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GLOBAL ASYMPTOTICAL STABILITY OF A
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Abstract This paper presents a plant disease model with an economic thresh-
old, where the replanting number of susceptible plants depends on the re-
moving number of infective plants. Making use of Lyapunov approach and
Poincaré maps, we thoroughly investigate the global dynamics. We show the
global asymptotical stability of endemic equilibria as well as a pseudo equi-
librium. Moreover, the convergence in finite time is also examined for the
infected plants. Our theoretical results indicate that the control goal could be
achieved by taking appropriate removal and replanting rates.

Keywords Filippov system, Poincaré map, economic threshold, stability,
equilibrium.
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1. Introduction
In recent years, plant diseases have caused crop loss or yield reduction. How to
control plant diseases quickly and effectively has attracted much attention [20, 28].
It is necessary to carry out effective control measures to fight against the diseases.
Therefore, integrated disease management is developed [11,12]. This strategy com-
bines various control measures to minimize losses and maximize returns. Among
these control measures, removing infected plants and replanting susceptible plants
are widely used because of their little impact on ecological environment.

In order to minimize losses and maximize returns, a tolerance threshold is al-
lowed, which is called an economic threshold [13, 37]. The control measures are
only implemented once the number of infected plants exceeds the threshold. Due
to the non-smoothness or discontinuity induced by the economic threshold, more
and more non-smooth dynamical systems are presented to better model the disease
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dynamics and design effective control strategy, see [2, 7, 13, 22, 33, 34]. In contrast
to smooth systems, the analysis of non-smooth ones are more challenging and there
are distinctive behaviors, such as pseudo-equilibria [14], crossing or sliding limit
cycles [29–32] and sliding heteroclinic orbits [33].

In most of the literature, the replanting measure is assumed to depend on the
total number of susceptible plants, see [2, 9, 17, 33, 37]. However, due to the limit
of land resources, such replanting measure might be impossible in practice when
the number of susceptible plants is large, and might lead to waste of land when the
number of susceptible plants is small. Therefore, it is more reasonable to assume
the replanting number of susceptible plants depends on but does not exceed the
removing number of the infected.

Based on this motivation, we propose a new plant disease model with an eco-
nomic threshold, supposing that the replanting number of susceptible plants does
not exceed the removing number of infected plants. By employing the Lyapunov ap-
proach and Poincaré maps, we discuss the global dynamics of the model. From the
biological point of view, our results show that the plant diseases can be controlled
by selecting appropriate replanting and removing rates.

The rest of this paper is arranged as follows. In Section 2, the plant disease model
is described and some preliminaries are given. Section 3 is devoted to the analysis
of the global dynamics. Finally in the last section, we discussed the biological
implications of our theoretical results.

2. Model description and preliminaries
In this paper, we present the following plant disease model{

dS
dt = A− βSI − η1S + pϕ(I)I,
dI
dt = βSI − η2I − vϕ(I)I,

(2.1)

where S and I represent the numbers of susceptible and infected plants respec-
tively; A denotes the constant planting rate of susceptible plants; β > 0 is the
infection transmission rate; η1 > 0 and η2 > 0 are the death (or harvesting) rates
of susceptible and infected plants respectively; v > 0 and p ≥ 0 denote the rouging
(removing) rate and the replanting rate respectively;

ϕ(I) =

{
0, I < k,

1, I > k,
(2.2)

is the control function and k > 0 represents the economic threshold. When the
number of infected plants is below k, no control measures are required. However,
once the number of infected plants exceeds the economic threshold k, one should
take measures to remove the infected and replant the susceptible to control diseases.
Throughout this paper, we assume that 0 ≤ p ≤ v, i.e., the replanting number of
the susceptible plants is less than or equal to the removing number of the infected
plants.

Let R2
+ = {(S, I)|S > 0, I > 0}. Then R2

+ is divided into two subregions

G1 = {(S, I) ∈ R2
+|I < k}, G2 = {(S, I) ∈ R2

+|I > k},



Global stability of a plant disease model 897

by
Σ = {(S, I) ∈ R2

+|I = k},

which is called a switching line for the system (2.1). Clearly, the system (2.1)
consists of two subsystems{

dS
dt = A− βSI − η1S,
dI
dt = βSI − η2I,

I < k (2.3)

and {
dS
dt = A− βSI − η1S + pI,
dI
dt = βSI − η2I − vI.

