
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 12, Number 3, June 2022, 868–894 DOI:10.11948/20210442

DEEP DETERMINISTIC POLICY GRADIENT
WITH GENERALIZED INTEGRAL

COMPENSATOR FOR HEIGHT CONTROL OF
QUADROTOR

Anlin Liu1, Lei Liu1,† , Jinde Cao2,3 and Fawaz E.Alsaadi4

Dedicated to Professor Jibin Li on the occasion of his 80th birthday.

Abstract This paper is corned with the desired height control of the quadro-
tor under the framework of deep deterministic policy gradient with prioritized
experience replay (PER-DDPG) algorithm. The reward functions are designed
based on an out-of-bounds plenty mechanism. By introducing a generalized
integral compensator to the actor-critic structure, the PER-DDPG-GIC algo-
rithm is proposed. The quadrotor is controlled by a neural network trained
by the proposed PER-DDPG-GIC algorithm, which maps the system state to
control commands directly. The simulation results demonstrate that intro-
duction of generalized integral compensator mechanism can effectively reduce
the steady-state error and the reward has been greatly enhanced. Moreover,
the generalization ability and robustness, with respect to quadrotor models
with different weights and sizes, have also been verified in simulations.

Keywords Height control, quadrotor vehicle, deep reinforcement learning,
deterministic policy gradient, neural network.

MSC(2010) 93C10, 93C40.

1. Introduction
As a kind of unmanned aerial vehicles (UAVs), quadrotor aircrafts play a wide role
in agricultural plant protection [33], industrial inspection [24], air transportation
[9], and military fields [15] owing to their lightweight, small scale, low cost, and
flexibility. The flight control systems are crucial in accomplishing various tasks
efficiently. Therefore, many researchers focus on the intelligent technology training
of unmanned flight systems, which has received more and more attention [6,17,30].

Since the quadrotor aircraft is a nonlinear, strong coupling, and underactuated
system [4], and the external interference and model uncertainties are unavoidable in
the actual control process, which makes the controller design becomes more difficult
and complicated. In order to deal with the difficulties above, a series of control

†The corresponding author.
Email: liulei_hust@163.com(L. Liu), liulei_hust@hhu.edu.cn(L. Liu)

1College of Science, Hohai University, Nanjing 210098, China
2School of Mathematics, Southeast University, Nanjing 210096, China
3Yonsei Frontier Lab, Yonsei University, Seoul 03722, South Korea
4Department of information Technology, Faculty of Computing and IT, King
Abdulaziz University, Jeddah, Saudi Arabia

http://www.jaac-online.com
http://dx.doi.org/10.11948/20210442

PER-DDPG-GIC for height control of quadrotor 869

strategies have been proposed. The principle of the proportional-integral-derivative
(PID) controller [11] is the negative feedback to the system error, which has been
successfully applied in a stable environment. However, the PID gains are manually
adjusted by trial and error, which requires solid professional experience. In order to
deal with the nonlinearities and uncertainties of the model, a number of non-linear
control strategies have emerged, such as sliding mode control [23], backstepping
[2], adaptive control [32], and so on. What is more, some studies combine these
methods to improve the robustness of control strategies [20]. Nevertheless, a more
sophisticated model usually brings about a more complex control strategy, which is
not conducive to design and implement.

With the development of artificial intelligence, many control strategies based on
neural networks and reinforcement learning have emerged. Neural network control is
a model-free method, which has become an important branch of intelligent control.
Dierks [6] proposed a new nonlinear controller using neural networks and output
feedback, which can guarantee the UAV tracks the desired trajectory. Reinforce-
ment learning algorithm make the agent interact with the environment and learn the
control policy directly from the neural network. Thus, there is no need to assume
and simplify the dynamic model. The control strategy with reinforcement learning is
a relatively new idea, which can trace back to 2005. Waslande [30] achieved accurate
tracking of the quadrotor with the standard strategy iteration method. In recent
years, William [17] used deep deterministic policy gradient (DDPG), trust region
policy optimization (TRPO), and proximal policy optimization (PPO) algorithms
for internal loop attitude control respectively, which achieved better performances
than PID controller. Similar approaches based on reinforcement learning have been
proposed for quadrotor control, please refer to [7,8,10,18,21]. Moreover, most of the
existing reinforcement learning control strategies just focus on attitude and speed
control. Tiwari [26] used the augmented random search (ARS) algorithm to make
the quadrotor reach the target position successfully. Therefore, the reinforcement
learning method for position control of the quadrotor is the focus of our research.
In recent years, Deepmind has proposed two effective algorithms, DQN and DDPG.
DQN is a method based on value function, which is difficult to deal with large ac-
tion space, especially in the case of continuous action. However, DDPG is based
on actor-critic method. In the aspect of action output, a network is used to fit the
policy function and directly output the action, which can deal with the output of
continuous action and large action space. Based on the above reasons, this paper
takes DDPG algorithm as the framework.

With the development of reinforcement learning, several scholars optimized some
aspects of the reinforcement learning algorithm to further improve the performance
of the algorithm in recent years. DeepMind firstly developed a framework for prior-
itizing experience and applied it to Deep Q-Networks (DQN) algorithm, which was
proved to have better performance than the DQN algorithm, especially in learning
speed and final performance [22]. In fact, experience replay enables reinforcement
learning to make full use of the past experiences. It is a technique to a certain
extent. However, the stability and speed of convergence of reinforcement learning,
as well as the eventual performance of the learned policy, are strongly dependent on
the expeperiences being replayed [5]. Based on the above ideas, Hou [13] introduced
the idea of prioritized experience replay into the DDPG algorithm and found that
it greatly shortened the training time and improved the stability of the learning
process. In addition, compared with the DDPG algorithm, the DDPG with priori-

870 A. Liu, L. Liu, J. Cao & E.Alsaadi

tized experience replay (PER-DDPG) algorithm is less affected by hyperparameters,
which enhances the robustness of the algorithm. For a detailed understanding of
this, please refer to [3, 16, 29, 31, 34]. Besides, the integral compensator has also
received attention in recent years. This technique not only considers the state er-
ror at the current moment, but also considers the state error at the past moment.
Wang [28] and Hu [14] introduced integral compensators into DDPG and PPO al-
gorithms for robust quadrotor control, which effectively reduced the steady-state
error.

Inspired by the above-mentioned papers, this paper further improves the PER-
DDPG algorithm to obtain better performance on quadrotor control via a gener-
alized integral compensator mechanism. It is worth mentioning that the integral
compensator proposed in [28] and [14] treats errors in the past state equally. In
fact, the closer the error is to the current moment, the more valuable it is. Based on
these ideas, this paper gives weight to the state error in the past moment according
to the distance to the current moment, and forms a generalized integral compen-
sator. By taking the generalized integral compensated error as the input to the
neural network of actor-critic structure, the PER-DDPG with generalized integral
compensated (PER-DDPG-GIC) algorithm has been proposed. The proposed algo-
rithm effectively eliminates the steady-state error and has remarkable robustness on
different weights and sizes of the quadrotor. The main contributions of this paper
are concluded as follows:

1) By virtual of a reward function with out-of-bounds penalty, the desired height
control of the quadrotor is implemented under the framework of the PER-
DDPG algorithm.

