolic singular wave solution u5(ξ)
as (4.8).

(d)3 When g = −g0 and µ tends to γ − 0 = −
√
c0 − 2k, we have limits (5.28)-

(5.31). Further we have

lim
µ→γ−0

u10(ξ, µ) = lim
µ→γ−0

A+ µ+ (A− µ) cn
(√

A/3 ξ, m2

)
1− cn

(√
A/3 ξ, m2

)
= lim

µ→γ−0

A+ µ+ (A− µ)
(
1−Aξ2/6 + o(1)

)
1− (1−Aξ2/6 + o(1))

= lim
µ→γ−0

12 + (µ−A)ξ2 + o(1)

ξ2 + o(1)

=−
√
c0 − 2k +

12

ξ2
. (6.12)

Hereto, we have finished the proof of four propositions.
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