I > k. (2.4)

Because of the discontinuity of the right hand side of System (2.1), we define a
solution of (2.1) in Filippov sense. Let co[ϕ(I)] be the closure of the convex hull
of ϕ(I). Then co[ϕ(I)] = [ϕ(I−), ϕ(I+)] with ϕ(I−) ≤ ϕ(I+) by the definition (2.2)
of ϕ(I), where ϕ(I−) and ϕ(I+) represent the left and the right limits of ϕ at I,
respectively.

Definition 2.1. A vector function (S(t), I(t)) on [0, T ) (0 < T ≤ ∞), is a solution
of (2.1) with initial condition (S0, I0) ∈ R2

+, if (S(t), I(t)) is absolutely continuous on
any subinterval [t1, t2] of [0, T ) satisfying S(0) = S0 and I(0) = I0, and there exists
a measurable function γ = γ(t) ∈ co[ϕ(I(t))] for almost all (a.a.) t ∈ [0, T ) such
that {

dS
dt = A− βSI − η1S + pγI,
dI
dt = βSI − η2I − vγI.

(2.5)

Using similar arguments as those in [33], the positiveness and boundedness of
solutions can be derived for System (2.1). Moreover, each solution exists for t ∈
[0,+∞). For the subsystem (2.3), the possible equilibria are

E0 =

(
A

η1
, 0

)
, E1 = (S1, I1) =

(
η2
β
,
Aβ − η1η2

η2β

)
and its basic reproduction number is R1 = Aβ

η1η2
. For the subsystem (2.4), the

possible equilibria are E0 and

E2 = (S2, I2) =

(
η2 + v

β
,
Aβ − η1(η2 + v)

(η2 + v − p)β

)
,

and its basic reproduction number is R2 = Aβ
(η2+v)η1

.

By [33, Theorem 3.1], we have the following result.

Proposition 2.1. For the subsystem (2.3), the disease-free equilibrium E0 is glob-
ally asymptotically stable if R1 ≤ 1, while the endemic equilibrium E1 is globally
asymptotically stable if R1 > 1.

Similarly, the global dynamics can be obtained for the subsystem (2.4) by the
following proposition.

Proposition 2.2. For the subsystem (2.4), the disease-free equilibrium E0 is glob-
ally asymptotically stable if R2 < 1, while the endemic equilibrium E2 is globally
asymptotically stable if R2 > 1.
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Proof. When R2 < 1, it is seen that E0 is the unique equilibrium which is a
locally stable node. Let N = S + I. Then

dN

dt

∣∣∣∣
(2.4)

= A− η1S − (η2 + v − p)I ≤ A− µN,

where µ = min{η1, η2+v−p} > 0. This means that any solution of (2.4) is bounded.
Taking a Dulac function B(S, I) = 1

SI , we have

∂B(S, I)(A− βSI − η1S + pI)

∂S
+

∂B(S, I)(βSI − η2I − vI)

∂I
= − A

S2I
− p

S2
< 0,

which implies that System (2.4) does not have limit cycles. Thus E0 is globally
asymptotically stable.

Now suppose R2 > 1. Then E2 is a positive equilibrium for System (2.4). Notice
that the system (2.4) can be rewritten as{

dS
dt = −η1(S − S2)− β(S − S2)I − (η2 + v − p)(I − I2),
dI
dt = β(S − S2)I.

(2.6)

Let
V (S, I) =

1

2
(S − S2)

2 +
η2 + v − p

β

(
I − I2 − I2 ln

I

I2

)
.

Then
dV (S, I)

dt

∣∣∣∣
(2.4)

= −(η1 + βI)(S − S2)
2,

which implies that E2 is a globally asymptotically stable equilibrium of System (2.4)
by the LaSalle Invariance Principle.

For the system (2.1), E1 is called a real (virtual) equilibrium if I1 < k (I1 > k),
and E2 is called a real (virtual) equilibrium if I2 > k (I2 < k). Next, let us discuss
the dynamics on the switching line Σ by using some concepts from [5]. The crossing
region is Σc = {(S, I) ∈ R2

+ | S ∈ (0, S1) ∪ (S2,+∞), I = k}. The sliding region is

Σs = {(S, I) ∈ R2
+|S1 < S < S2, I = k},

whose closure is denoted by Σs. Let T1 = (S1, k) and T2 = (S2, k), then both T1

and T2 are tangent points [5]. In order to get the sliding equation, let I = k in the
second equation of (2.5), we have γ = βS−η2

v ∈ co[ϕ(k)] = [0, 1]. This means that
the sliding dynamics is determined by the equation

dS

dt
= f(S) (2.7)

for (S, I) ∈ Σs, where

f(S) =
1

v
[−(kvβ + vη1 − kpβ)S − kpη2 +Av] . (2.8)

Note that the function f(S) has a unique zero Sp, where

Sp =
Av − kpη2

kβ(v − p) + vη1
.