2) The performance of PER-DDPG algorithm has been improved via a novel
reward function that embodies the reward of out-of-bounds plenty and the
generalized integral compensator. Compared with the algorithm without the
generalized integral compensator, the proposed algorithm can improve the
tracking accuracy.

3) In the actor-critic structure, a generalized integral compensator is embedded
and the PER-DDPG-GIC algorithm is proposed. By taking the generalized
integral compensated error as the input to the neural network, the steady-state
error can be effectively eliminated. Furthermore, the remarkable robustness
on different weights and sizes of the quadrotor is verified.

The rest of this paper is organized as follows. The dynamic of the quadrotor is
established in section 2. The proposed reinforcement learning policy is presented in
section 3. In section 4, the simulation details, results, and discussions are provided
to indicate the effectiveness of the proposed controller. Finally, the conclusion is
given in section 5.

Notations: The following notations are utilized throughout this paper: the
superscript ′T ′ represents matrix transposition. diag denotes diagonal matrix. ∇
refers to gradient calculation.

2. Quadrotor modeling
In this section, the creation process of the dynamic model of a quadrotor aircraft is
given. The basic structure and frames of a quadrotor are shown in Fig. 1.

PER-DDPG-GIC for height control of quadrotor 871

Figure 1. Structure and frames of the quadrotor.

To describe the quadrotor kinematics model, two coordinate systems are es-
tablished: the inertial coordinate system E = {oe, xe, ye, ze} and the body-fixed
coordinate system B={ob, xb, yb, zb}. The mass center of the quadrotor in the iner-
tial coordinate system is defined as p = [x, y, z]

T . Correspondingly, ṗ, p̈ denotes the
velocity and the acceleration. Besides, the attitude of the quadrotor is represented
by η = [ϕ, θ, ψ]

T , where ϕ, θ and ψ are roll, pitch and yaw angles respectively.
Correspondingly, η̇, η̈ describe the rotational angular velocity and acceleration.

2.1. Translational motion
According to Newton’s second law of motion, the simplified dynamic model of the
quadrotor can be obtained:

Fe = RFl + G = mp̈, (2.1)

where Fe is the resultant force applied to the quadcopter, R is the transformation
matrix, Fl is the lift force, G is the gravity of the quadrotor, m is the mass of
the quadrotor, and p̈ is the acceleration of the quadrotor in the inertial coordinate
system. Fl = [0, 0, Tz]

T denotes the lift vector, where Tz =
∑4
i=1 Ti. Ti is defined in

the body-fixed frame, while the gravity of the quadcopter and other external forces
are defined in the inertial frame. Therefore, the translational matrix R is used to
describe the transformation between the body-fixed frame and the inertial frame.
Translational matrix R is given as follows:

R =

CϕCθ CϕSθSϕ − CϕSψ SϕSψ + CϕCψSθ

SψCθ SϕSθSψ + CϕCψ CϕSθSψ − CψSϕ

−Sθ CθSϕ CϕCθ

 (2.2)

where S{·}, C{·} represent sin(·), cos(·), Euler angle ϕ, θ, ψ are roll, pitch, and
yaw angle respectively. From the above, the translational motion of the quadrotor
dynamic can be expressed as:

ẍ = Tz (CϕSθCψ + SϕSψ) /m,

ÿ = Tz (CϕSθSψ − SϕCψ) /m,

z̈ = (TzCϕCθ −mg) /m.

(2.3)

872 A. Liu, L. Liu, J. Cao & E.Alsaadi

2.2. Rotational motion
For the rotational motion of the quadrotor, according to the law of rigid body
rotation, the total external moment applied to the quadrotor can be expressed as:

M = Iẇ + w× Iw, (2.4)

where I =diag(Ix, Iy, Iz) is the moment of inertia of the quadrotor, w = [ϕ̇, θ̇, ψ̇] is
the Euler angular velocity, and M is the control torque generated by different lifts.
M is given as follows:

M =

L(T4 − T2)

L(T1 − T3)

Kψ(T1 − T2 + T3 − T4)

 , (2.5)

where L is the distance between the center mass of the quadrotor and the rotor
axis, and Kψ is the reaction moment coefficient, Ti are the lift forces provided by
different rotors. From the above, the quadrotor dynamic of the rotational motion
can be expressed as:

ϕ̈ = L (T2 − T4) /Ix,

θ̈ = L (T3 − T1) /Iy,

ψ̈ = Kψ (T1 − T2 + T3 − T4) /Iz.

(2.6)

The translational and rotational motions of the quadrotor are all the motions
of the quadrotor in space. Therefore, the quadrotor kinematics model without
considering the aerodynamic drag force, friction, and wind can be obtained:

ẍ = Tz (CϕSθCψ + SϕSψ) /m,

ÿ = Tz (CϕSθSψ − SϕCψ) /m,

z̈ = (TzCϕCθ −mg) /m,

ϕ̈ = L (T2 − T4) /Ix,

θ̈ = L (T3 − T1) /Iy,

ψ̈ = Kψ (T1 − T2 + T3 − T4) /Iz.

(2.7)

3. Proposed Approach
In this section, firstly, the DDPG algorithm structure for quadrotor control is given.
Secondly, the DDPG with prioritized experience replay (PER-DDPG) algorithm is
applied to control the quadrotor aircraft. Then, a PER-DDPG-GIC is proposed on
the basis of the first two sections.

PER-DDPG-GIC for height control of quadrotor 873

3.1. DDPG control policy
For the problem of quadrotor control, the main goal is to find an appropriate control
policy that can drive the quadrotor from the initial state to the desired state in a
fast and stable manner. Algorithms based on policy gradient are most suitable for
solving such continuous actions and states problems. In this paper, we select the
DDPG algorithm and its improved algorithms for quadrotor control.

3.1.1. State and action specification

Reinforcement learning uses a Markov decision process (MDP) to model the con-
troller, it can be described by a five-tuple ⟨S,A, P,R, γ⟩, where S is the states, A is
the actions, P is the state transition probability function, R is the reward function,
and γ is the discount factor. In this subsection, the state and action for the quadro-
tor control are specified. Theoretically, the state is supposed to be a collection of
the information that the quadrotor can obtain. According to the quadrotor model
established in section 2, the state in this experiment is a 12-dimensional vector
st = [x, y, z, ϕ, θ, ψ, ẋ, ẏ, ż, ϕ̇, θ̇, ψ̇]. It is worth mentioning that the dimension of
the state space is very small, which makes it easy in function approximation and
exploration. Besides, the small dimension of state space reduces the difficulty of
network training and time consumption.

The quadrotor moves in translation and rotation through the lift force of four
propellers. In our scenario, the control commands are represented by action a =
[r1, r2, r3, r4], where r1, r2, r3, r4 are the rotor speeds. In this paper, the same control
law is applied to the four rotors, and the action is supposed to be a = [r, r, r, r]. In
this way, the quadrotor can reach the specified height without drift.

