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Abstract Finite ion sizes play significant roles in characterizing ionic flow
properties of interest, such as the selectivity of ion channels. As an extension
of the work done in [Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1775-
1802], we further investigate the higher order (in the volume of the cation),
mainly the second order, contributions from finite ion sizes to ionic flows in
terms of both the total flow rate of charges and the individual fluxes. This
is particularly important since the first-order terms approach zero as the left
boundary concentration is close to the right one for the same ion species.
The interaction between the first-order terms and the second-order terms is
characterized in detail. Moreover, several critical potentials are identified, and
they play critical roles in examining the qualitative properties of ionic flows.
Some can be estimated experimentally. The analysis in this work could provide
complementary information and better understanding of the mechanism of
ionic flows through ion channels. Numerical simulations are performed to
provide intuitive illustration of our analytical results.
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1. Introduction
Mathematical analysis plays unique and significant role in understanding the me-
chanics of phenomena arising from life science and discovering new features under
the assumption that a more or less explicit solution of the associated mathemat-
ical model can be obtained. In this work, we analyze the qualitative properties
of ionic flows through ion channels via Poisson-Nernst-Planck (PNP) systems with
Bikerman’s local hard-sphere potential ( [9]). Of particular interest is to examine
finite ion size effects on ionic flows from higher order expansions (in the volume of
the cation) in terms of the total flow rate of charges (I-V relations) and individual
fluxes.
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PNP system is a basic macroscopic model for electrodiffusion of charges through
ion channels ( [12,16–19,25,26,29,35,36,58,59,61,62], etc.). Under various reason-
able conditions, one can derive the PNP system as a reduced model from molecular
dynamics, Boltzmann equations, and variational principles ( [3, 32,33,66]).

The simplest PNP system is the classical PNP system, which treats ions as point-
charges, and neglects ion-to-ion interaction. It has been simulated and analyzed to
a great extent (see, e.g., [1, 4, 5, 8, 10–15, 21, 23, 25, 26, 28, 30, 31, 36–41, 44, 49–52,
55–57, 60, 63–65, 67–70, 72–79]). However, finite ion sizes perform significant roles
in understanding mechanism of ionic flows through membrane channels. A lot of
structural properties of ion channels, such as selectivity, rely on ion sizes critically.
For instance, Na+ (sodium) and K+ (potassium), having the same valence, are
mainly distinguished by their ionic sizes. This is extremely important when the
PNP model involves two cations with the same valence but distinct ion sizes, which
provides important information for the selectivity phenomena of ion channels ( [6]).
To examine ion size effects on ionic flows, one must consider ion-specific components
of the electrochemical potential in the PNP models.

The PNP type models with ion sizes have been investigated computationally
and analytically for ion channels and have shown great success ( [2,6,7,20,22,24,26,
27,32–34,42,43,45–47,53,54,71,80], etc.). Recently, the authors of [42] provided an
analytical treatment of a one-dimensional PNP system with two oppositely charged
ion species and Bikerman’s local hard-sphere potential ( [9]) to account for finite ion
size effects. They treated the model as a singularly perturbed system and rigorously
established the existence and uniqueness results of the boundary value problem for
small ion sizes. Furthermore, in [42], treating ion sizes as small parameters, the
authors derived approximations of the I-V relation and the individual fluxes of the
following form (up to the first order in the volume of the cation)

I(V ) =I0(V ) + νI1(V ) + o(ν), Jk(V ) = Jk0(V ) + νJk1(V ) + o(ν),

where ν is the volume of the cation and Jk is the individual flux. Detailed analysis of
the leading terms I1(V ) and Jk1 containing ion size effects was provided. Several
critical potentials that either balance the ion size effects or separate the relative
ion size effects are identified, which plays critical roles in the study. Particularly,
the authors observed that the first-order term I1(V ) approaches zero as the left
boundary concentration is close enough to the right one for the same ion species
(that is, either L1 → R1 or L2 → R2 for two ion species case, which is equivalent
under electroneutrality conditions z1L1 = −z2L2 := L and z1R1 = −z2R2 := R).
To better understand ion size effects on ionic flows for both the cases with L ̸= R
and L → R, in this work, we focus on

• the second-order terms in ν, more precisely, I2(V ) and Jk2(V ) for k = 1, 2;
• the interaction between the first-order and second-order terms (the effect from

the combination);
• the characterization of ion size effects close to L = R.