Hence the possible pseudo-equilibrium is Ep = (Sp, k) for System (2.1). According
to [5], Ep is a pseudo-equilibrium if and only if S1 < Sp < S2.
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Proposition 2.3. Suppose that R1 ≥ 1. Then the following assertions hold:

(i) if R1 < 1 + βk
η1

, System (2.1) has no pseudo-equilibria and solutions starting
from Σs\{T1} will slide along Σs to the tangent point T1 in finite time;

(ii) if 1 + βk
η1

< R1 < 1 + βk(η2+v−p)+η1v
η1η2

, System (2.1) has a unique pseudo-
equilibrium Ep and solutions starting from Σs\{Ep} will slide along Σs and
converge to Ep as t → +∞;

(iii) if R1 > 1+ βk(η2+v−p)+η1v
η1η2

, System (2.1) has no pseudo-equilibria and solutions
starting from Σs\{T2} will slide along Σs to the tangent point T2 in finite time.

Proof. Notice that R1 < 1 + βk
η1

is equivalent to I1 < k while R1 > 1 +
βk(η2+v−p)+η1v

η1η2
is equivalent to I2 > k. Furthermore,

f(S1) = η2(I1 − k) and f(S2) = (η2 + v − p)(I2 − k).

Thus, when R1 < 1 + βk
η1

, we have f(S1) < 0 and f(S2) < 0, which means the
assertion (i) follows. Similarly, the assertion (iii) holds. Now we assume 1 + βk

η1
<

R1 < 1 + βk(η2+v−p)+η1v
η1η2

. Then f(S1)f(S2) < 0. As a result, f(S) has a unique
zero Sp ∈ (S1, S2). Consequently, System (2.1) has a unique pseudo-equilibrium
Ep. Since f ′(Sp) < 0, we have that solutions starting from Σs\{Ep} will slide along
Σs and converge to Ep as t → +∞.

3. Global asymptotical stability
In this section, we will investigate the global asymptotical stability for equilibria of
System (2.1). At first, by employing the Lyapunov approach, we show the disease-
free equilibrium E0 is globally asymptotically stable if R1 ≤ 1.

Theorem 3.1. If R1 ≤ 1, then the disease-free equilibrium E0 is globally asymp-
totically stable.

Proof. By Definition 2.1, System (2.1) can be rewritten as
dS

dt
= −η1(S − S∗)− βI(S − S∗)− (βS∗ − pγ)I,

dI

dt
= βI(S − S∗) + (βS∗ − η2 − vγ)I,

where S∗ = A
η1

and γ ∈ [0, 1]. Consider the Lyapunov function

V0(S, I) = S − S∗ − S∗ ln
S

S∗ + I.

Then

dV0(S, I)

dt

∣∣∣∣
(2.1)

=
(S − S∗)

S

dS

dt
+

dI

dt

=− η1
S
(S − S∗)2 +

1

S

[
−βI(S − S∗)2 − (βS∗ − pγ)(S − S∗)I + βS(S − S∗)I

]
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+ (βS∗ − η2 − vγ)I

=− η1
S
(S − S∗)2 +

pγ(S − S∗)I

S
+ (βS∗ − η2 − vγ)I

≤− η1
S
(S − S∗)2 + (βS∗ − η2 − vγ + pγ)I

=− η1
S
(S − S∗)2 + η2(R1 − 1)I − γ(v − p)I

≤− η1
S
(S − S∗)2,

which means that E0 is globally asymptotically stable by the LaSalle Invariance
Principle.

In the sequel, we resort to Poincaré maps to study the global asymptotical
stability of an endemic equilibrium or a pseudo-equilibrium. For System (2.1),
suppose that there is an orbit starting from (S0, k) with S0 ∈ (0, S1) such that it
will enter the region G1 firstly, reach Σ at (S̃, k) with S̃ > S2 in finite time secondly,
go into G2 thirdly, and reach Σ again at (Ŝ, k) with Ŝ ≤ S1 finally. Then a Poincaré
map P (·) can be defined as

Ŝ = P (S0),

see Fig. 1 for illustration. Some properties are observed by the following lemma.

S

I

O

k

S1 S2

S0

S̃Ŝ = P (S0)

Figure 1. Illustration for the definition of the Poincaré map P (·).