The deterministic policy is a strategy that maps each state to the action with
the greatest probability, so the action is uniquely determined. In order to achieve
exploration, an Ornstein Uhlenbeck (OU) noise is added :

Ā(st) = Aµ(st) +Nt, (3.1)

where Ā(st) is the final policy, Aµ(st) is the deterministic policy, Nt is the OU noise.
In the case of one dimension, the OU process is defined by a stochastic differential
equation:

dNt = θ(µ−Nt)dt+ σdBt, (3.2)

where θ is a parameter, µ is mean of the noise, σ is the weight of noise, Bt is the
standard Brownian motion.

3.1.2. Network structure

There are four networks used in the DDPG algorithm, namely an actor network,
a target actor network, a critic network and a target critic network. The actor
network provides the action that the quadrotor should take, and the critic network
updates the Q value which is used by the DDPG algorithm to update the actor
network later. The input of the actor network is the state, and the output is the
action. The input of the critic network is the state along with the action, and the
output is the Q value. There are two hidden layers of 400 relu nodes and 300 relu
nodes in the actor network and critic network respectively. In fact, we have tried

874 A. Liu, L. Liu, J. Cao & E.Alsaadi

many other network structures of different nodes, layers, and activation functions.
Finally, the following network structure can satisfy the effect of quadrotor control.
The actor-critic network structure of the DDPG algorithm for quadrotor control is
shown in Fig. 2: In addition, the previous practice has proved that if only a single

Figure 2. Actor-critic network of DDPG for quadrotor control.

neural network algorithm is used, the learning process is very unstable, because the
network parameters are updated frequently and are used to calculate the gradient
of the critic network and policy network. To address this bottleneck, the DDPG
algorithm is applied, which adds a target actor network and a target critic network
respectively. The parameters of the target network are updated by the soft update
method, which is more stable and easy to converge. The soft update method is
denoted as follows:

w′ ← τw + (1− τ)w′, (3.3)
µ′ ← τµ+(1− τ)µ′, (3.4)

where w′, µ′ are the target critic network parameters and target actor network
parameters respectively, τ is the soft update rate of the target network.

3.1.3. Policy optimization

To optimize the policy, parameters are adjusted based on the gradient of the ex-
pected returns. The idea of the above algorithm is the policy gradient theorem [25]:

∇µJ(Aµ) = Es∼ρAµ [∇µlogAµ(s, a)QA
µ

(s, a)], (3.5)

where J(Aµ) is the performance objective, ρAµ is the state distribution of the policy
Aµ, QAµ

(s, a) is the actual state-value function, J(Aµ) is the expected value of
QA

µ

(s, a) where s ∼ ρAµ .
The DDPG algorithm adopts the actor-critic neural networks, in which the actor

network is responsible for the policy iteration and the critic network is responsible
for value estimation. The parameters in critic network are updated by minimizing
the TD-error, where the TD-error is defined as:

δt+1 = rt + γQw(st+1, µ(st+1))−Qw(st, at), (3.6)

PER-DDPG-GIC for height control of quadrotor 875

where rt is the reward, γ is the discount, Qw(st, at) is the Q value of the critic
target network. The parameters in critic network are updated by minimizing the
loss function:

L =
1

N

∑
i
(ri + γQw(si+1, µ(si+1))−Qw(si, ai))

2
, (3.7)

wt+1 = wt + αw∇wL(w), (3.8)

where L is the loss function, N is the batch size, w is the critic network parameter,
αw is the learning rate of critic network. The goal of the actor network is to select
the most suitable action and update it following the DPG theorem:

∇µJ(µ) =
1

N

∑N

i=1
∇µAµ(si)∇aQw(si, ai)|ai=Aµ(si), (3.9)

µt+1 = µt + αµ∇µJ(µ), (3.10)

where J(µ) is the performance objective, µ is the actor network parameter, Aµ(s)
is the policy that characterizes the actor network, αµ is the learning rate of actor
network. In the view of above theoretical support, the implementation framework
of DDPG for quadrotor control is shown in Fig. 3.

Figure 3. System network framework structure.

3.2. PER-DDPG control policy
Consider that in the DDPG algorithm, experience transitions are uniformly sampled
from the replay buffer. In fact, we certainly expect that high-value transitions to
be sampled more frequently. So, we use a framework for prioritizing experience.
The main reason is to replay important transitions more frequently and learn more
efficiently. Firstly, store the experience of each time step e = (st, at, rt, st+1) in the

876 A. Liu, L. Liu, J. Cao & E.Alsaadi

experience buffer D. The uniform experience replay is to randomly sample a batch
of experience B from the replay buffer during each update, and use the experience
transitions to update the network parameters. However, the priority experience
replay is to replay transitions with high expected learning progress. According to
(3.6), the larger the temporal-difference (TD) error, the larger the gap between
the current Q value and the target Q value, and the more worth learning. Due
to the large TD-errors, we give the transition a higher priority value, that is, the
probability of sampling transition is large. The probability of sampling transition i
is defined as:

P (i) =
pαi∑
pαi
, (3.11)

where P is the probability of sampling transition, pi is the priority of transition,
where pi = |δt + ε|, δt is the TD error, α represents the magnitude of the priority.
In this paper, α = 0.4 and ε = 10− 5.

Remark 3.1. To avoid overfitting, the priority experience replay adopted in this
paper only increases the sampling probability of transition with large TD errors,
not just only sample a batch of transitions with high expected learning progress.
This ensures the diversity of transitions and avoids overfitting to a certain extent.

3.3. Generalized Integral Compensator
In many cases, the steady-state error cannot be eliminated no matter what training
tricks and hyperparameters are used owing to the inaccurate estimation of the
action-value function in critic network [12,27]. In the traditional DDPG algorithm,
the actor network is to learn a policy that can maximize the expected value of action-
value function J(µ). Therefore, inaccurate estimation of the action-value function
will lead to deviations when updating the policy, and cannot track the desired point
accurately. Considering that the PID controller introduces an integral part which
is the integral of the tracking error concerning time to eliminate the steady-state
error, an integral compensation is introduced to the DDPG algorithm for quadrotor
control. The error with integral compensation is expressed as:

Stc = Ste + β
∑t

i=1
Sie, (3.12)

where Se is the error state, for instance, xe = |x− xd|, ye = |y − yd|, ze = |z − zd|
are the differences between the current coordinate position and the desired coordi-
nate position, Sc is compensated error, β is the integral gain, superscript is used to
indicate the time step. The core idea is to construct a set of errors with general-
ized integral compensation instead of the direct error. Compared with the integral
compensation proposed in [28], the generalized integral compensation proposed in
this paper adds discounts on β. The error with generalized integral compensation
is as follows:

Stg = Ste +
∑t

i=1
βN+1−iSie, (3.13)

where N is the total time step, superscript is used to indicate the time step, Sg is
the generalized compensated error.