We would like to comment that the study in this work is not just a technical
extension of the previous analysis in [42], instead, it is based on the understanding
of the model. Particularly, the discovery of the first integrals for the second order
nonlinear limiting fast system (stated in Lemma 3.1) is critical for our study. Com-
pared to the work done in [42], the analysis on higher order expansions, particularly
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the interaction between the first order and the second order expansions provides
better understanding of internal dynamics of ionic flows through membrane chan-
nels. Most importantly, the study provides an efficient way to adjust boundary
concentrations to reduce/enhance the finite ion size effects on ionic flows. On the
other hand, the study of the higher order expansion provides more detailed and
precise information of the effect on ionic flows from finite ion sizes, and this could
provide better initial guessing for related numerical studies to observe rich dynamics
of ionic flows.

Remark 1.1. To avoid confusion for readers, we point out that in [42], for the entire
Section 4, V should be changed to V to be consistent with the set-ups. Noticing
this, in current work, we make suitable changes in (2.2) and (2.6).

The rest of this paper is organized as follows. In Section 2, we describe the one-
dimensional PNP model for ion flows, and the setup of the boundary value problem
of the singularly perturbed PNP system. In Section 3, we focus on the asymptotic
dynamics of the second order limiting PNP systems in the volume ν of the cation.
Section 4 deals with the discussion on finite ion size effects, which consists of three
parts. In Section 4.1, a number of critical potentials are identified and their roles in
studying finite ion size effects on ionic flows are characterized in details. In Section
4.2, we discuss the essential ion size effects from the first-order and second-order
terms. In Section 4.3, our interest lies in the case studies of ion size effects near
L = R. In Section 4.4, numerical simulations are performed to further illustrate
our results. Some remarks are provided in Section 5.

2. Problem Setup
2.1. A quasi-one-dimensional steady-state PNP type system
A quasi-one-dimensional steady-state PNP model for ion flows of n ion species
through a single channel ( [52,57]) is

1

A(X)

d

dX

(
εr(X)ε0A(X)

dΦ

dX

)
= −e

( n∑
k=1

zkCk(X) +Q(X)

)
,

dJk

dX
= 0, −Jk =

1

kBT
Di(X)A(X)Ci(X)

dµi

dX
, k = 1, 2, · · · , n,

(2.1)

where e is the elementary charge, kB is the Boltzmann constant, T is the absolute
temperature; Φ is the electric potential, Q(X) is the permanent charge of the chan-
nel, εr(X) is the relative dielectric coefficient, ε0 is the vacuum permittivity; A(X)
is the area of the cross-section of the channel over the point X ∈ [0, l]; for the k th
ion species, Ck is the concentration, zk is the valence, µk is the electrochemical po-
tential, Jk is the flux density, and Dk(X) is the diffusion coefficient. The boundary
conditions are, for k = 1, 2, · · · , n,

Φ(0) = V, Ck(0) = Lk > 0; Φ(l) = 0, Ck(l) = Rk > 0. (2.2)

For a solution of the steady-state boundary value problem of (2.1)-(2.2), the total
flow rate of charge through a cross-section or current I is

I =

n∑
k=1

zkJk. (2.3)
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For fixed boundary concentrations Lk and the Rk, the current I only depends
on the electric potential V , and this is the so-called I-V relations (current-voltage
relations).

2.2. The BVP and assumptions
We will take essentially the same assumptions as those in [42]. To be specific,

(i) considering one cation with z1 > 0 and one anion with z2 < 0;
(ii) assuming the permanent charge Q(X) to be zero over the whole interval;
(iii) for the electrochemical potential µk, in addition to the ideal component µid

k

defined by

µid
k (X) = zkeΦ(X) + kBT ln

Ck(X)

C0
, (2.4)

with some characteristic number density C0, which can be taken as

C0 = max{Lk,Rk : k = 1, 2},

we also include the local hard-sphere potential µBik
i defined by

µBik
k (X) = −kBT ln

(
1−

n∑
j=1

νjCj(X)
)
, (2.5)

where νj is the volume of a single jth ion species;
(iv) assuming that the relative dielectric coefficient and the diffusion coefficient

are constants, namely, εr(X) = εr and Dk(X) = Dk.

We first make a dimensionless rescaling ( [23]), more precisely, we let

ε2 =
εrε0kBT

e2l2C0
, x =

X

l
, h(x) =

A(X)

l2
, Dk = lC0Dk;

ϕ(x) =
e

kBT
Φ(X), ck(x) =

Ck(X)

C0
, Jk =

Jk

Dk
;

V̄ =
e

kBT
V, Lk =

Lk

C0
, Rk =

Rk

C0
.