Lemma 3.1. Suppose Pn(·) = P ◦ P ◦ · · · ◦ P︸ ︷︷ ︸
n

(·) is well defined on a subinterval I

of (0, S1) for a positive integer n. Then S0 +
2nv
β < Pn(S0) ≤ S1 for S0 ∈ I.

Proof. By the definition of P (·), it is obvious that P (S0) ≤ S1 and thus Pn(S0) ≤
S1 if Pn(S0) is well defined. Rewrite the subsystem (2.3) as{

dS
dt = −η1(S − S1)− β(S − S1)I − βS1(I − I1),
dI
dt = β(S − S1)I

(3.1)

and consider
V1(S, I) =

1

2
(S − S1)

2 + S1

(
I − I1 − I1 ln

I

I1

)
,



Global stability of a plant disease model 901

we have
dV1(S, I)

dt

∣∣∣∣
(3.1)

= −(η1 + βI)(S − S1)
2 ≤ 0. (3.2)

Consequently, V1(S0, k) ≥ V1(S̃0, k), i.e.,

S0 + S̃0 ≤ 2S1. (3.3)

Similarly, it comes that
S̃0 + P (S0) ≥ 2S2. (3.4)

Therefore, inequalities (3.3) and (3.4) imply that

P (S0)− S0 ≥ 2(S2 − S1) =
2v

β
.

Thus
Pn(S0) = P (Pn−1(S0)) ≥ Pn−1(S0) +

2v

β
≥ · · · ≥ S0 +

2nv

β
,

which completes the proof.
When 1 < R1 < 1 + β

η1
k, we have I2 < I1 < k, which implies that E1 is real

and E2 is virtual. The global asymptotical stability of E1 is gained by the following
theorem.

Theorem 3.2. If 1 < R1 < 1 + βk
η1

, then the endemic equilibrium E1 is globally
asymptotically stable for System (2.1).

Proof. Since E2 is a global asymptotically stable equilibrium of the subsystem
(2.4) by Proposition 2.2, any orbit starting from G2 will reach the switching line Σ
in finite time. Furthermore, any orbit from Σs slides along Σs to the tangent point
T1 in finite time by the assertion (i) of Proposition 2.3, and the orbit from T1 stays
in G1 for t̄ > 0 and converges to E1 by the fact that E1 is a global asymptotically
stable equilibrium of the subsystem (2.3) from Proposition 2.1. Based on these
observations, we claim that any orbit of System (2.1) will always stay in G1 after
some time t̃ ≥ 0. We prove this claim by contradiction. If it is not true, then
there is S0 ∈ (0, S1) such that Pn(S0) is well defined for n = 1, 2, · · · . It follows
from Lemma 3.1 that S0 +

2nv
β < Pn(S0) ≤ S1 for n = 1, 2, · · · , which leads to a

contradiction since lim
n→+∞

S0 +
2nv
β = +∞. Therefore, the claim is true and E1 is

globally asymptotically stable again by Proposition 2.1.
Now assume

1 +
βk

η1
< R1 < 1 +

(η2 + v − p)βk + η1v

η1η2
. (3.5)

In this case, we have I2 < k < I1. Thus both E1 and E2 are virtual. It follows
from Proposition 2.3 that there is a unique pseudo-equilibrium Ep. Moreover, we
will show Ep is globally asymptotically stable.

Theorem 3.3. Suppose that (3.5) holds. Then the pseudo-equilibrium Ep is globally
asymptotically stable for System (2.1). Moreover, the number of the infected plants
converges to k in finite time, i.e., for any orbit (S(t), I(t)) of System (2.1) there is
t̃ > 0 such that I(t) = k for t ≥ t̃.
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Proof. It follows from Proposition 2.3 that orbits starting from Σs\{Ep} will
slide along Σs to Ep as t → +∞. Notice that both E1 and E2 are virtual under
the condition (3.5). Then orbits starting from G1 or G2 will reach the switching
line Σ in finite time by Proposition 2.1 and Proposition 2.2. Next by the way of
contradiction, we show that any orbit of System (2.1) will reach Σ in finite time,
which implies that the number of the infected plants converges to k in finite time
and Ep is globally asymptotically stable. Assume this conclusion is not true. Then
there is an orbit of System (2.1) spiraling Σs. Hence there exists S0 ∈ (0, S1) such
that Pn(S0) is well defined for n = 1, 2, · · · . Consequently, Pn(S0) ≤ S1 by Lemma
3.1. However, lim

n→+∞
Pn(S0) = +∞ again by Lemma 3.1, which is a contradiction.