PER-DDPG-GIC for height control of quadrotor 877

Algorithm 1 PER-DDPG-GIC for quadrotor control
Require:

1: Randomly initialize the weight of the actor network Aµ, critic network Qw, the
replay buffer D

Ensure:
2: for episode from 1 to EpisodeMax do
3: Observe the initial quadrotor state st.
4: for time step from 1 to StepMax do
5: Choose action at = Aµ (st) + nt.
6: Run the dynamic model according to the control signal at.
7: Observe reward rt and reach the next state st+1.
8: Store transition (st, at, rt, st+1) in replay buffer D.
9: Replay important transitions based on sampling probability from the

replay buffer.
10: Update the critic network following (3.7) (3.8).
11: Update the actor network following (3.9) (3.10).
12: Update the target network following (3.3) (3.4).
13: if St+1 exceeds the safe range then
14: break
15: end if
16: end for
17: end for

Remark 3.2. Compared with the integral compensator in [28] and [14], the gen-
eralized integral compensator proposed in this paper gives weight to the error in
the past moment according to the distance to the current moment. It means that
weight is given according to the importance of the error in the proposed generalized
integral compensator, while [28] and [14] treats errors in the past state equally.

Remark 3.3. In this paper, the integral gain β is 0.2. That is to say, the error
coefficient is 0.2 at time step N , the error coefficient is 0.04 at time step N −1, and
the error coefficient is βN+1−t at time step t. It means that the closer the error
is to the current moment, the error coefficient is larger. This method pays more
attention to the error of the previous step at the current moment, and the weight
of the error farther from the current moment decreases exponentially.

Based on the above theoretical support, we applied the generalized integral
compensator mechanism in the experiment. Firstly, the GIC mechanism has been
integrated into the reward function, the PER-DDPG with GIC reward algorithm
is presented. Then, by incorporating the GIC mechanism into the actor-critics
structure, the PER-DDPG-GIC algorithm has been proposed. The algorithm flow
of the PER-DDPG-GIC algorithm for quadrotor control is shown in Algorithm 1:

4. Experiments and results
In this section, DDPG with different reward functions and three groups of compar-
ative experiments are conducted respectively, the first group is the comparison of
the training effect of DDPG and PER-DDPG algorithm, the second group is the
comparison of the training effect of PER-DDPG and PER-DDPG with GIC reward

878 A. Liu, L. Liu, J. Cao & E.Alsaadi

algorithm and the last group is the comparison of the training effect of PER-DDPG
and the PER-DDPG-GIC algorithm. The three simulations are called experiment
1, experiment 2, and experiment 3.

4.1. Experimental description
In the simulation, the given algorithm is used for quadrotor control. The basic
model parameters are shown in Table 1:

Table 1. Parameters of the quadrotor aircraft

Parameter Description Value Unit
m Mass 0.958 kg
L Motor-to-center distance 0.2 m
Ix Moments of inertia of frame on x axis 0.02517 kg ·m2

Iy Moments of inertia of frame on y axis 0.02517 kg ·m2

Iz Moments of inertia of frame on z axis 0.04153 kg ·m2

g Acceleration due to Gravity 9.81 m/s2

The experiments run on Windows operating system powered by an Intel Core
i7-9700CPU@ 3.00 GHz. The drone simulation is programmed with Python. For
network training optimization, this paper uses the built-in Adam optimizer. The
network training parameter settings of DDPG are shown in Table 2:

Table 2. Training parameters of DDPG algorithm

Parameter Value
Discount factor γ 0.99

Learning rate of actor network αµ 0.0001
Learning rate of critic network αω 0.001

Batch size N 128
Buffer size M 100000

Soft update rate τ 0.001
Noise σ 0.01

Time step/s 0.05
Maximum steps in an episode/s 10

Each experiment is conducted in 1000 episodes, and the maximum time in each
episode is 10 seconds. A time step is 0.05 seconds and the maximum time steps
in an episode are 200. Each episode can be divided into three steps. Firstly, the
agent needs to select an action from the current state through the actor network.
Secondly, the agent takes action based on (3.9)-(3.10) and ends up in a new state.
Lastly, repeat this process until the end of the episode.

To ensure the safety of the quadrotor during flight, safe ranges are set. For the
x-axis, y-axis and z-axis, safe ranges are set to [-150,150], [-150,150] and [0,300]
respectively. As a gesture to security, two termination conditions are set, one is
going beyond the safe range, and the other is exceeding the maximum time steps
of the episode.

PER-DDPG-GIC for height control of quadrotor 879

4.2. Target height control task
The task of the experiments is to use the given algorithms to drive the quadrotor
from the initial position to hover at the desired position. The initial position is
[0, 0, 0], and the desired position is set to [0, 0, 10]. To be specific, the agent needs
to use rewards and punishments information to learn by trial and error, and finally
reach the desired height without any prior knowledge.
Experiment 1. In this experiment, DDPG with different reward functions are
used in the height control of quadrotor. As a crucial element in RL, the reward
function guides the expected behavior of the agent. The agent takes action after
interacting with the environment, and the environment will give rewards according
to the quality of the behavior. All goals in reinforcement learning can be described
as maximizing the total reward received by the agent. Therefore, an effective re-
ward function is easier to improve the training effects and convergence speed of the
algorithm. In the light of the theory of reward shaping [19], a novel reward function
is designed to guide the agent to move within safe ranges. The reward function
designed in this experiment is defined as:

reward =

1− 0.01
√
x2e + y2e + z2e ,m = 0,

1− 10− 0.01
√
x2e + y2e + z2e ,m = 1,

(4.1)

where xe, ye, ze are the errors between the current coordinate position and the de-
sired coordinate position respectively, m is the symbol that judges whether the
quadrotor is going beyond the safe range, which is indicated by 0 and 1.

Remark 4.1. In view of the theory of reward shaping, the reward function is
designed. Since it is difficult for the agent to reach the ultimate goal soon, the
sparse reward may not work. We need to guide the agent to reach the goal through
multiple reward settings gradually. In each time step, a basic reward of 1 is given to
the agent, which can overcome conservative behaviors and encourage exploration.
The distance between the current position and the desired position is used as a
penalty item. If the agent goes beyond the safe range, a penalty of -10 will be given
and the episode terminates.

The reward functions are designed based on an out-of-bounds plenty mechanism.
The reward function without out-of-bounds plenty is:

reward = 1− 0.01
√
x2e + y2e + z2e . (4.2)

In [1], the soft actor-critic (SAC) algorithm is used for the position and attitude
control of quadrotor. The reward function in [1] is used in the framework of DDPG.
The reward function in [1] is:

reward = 1.5− 1.0
√
x2e + y2e + z2e . (4.3)

In this section, the novel reward function based on an out-of-bounds plenty mecha-
nism (4.1) is compared with the reward function in (4.2) and (4.3). The accumulated
reward and steady-state error pairs during training are shown in Figure 4.
Experiment 2. In this experiment, the control policy is trained based on the
DDPG algorithm and the PER-DDPG algorithm.

880 A. Liu, L. Liu, J. Cao & E.Alsaadi

� ��� ��� 	�� ��� ���� ����
�������

�

���

���

���

���

���

	��

�
�
��
��

�������
�������

� ��� ��� 	�� ��� ���� ����
�������

�

��

��

�

���

���

���

�
�

���

�
�
��
��

�������
�������

	�� ��� ���� ����
�
�
�
	
�

��

� ��� ��� 	�� ��� ���� ����
�������

�����

����

�	��

����

����

�

���

���

	��

�
�
��
��

�������
�������

� ��� ��� 	�� ��� ���� ����
�������

�

��

��

�

���

���

���

�
�

���

�
�
��
��

�������
�������

	�� ��� ���� ����
�
�
�
	
�

��

Figure 4. Comparison of accumulated reward and steady-state error of different reward functions

The training evaluation of the task is measured by two metrics, one is the accu-
mulated reward, and the other is the steady-state error. In each time step, a larger
accumulated reward represents a smaller error to the desired state, which means a
more accurate control policy. Taking the DDPG algorithm as the baseline, we com-
pare the PER-DDPG algorithm with it. The accumulated reward and steady-state
error of each episode during the training process are shown in Figs. 4-5:

� ��� ��� ��� ��� ����
�������

���

�

��

���

���

���

��
��

��
�

���

�

�

��� ��� 	�� ����
���
���
���
���
�	�
�	�
���

Figure 5. Accumulated reward comparison between DDPG and PER-DDPG.

Remark 4.2. Around 600 episodes, the reward of the PER-DDPG algorithm
dropped twice. Our conjecture is that the prioritized experience replay technique
is to replay important transitions, which reduces the diversity of transitions to a
certain extent and may cause overfitting. However, the accumulated reward of the
PER-DDPG algorithm remains at a higher level than the DDPG algorithm after
700 episodes.

As shown in Figs. 4-5, in the initial stage of training, two algorithms do not
converge, therefore the reward is small and fluctuates greatly. In the later stage
of training, especially after 700 episodes, the reward remains at a high level. In
addition, the reward of the PER-DDPG algorithm is higher than the DDPG algo-
rithm. This difference is particularly obvious in terms of steady-state errors. To

PER-DDPG-GIC for height control of quadrotor 881

� ��� ��� ��� 	�� ����
�������

�

��

���

���

���

���

��
��
���

���
�������

��� 	��
�� ����
�
�
	��
����
���	

Figure 6. Steady-state error comparison between DDPG and PER-DDPG.

further highlight the convergence of the results, this paper displays the descrip-
tive statistics of the accumulative reward and steady-state error of the last 100
episodes, as is shown in Table 3: From the descriptive statistics of accumulated

Table 3. Descriptive statistics of reward and error

method mean std min
reward DDPG 188.8848 0.9870 185.9812
reward PER-DDPG 196.8483 0.9141 194.0524
error/m DDPG 12.6755 2.6963 9.0077
error/m PER-DDPG 0.8037 0.6690 0.0010

rewards and steady-state errors in the last 100 episodes, the PER-DDPG algorithm
has higher accumulated rewards, lower steady-state errors, and lower volatility than
the DDPG algorithm. As a result, our simulation is conducted under the framework
of the PER-DDPG algorithm.
Experiment 3. In this experiment, the control policy is trained based on the
PER-DDPG algorithm and the PER-DDPG with GIC reward algorithm. Under
the framework of the PER-DDPG algorithm, this paper introduces a generalized
integral compensator, which is reflected in the error calculation of the reward func-
tion. The integral compensator proposed in [28] and [29] treats errors in the past
state equally. In fact, the closer the error is to the current moment, the more valu-
able it is. Based on these ideas, this experiment gives weight to the state error in
the past moment according to the distance to the current moment, and forms a gen-
eralized integral compensator. As a result, a PER-DDPG with GIC reward control
policy is presented. By utilizing the GIC mechanism, the novel reward function is
defined as:

reward =

1− 0.01

√
x2g + y2g + z2g ,m = 0,

1− 10− 0.01
√
x2g + y2g + z2g ,m = 1,

(4.4)

where xg, yg, zg are the errors with generalized integral compensator respectively by
(3.13), m is the symbol that judges whether the quadrotor is going beyond the safe
range, which is indicated by 0 and 1. The accumulated reward and steady-state
error of each episode during the training process are shown in Figs. 6-7:

882 A. Liu, L. Liu, J. Cao & E.Alsaadi

� ��� ��� ��� 	��
������

���

�

��

���

���

���

�
��

��
��

�������
�����������������������

��� ��� 	��
�� ����
���
���
�	�
�	�
�
�
�
�
���

Figure 7. Accumulated reward comparison between PER-DDPG and PER-DDPG with GIC reward.

� ��� ��� ���
��
�������

�

��

��

	�

���

���

���

�	�

���

�
��
��
��

����������������������
������

��� 	��
�� ���
�
�
�
�

��

Figure 8. Steady-state error comparison between PER-DDPG and PER-DDPG with GIC reward.

As shown in Figs. 6-7, in the initial stage of training, PER-DDPG and PER-
DDPG with GIC reward algorithms cannot converge owing to the fluctuating re-
ward, and large steady-state error. The reward of the PER-DDPG algorithm grad-
ually increases after 300 episodes, while the PER-DDPG with GIC reward control
policy maintains at a higher level after 100 episodes, and the accumulated reward is
larger than the PER-DDPG policy, indicating that the proposed PER-DDPG with
GIC reward control policy has faster convergence and better training performance.
Although both policies are stable at the end of the training, the PER-DDPG with
GIC reward algorithm is still better. Using the PER-DDPG with GIC reward con-
trol policy for quadrotor control can keep the steady-state error at a very low level,
which further illustrates the effectiveness of the algorithm. To further highlight
the convergence of the results, this paper displays the descriptive statistics of the
accumulated reward and steady-state error of the last 100 episodes, as shown in
Table 4:

Remark 4.3. In the last 100 episodes, the volatility of PER-DDPG is higher than
that of the PER-DDPG with GIC reward in terms of accumulated reward and
steady-state error. For the accumulated reward and steady-state error, the standard
deviations of PER-DDPG are 2.8340 and 2.3937 respectively, while the standard
deviations of PER-DDPG with GIC reward are 0.6402 and 0.3920 respectively. It

PER-DDPG-GIC for height control of quadrotor 883

Table 4. Descriptive statistics of reward and error

method mean std min
reward PER-DDPG 190.4356 2.8340 182.7491
reward PER-DDPG with GIC reward 196.6515 0.6402 193.5726
error/m PER-DDPG 5.5910 2.3937 0.3204
error/m PER-DDPG with GIC reward 1.2126 0.3920 0.0368

indicates that an effective reward function can better guide the behavior of the
agent, and the reward function of the PER-DDPG with GIC reward algorithm is
more effective.

In the last 100 episodes of training, the PER-DDPG with GIC reward control
policy is superior to the PER-DDPG policy in terms of mean, standard deviation,
and minimum value, indicating that the proposed policy has higher rewards and
smaller fluctuations. In addition, the steady-state error is smaller and the volatility
is smaller than the PER-DDPG algorithm as well.

The PER-DDPG algorithm and PER-DDPG with GIC reward algorithm are
tested in the desired height control task, the initial position and desired position
are set to [0, 0, 0] and [0, 0, 10] respectively. The simulation results show that the
PER-DDPG with GIC reward control policy can drive the quadrotor to the specified
height and hover with small steady-state errors. The simulation result of the two
control policies is shown in Fig. 8:

� � � � �
������

�

�

�

�

�

��

��

��
��
�
��

����

��� �����	��� ���
����

��
���������

Figure 9. Height control performance of PER-DDPG and PER-DDPG with GIC reward.