When R1 > 1 + (η2+v−p)βk+η1v
η1η2

, we get I1 > I2 > k. This means E1 is virtual
and E2 is real.

Theorem 3.4. If R1 > 1 + (η2+v−p)βk+η1v
η1η2

, then the endemic equilibrium E2 is
globally asymptotically stable for System (2.1).

Proof. Since E1 is a global asymptotically stable equilibrium of the subsystem
(2.3) by Proposition 2.1, any orbit starting from G1 will reach the switching line Σ
in finite time. Moreover, any orbit starting from Σs slides along Σs to the tangent
point T2 in finite time by the assertion (iii) of Proposition 2.3, and the orbit starting
from T2 stays in G2 afterwards and converges to E2 by Proposition 2.1. These facts
allow us to prove that any orbit of System (2.1) will always stay in G2 after some
time. By the way of contradiction, assume it is not true, then there is S0 ∈ (0, S1)
such that Pn(S0) is well defined for n = 1, 2, · · · . On one hand, Pn(S0) ≤ S1, which
means {Pn(S0)} is bounded by S1. On the other hand, Pn(S0) > S0 + 2nv

β and
thus lim

n→+∞
Pn(s0) = +∞. This is a contradiction to the boundedness. Therefore,

E2 is globally asymptotically stable for System (2.1) by Proposition 2.2.

4. Biological implications
In this section, we will reveal possible biological implications of our theoretical re-
sults and discuss the effectiveness of the replanting and removing measures. It is
shown that the control goal, namely maintaining the infected plants not to ex-
ceed the economic threshold k eventually, could be achieved by taking appropriate
replanting rate p and removing rate v.

When R1 ≤ 1, Theorem 3.1 tells us that the disease-free equilibrium E0 is
globally asymptotically stable, see Fig. 2. This means that the disease will die
out eventually, and thus the control goal could be reached. Without the control
measures, our goal can also be achieved, i.e., p = v = 0. However, it should be
pointed out that the control measures will help us to speed up to achieve the goal,
see Fig. 3

When 1 < R1 < 1+ βk
η1

, it follows from Theorem 3.2 that E1 is globally asymp-
totically stable, see Fig. 4. This means that the number of the infected plants is
below k eventually and the control goal could be achieved. Although the control
goal can also be reached without the measures, it could be got rapidly by taking
appropriate p and v, see Fig. 5.

When R1 > 1 + βk
η1

, the control goal fails to be reached without the control
measures as well as with small removing rate v, since E2 is globally asymptotically
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Figure 2. Global asymptotical stability of E0

for System (2.1) with A = 5, β = 0.1 , η1 = 0.6,
η2 = 0.9, v = 0.4, p = 0.3, k = 6.
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Figure 3. Time series of I(t) by taking dif-
ferent p and v, where the initial condition is
(S(0), I(0)) = (60, 20) and the other parame-
ters are fixed as: A = 8, β = 0.04, η1 = 0.3,
η2 = 0.8, k = 10.
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Figure 4. Global asymptotical stability of
E1 for System (2.1) with A = 8, β = 0.04, η1

= 0.3, η2 = 0.8, v = 0.5, p = 0.1, k = 5.
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Figure 5. Time series of I(t) by taking dif-
ferent p and v, where the initial condition is
(S(0), I(0)) = (60, 20) and the other parame-
ters are fixed as: A = 8, β = 0.04, η1 = 0.3,
η2 = 0.8, k = 10.

stable by Theorem 3.4, see Fig. 6. However, according to Theorem 3.3, Ep is
globally asymptotically stable if (3.5) holds, see Fig. 7. Thus one can maintain the
number of the infected plants not to exceed k as long as p and v are picked up to
satisfy R1 < 1 + (η2+v−p)βk+η1v

η1η2
.

In summary, some remarks are given in the following to show the novelty and
new phenomenon in our model compared with the model without the economic
threshold. It is clear that some new dynamics such as sliding solutions and pseudo-
equilibria have been induced by the economic threshold in our model. These dy-
namics lead to some difficulties in investigating the global dynamics, which cannot
appear in the model without the economic threshold. Moreover, when R1 > 1+ βk

η1
,

the control goal will not be achieved without the economic threshold and the control
measures, while it can be reached if the disease dynamics can be modeled by our
model.
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Figure 6. Global asymptotical stability of E2

for System (2.1), where the parameters are cho-
sen as: A = 10, β = 0.1, η1 = 0.2, η2 = 0.5,
v = 0.8, p = 0.6, k = 8.
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Figure 7. Global asymptotical stability of
Epfor System (2.1), where the parameters are
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