To verify the effectiveness of the control policy, four different desired height
control tasks are additionally set up in this paper. The rest of the mission set-
tings remain unchanged, the desired heights are 20m, 30m, 40m, and 50m. The
simulation results show that the aircraft can quickly reach the different specified
altitudes and remain to hover. The response curve of the height channel is shown
in Fig. 9: During the quadrotor training, the initial position is set as a fixed point.
In order to show the effectiveness of the algorithm, now randomly select the initial
state. We conduct three groups of comparative experiments. Firstly, randomly
select any initial height from 0m to 20m, and the tracking height is 10m. Secondly,
randomly select any initial height between 0m and 50m, and the tracking height

884 A. Liu, L. Liu, J. Cao & E.Alsaadi

� � � 	
 ��
������

�

��

��

��

��

��

�
��

��
 ��

���������
�������
��������!� ��������!���

Figure 10. Response curves at different desired heights.

is 25m. Lastly, randomly select any initial height between 0m and 80m, and the
tracking height is 40m. The simulation results show that the quadrotor can adapt
to various initial states. The response curves of different tracking heights are shown
in Figs. 10-12: To quantify the performances of PER-DDPG and PER-DDPG

� � � � 	 ��
������

�

�

��

��

��

�
��
��
���

�������

� � � � 	 ��
������

�

�

��

��

��

�
��
��
���

��������������
�������

Figure 11. Tracking height 10m.

with GIC reward control policies, this paper calculates the sum of the steady-state
errors of the 20 episodes. The comparison chart of the sum of steady-state errors of
different tracking heights is shown in Fig. 13: In addition, the steady-state error is
not enough to measure the intermediate process of the two control policies. Based
on the above considerations, to compare the two control policies in-depth, it can
be seen from the above pictures that the response height of each episode reached
a relatively stable stage after 4s. Therefore, except for the steady-state error, this
paper calculates the error between the current height and the desired height at each
time step between 4s and 10s. The sum of errors between 4s and 10s at different
tracking heights is shown in Fig. 14:
Experiment 4. In this experiment, the control policy is trained based on the
PER-DDPG algorithm and the PER-DDPG-GIC algorithm. In Experiment 2, the

PER-DDPG-GIC for height control of quadrotor 885

� � � 	
 ��
������

�

��

��

��

��

��

��

�
��
��
���

�������

� � � 	
 ��
������

�

��

��

��

��

��

��

�
��
��
���

�����������������������

Figure 12. Tracking height 25m.

� � � � � ��
������

�

��

��

��

��

��
��
���

����

��

� � � � � ��
������

�

��

��

��

��

��
��
���

����

����������	�������

Figure 13. Tracking height 40m.

��� ��� ���
�������������

�

�

�

�

�

��

��

��

��

��
�
��
���
��
��

 �
��
��
��
��
��
�

����

��
����

���������	�������

Figure 14. Error comparison.

886 A. Liu, L. Liu, J. Cao & E.Alsaadi

��� ��� ���
�������������

�

���

���

���

����

����

����

����

��
�
��
���
��
��
���

��
��
��
�

��		�

��		�����������������

Figure 15. Total error comparison between 4s-10s.

generalized integral compensator is introduced into the reward function of PER-
DDPG algorithm. Furthermore, this experiment draws lessons from the integral
term of proportion-integration-differentiation (PID) controller. We introduce the
integral term into PER-DDPG controller, and add the generalized integral com-
pensated error state into the input vector of the neural network. The integral term
is the integral of error with respect to time. With the increase of time, the inte-
gral term will increase. Therefore, when the generalized integral compensated error
is input into the system through the neural network, the output of the controller
will increase and the steady-state error will decrease until the steady-state error is
eliminated. In the input vector, adding the generalized integral compensated error
makes the controller have the function of integral adjustment. As long as the error
exists, the integral adjustment will work until it is eliminated.

In the PER-DDPG-GIC policy designed in this paper, the control input is in-
creased from the original 12-dimensional control vector st=[x, y, z, ϕ, θ, ψ, ẋ, ẏ, ż, ϕ̇, θ̇, ψ̇]
to 15-dimensional control vector s′t = [x, y, z, ϕ, θ, ψ, xg, yg, zg, ẋ, ẏ, ż, ϕ̇, θ̇, ψ̇], where
xg, yg, zg are the generalized integral compensated error defined by (3.13). There-
fore, the neural network structure of PER-DDPG-GIC control strategy proposed in
this paper is shown in Fig. 15:

Figure 16. Actor-critic network of PER-DDPG-GIC for quadrotor control.

PER-DDPG-GIC for height control of quadrotor 887

In order to show the superiority of PER-DDPG-GIC algorithm, the PER-DDPG
is compared with PER-DDPG-GIC. Similarly, the control effect is measured by
accumulated reward and steady-state error. A higher accumulated reward means
a lower steady-state error, which is equivalent to a smaller difference between the
current altitude and the desired. The comparison chart of accumulated reward and
steady-state error of the two control strategies is shown in Figs.16-17:

� ��� ��� ��� ��� ��� ���
������

���

�

��

���

���

���

��
��

��
�

�������
�����������

��� ��� ���
���
���
�	�
�	�
�
�
�
�
���

Figure 17. Accumulated reward comparison between PER-DDPG and PER-DDPG-GIC.

� ��� ��� ��� ��� ��� ���
�������

�

��

���

���

���

���

��
��
���

���������

�������

��� ��� ���
�
�
	
��
��
��

Figure 18. Steady-state error comparison between PER-DDPG and PER-DDPG-GIC.

It can be seen from the figure that the convergence speed of the PER-DDPG-
GIC control strategy is faster and reaches a higher level faster than the PER-DDPG
algorithm. At the same time, the reward value is slightly higher than PER-DDPG
control strategy. Although, PER-DDPG-GIC has a slight decline during the 400-
450 episodes. However, after 450 episode, it is always higher than PER-DDPG
control strategy, which shows the superiority of PER-DDPG-GIC control strategy
proposed in this paper. Similarly, from the perspective of the steady-state error,
the error of PER-DDPG-GIC control strategy proposed in this paper is lower than
that of the PER-DDPG control strategy. This shows that the generalized integral
compensator has an obvious effect, which can effectively improve the reward and
reduce the steady-state error, and improve the training accuracy of the control
strategy. In order to further verify the effectiveness of PER-DDPG-GIC control
strategy from the numerical aspect, the descriptive statistical comparison of reward
value and steady-state error in the last 100 episodes are carried out, as shown in
Table 5:

888 A. Liu, L. Liu, J. Cao & E.Alsaadi

Table 5. Descriptive statistics of reward and error

method mean std min
reward PER-DDPG 190.0747 3.5492 183.2128
reward PER-DDPG-GIC 195.1881 1.4194 193.1947
error/m PER-DDPG 7.3359 3.1851 0.6736
error/m PER-DDPG-GIC 1.6603 0.8562 0.0234

From the descriptive statistics of the two control strategies, the PER-DDPG-
GIC control strategy has more obvious advantages. In the last 100 episodes, the
average reward value of the PER-DDPG-GIC control strategy is higher, and the
standard deviation is lower, which indicates that the reward value of the PER-
DDPG-GIC control strategy has been maintained at a higher level than that of
the PER-DDPG control strategy, and the volatility is smaller. Similarly, from the
perspective of steady-state error, the steady-state error of the PER-DDPG-GIC
control strategy has been kept at a low level, and the fluctuation is also lower than
that of the PER-DDPG control strategy. These two indicators, both show that
the adjustment effect of the generalized integral compensator is effective, which can
significantly improve the accumulative reward and reduce the steady-state error.

To verify the effectiveness of PER-DDPG-GIC control policy, we use this strat-
egy to carry out the same simulation experiment as experiment 2.

1) Four different desired altitude control tasks are additionally set up in this
paper, 20m, 30m, 40m, 50m respectively.

2) Randomly select the initial state and conduct three groups of comparative ex-
periments.Firstly, randomly select any initial height from 0m to 20m, and the
tracking height is 10m. Secondly, randomly select any initial height between
0m and 50m, and the tracking height is 25m. Lastly, randomly select any
initial height between 0m and 80m, and the tracking height is 40m.

The comparison of experimental results is shown in Figs. 18-19: Similar to ex-

� � � � 	
������

�

��

��

��

��

��

�
��
��

���

���������
�������
���������

Figure 19. Steady-state error comparison between PER-DDPG and PER-DDPG-GIC.

periment 2, to quantify the accuracy of the two control policies, steady-state error,
and sum of errors in each time step between 4s and 10s are calculated. The error
comparisons are shown in Fig. 20:

PER-DDPG-GIC for height control of quadrotor 889

� � � � 	 ��
������

�

�

��

��

��

�
��
��
���

�������

� � � � 	 ��
������

�

�

��

��

��

�
��
��
���

���������

� � � � 	 ��
������

�

��

��
��
��

��

��

�
��
��
���

�������

� � � � 	 ��
������

�

��

��
��
��

��

��

�
��
��
���

���������

� � � � 	 ��
������

�

��

��

��

	�

�
��
��
���

�������

� � � � 	 ��
������

�

��

��

��

	�
�
��
��
���

���������

Figure 20. Steady-state error comparison between PER-DDPG and PER-DDPG-GIC.

��� ��� ���
�������������

���

���

���

	��

����

����

����

�	��

��
�
��
���
��
��

 �
��
��
���

��
��

�������
���������

��� ��� ���
�������������

�

���

����

����

����

����

����

��
�
��
���

��
��
���

���
���

�

�������
���������

Figure 21. Steady-state error comparison between PER-DDPG and PER-DDPG-GIC.

4.3. Generalization ability of the control policy

The desired height control of the quadrotor is ultimately to apply the control policy
to the actual flight. Therefore, the generalization ability and robustness of the

890 A. Liu, L. Liu, J. Cao & E.Alsaadi

policy are particularly important. This section mainly studies the generalization
ability and robustness of the control policy on quadrotor models of different weights
and sizes. The policy is tested on a desired height control task: starting from the
position of [0, 0, 0], then fly to the position of [0, 0, 10] and hovering.

The impact of weight on the quadrotor is particularly significant because, in
actual flight, the quadrotor is often loaded with payloads, such as adding cameras
and so on. This paper explores the generalization ability of the control policy for
weight by gradually adding payloads to the quadrotor. The weights of payloads
vary from 5% to 15% of the weight of the quadrotor. The simulation results of a
quadrotor with different payloads are shown in Fig. 21:

� � � 	
 ��
�����

�

�

�

	

��

�
��
��

���

����
����
�����
���������

Figure 22. Generalization capability test of quadrotor with different payloads.

The generalization ability and robustness tests are performed on different sizes
of the quadrotor. The radius of the quadrotor to be tested starts from 0.15m (25%
smaller) to 0.25m (25% larger). The change of radius affects the moments of inertia
which can be obtained from the website https://www.flyeval.com. The desired
height control response curves are shown in Fig. 22: The above results demonstrate

� � �
 � ��
������

�

�

�

�

��

�
��
��

���

����
���	�
���	�
��������

Figure 23. Generalization capability test of quadrotor with different sizes.

that the response curves of the altitude channel change little with different payloads
and sizes of the quadrotor. Besides, the control policy can always complete the
desired altitude control task of the quadrotor. Through the generalization ability

PER-DDPG-GIC for height control of quadrotor 891

and robustness test of different weights and sizes, it indicates that the PER-DDPG-
GIC algorithm proposed in this paper has robustness for quadrotor control.

4.4. Visualization platform
It is difficult to visually display the flight process of the quadrotor simulation only by
state data [x, y, z, ϕ, θ, ψ], so this paper designs a visual simulation platform. The
platform is developed with python and uses a simple three-dimensional dynamic
drawing toolkit to display the motion state of each time step. It can clearly show
the flight trajectory and attitude changes of the quadcopter. Each time step is
0.05 seconds, there are 200-time steps in each episode, and the reward of each time
step is displayed below. The task is to fly from the initial position [0, 0, 0] to the
desired position [0, 0, 10] and hover. This paper intercepts the last frame of the
gif animation. The gif animation of the whole episode during the simulation is
uploaded as an attachment. The visual interface of the quadrotor is shown in Fig.
23:

Figure 24. Quadrotor visual interface.

In Fig. 23, the green dot represents the initial position, the blue dot represents
the desired position, and the blue dotted line is the flight trajectory. The reward
represents a single-step reward.

5. Conclusion
In this paper, we have investigated the desired height control of the quadrotor under
the framework of the PER-DDPG algorithm. Firstly, some novel reward functions
that embody out-of-bounds plenty are designed by virtual of the reward shaping
technology, which ensures the successful application of the PER-DDPG algorithm.
Secondly, the performance of the PER-DDPG algorithm has been improved by
further incorporating the generalized integral compensator into the reward func-
tion. Thirdly, the PER-DDPG-GIC algorithm has been proposed by taking the
generalized integral compensated error as part of the input to a neural network.
Compared with the PER-DDPG algorithm, the proposed algorithms have advan-
tages in increasing reward and decreasing steady-state error. Finally, the results of

892 A. Liu, L. Liu, J. Cao & E.Alsaadi

the experiment have demonstrated the generalization ability and robustness of the
proposed algorithm in terms of weights and sizes of the quadrotor. Further work
will focus on applying generalized integral compensator to both reward function
and actor-critic structure.

Acknowledgment
The authors extend their appreciation to the Deputyship for Research & Innovation,
Ministry of Education in Saudi Arabia for funding this research work through the
project number (IFPIP-59-611-1442), the National Science Foundation of China
(Grant No. 61773152) and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

References
[1] G. M. Barros and E. L. Colombini, Using soft actor-critic for low-level uav

control, 2020.
[2] L. Cao, X. Hu, S. Zhang and Y. Liu, Robust flight control design using sensor-

based backstepping control for unmanned aerial vehicles, Journal of Aerospace
Engineering, 2017, 30(6), 04017068.

[3] X. Cao, H. Wan, Y. Lin and S. Han, High-value prioritized experience replay for
off-policy reinforcement learning, in 2019 IEEE 31st International Conference
on Tools with Artificial Intelligence (ICTAI), 2019.

[4] A. Das, K. Subbarao and F. Lewis, Dynamic inversion with zero-dynamics
stabilisation for quadrotor control, IET Control Theory & Applications, 2009,
3(3), 303–314.

[5] T. De Bruin, J. Kober, K. Tuyls and R. Babuska, Experience selection in deep
reinforcement learning for control, 2018.

[6] T. Dierks and S. Jagannathan, Output feedback control of a quadrotor uav using
neural networks., IEEE Transactions on Neural Networks, 2009, 21(1), 50–66.

[7] A. R. Dooraki and D. J. Lee, An innovative bio-inspired flight controller for
quad-rotor drones: Quad-rotor drone learning to fly using reinforcement learn-
ing, Robotics and Autonomous Systems, 2021, 135, 103671.

[8] N. T. Duc, Q. Hai, D. N. Van et al., An approach for UAV indoor obstacle
avoidance based on AI technique with ensemble of ResNet8 and Res-DQN,
in 2019 6th NAFOSTED Conference on Information and Computer Science
(NICS), 2019.

[9] J. Ghommam, M. Saad, S. Wright and M. Quan, Relay manoeuvre based fixed-
time synchronized tracking control for UAV transport system, Aerospace Science
and Technology, 2020, 103, 105887.

[10] U. H. Ghouri, M. U. Zafar, S. Bari et al., Attitude control of quad-copter using
deterministic policy gradient algorithms (DPGA), in 2019 2nd International
Conference on Communication, Computing and Digital systems (C-CODE),
IEEE, 2019, 149–153.

[11] J. Han, From PID to active disturbance rejection control, IEEE Transactions
on Industrial Electronics, 2009, 56(3), 900–906.

PER-DDPG-GIC for height control of quadrotor 893

[12] H. Hasselt, Double q-learning, Advances in neural information processing sys-
tems, 2010, 23, 2613–2621.

[13] Y. Hou, L. Liu, Q. Wei et al., A novel ddpg method with prioritized experience
replay, in 2017 IEEE international conference on systems, man, and cybernetics
(SMC), IEEE, 2017, 316–321.

[14] H. Hu and Q. Wang, Proximal policy optimization with an integral compen-
sator for quadrotor control, Frontiers of Information Technology & Electronic
Engineering, 2020, 21, 777–795.

[15] Y. Jiang, Z. Mi and H. Wang, An improved OLSR protocol based on task driven
used for military UAV swarm network, Intelligent Robotics and Applications,
2019.

[16] S. Kapturowski, G. Ostrovski, J. Quan et al., Recurrent experience replay in
distributed reinforcement learning, in International conference on learning rep-
resentations, 2018.

[17] W. Koch, R. Mancuso, R. West and A. Bestavros, Reinforcement learning for
UAV attitude control, ACM Transactions on Cyber-Physical Systems, 2019,
3(2), 1–21.

[18] L. Liu, B. Tian, X. Zhao and Q. Zong, UAV autonomous trajectory planning in
target tracking tasks via a dqn approach, in 2019 IEEE International Conference
on Real-time Computing and Robotics (RCAR), 2019.

[19] A. Y. Ng, D. Harada and S. Russell, Policy invariance under reward trans-
formations: Theory and application to reward shaping, in Icml, 99, 1999,
278–287.

[20] C. Peng, Y. Bai, X. Gong et al., Modeling and robust backstepping sliding mode
control with Adaptive RBFNN for a novel coaxial eight-rotor UAV, IEEE/CAA
Journal of Automatica Sinica, 2015, 2(1), 56–64.

[21] S. Santos, C. L. Nascimento and S. N. Givigi, Design of attitude and path track-
ing controllers for quad-rotor robots using reinforcement learning, in Aerospace
Conference, 2012.

[22] T. Schaul, J. Quan, I. Antonoglou and D. Silver, Prioritized experience replay,
arXiv preprint arXiv:1511.05952, 2015.

[23] M. Z. Shah, R. Samar and A. I. Bhatti, Guidance of air vehicles: A sliding mode
approach, IEEE Transactions on Control Systems Technology, 2015, 23(1), 231–
244.

[24] F. Shang, H. Chou, S. Liu and X. Wang, A framework of power pylon detection
for UAV-based power line inspection, in 2020 IEEE 5th Information Technology
and Mechatronics Engineering Conference (ITOEC), IEEE, 2020, 350–357.

[25] D. Silver, G. Lever, N. Heess et al., Deterministic policy gradient algorithms,
in International conference on machine learning, PMLR, 2014, 387–395.

[26] A. K. Tiwari and S. V. Nadimpalli, Augmented random search for quadcopter
control: An alternative to reinforcement learning, in International Journal of
Information Technology and Computer Science(IJITCS), 2019.

[27] H. Van Hasselt, A. Guez and D. Silver, Deep reinforcement learning with double
q-learning, in Proceedings of the AAAI Conference on Artificial Intelligence,
30, 2016.

894 A. Liu, L. Liu, J. Cao & E.Alsaadi

[28] Y. Wang, J. Sun, H. He and C. Sun, Deterministic policy gradient with integral
compensator for robust quadrotor control, IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 2019, 50(10), 3713–3725.

[29] Z. Wang, V. Bapst, N. Heess et al., Sample efficient actor-critic with experience
replay, arXiv preprint arXiv:1611.01224, 2016.

[30] S. L. Waslander, G. M. Hoffmann, J. Jang and C. J. Tomlin, Multi-agent
quadrotor testbed control design: integral sliding mode vs. reinforcement learn-
ing, in IEEE/RSJ International Conference on Intelligent Robots & Systems,
2005.

[31] H. Yin and S. Pan, Knowledge transfer for deep reinforcement learning with
hierarchical experience replay, in Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 31, 2017.

[32] B. Zhao, B. Xian, Y. Zhang and X. Zhang, Nonlinear robust adaptive tracking
control of a quadrotor UAV via immersion and invariance methodology, IEEE
Transactions on Industrial Electronics, 2015, 62(5), 2891–2902.

[33] J. Zhao, Y. Li, D. Hu and Z. Pei, Design on altitude control system of quad
rotor based on laser radar, in 2016 IEEE International Conference on Aircraft
Utility Systems (AUS), IEEE, 2016, 105–109.

[34] N. Zhen, N. Malla and X. Zhong, Prioritizing useful experience replay for
heuristic dynamic programming-based learning systems, IEEE Transactions on
Cybernetics, 2018, 49(11), 3911–3922.

	Introduction
	Quadrotor modeling
	Translational motion
	Rotational motion

	Proposed Approach
	DDPG control policy
	State and action specification
	Network structure
	Policy optimization

	PER-DDPG control policy
	Generalized Integral Compensator

	Experiments and results
	Experimental description
	Target height control task
	Generalization ability of the control policy
	Visualization platform

	Conclusion