(2.6)

Together with the expressions for µid
k in (2.4) and µBik

k in (2.5), system (2.1) becomes

ε2

h(x)

d

dx

(
h(x)

d

dx
ϕ

)
= −(z1c1 + z2c2),

dJk
dx

= 0,

dc1
dx

= −f1(c1, c2; ν1, ν2)
dϕ

dx
− 1

h(x)
g1(c1, J1, J2; ν1, ν2),

dc2
dx

= f2(c1, c2; ν1, ν2)
dϕ

dx
− 1

h(x)
g2(c2, J1, J2; ν1, ν2),

(2.7)

with boundary conditions, for k = 1, 2,

ϕ(0) = V̄ , ck(0) = Lk > 0; ϕ(1) = 0, ck(1) = Rk > 0, (2.8)
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where

f1 = (z1 − z1ν1c1 − z2ν2c2)c1, f2 = −(z2 − z1ν1c1 − z2ν2c2)c2,

g1 = J1 − (ν1J1 + ν2J2)c1, g2 = J2 − (ν1J1 + ν2J2)c2.

Upon introducing u = εϕ̇ and τ = x, one gets the standard singularly perturbed
system, the so-called slow system with state variables (ϕ, u, c1, c2, J1, J2, τ) ∈ R7

εϕ̇ = u, εu̇ = −z1c1 − z2c2 − ε
hτ (τ)

h(τ)
u,

εċ1 = −f1(c1, c2; ν1, ν2)u− ε

h(τ)
g1(c1, J1, J2; ν1, ν2),

εċ2 = f2(c1, c2; ν1, ν2)u− ε

h(τ)
g2(c2, J1, J2; ν1, ν2),

J̇1 = J̇2 = 0, τ̇ = 1.

(2.9)

For ε > 0, the rescaling x = εξ yields the fast system

ϕ′ = u, u′ = −z1c1 − z2c2 − ε
hτ (τ)

h(τ)
u,

c′1 = −f1(c1, c2; ν1, ν2)u− ε

h(τ)
g1(c1, J1, J2; ν1, ν2),

c′2 = f2(c1, c2; ν1, ν2)u− ε

h(τ)
g2(c2, J1, J2; ν1, ν2),

J ′
1 = J ′

2 = 0, τ ′ = ε,

(2.10)

where prime denotes the derivative with respect to the variable ξ.

3. Asymptotic dynamics of the limiting PNP sys-
tem

We focus on the limiting fast and slow dynamics of the second order systems in the
small parameter ν = ν1. In particular, we obtain explicit expressions of Jk2 and I2,
the second order individual fluxes and I-V relations in ν, which are significant for
our study on finite ion size effects to be discussed in Section 4.

3.1. Limiting fast dynamics for the second order
Setting ε = 0 in (2.10) gives limiting fast system

ϕ′ = u, u′ = −z1c1 − z2c2, c′1 = −f1(c1, c2; ν1, ν2)u,

c′2 = f2(c1, c2; ν1, ν2)u, J ′
1 = J ′

2 = 0, τ ′ = 0.
(3.1)

Recall that ν1 and ν2 are the volumes of the two ion species. For small ν1 > 0
and ν2 > 0, we treat (3.1) as a regular perturbation of that with ν1 = ν2 = 0. While
ν1 and ν2 are small, their ratio is of order O(1). Correspondingly, we let

ν1 = ν and ν2 = λν, (3.2)
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and seek solution γ(ξ; ν) =
(
ϕ(ξ; ν), u(ξ; ν), c1(ξ; ν), c2(ξ; ν), J1(ν), J2(ν), τ

)
of sys-

tem (3.1) of the form

ϕ(ξ; ν) = ϕ0(ξ) + ϕ1(ξ)ν + ϕ2(ξ)ν
2 + o(ν2),

u(ξ; ν) = u0(ξ) + u1(ξ)ν + u2(ξ)ν
2 + o(ν2),

ck(ξ; ν) = ck0(ξ) + ck1(ξ)ν + ck2(ξ)ν
2 + o(ν2),

Jk(ν) = Jk0 + Jk1ν + Jk2ν
2 + o(ν2).

(3.3)

Substituting (3.3) into system (2.10), we obtain

• the zeroth order limiting fast system in ν,

ϕ′
0 = u0, u′

0 = −z1c10 − z2c20, c′10 = −z1c10u0, c′20 = −z2c20u0,

J ′
10 = J ′

20 = 0, τ ′ = 0;
(3.4)

• the first order limiting fast system in ν,

ϕ′
1 = u1, u′

1 = −z1c11 − z2c21,

c′11 = −z1u0c11 − z1u1c10 + (z1c10 + λz2c20)c10u0,

c′21 = −z2u0c21 − z2u1c20 + (z1c10 + λz2c20)c20u0,

J ′
11 = J ′

21 = 0, τ ′ = 0;

(3.5)

• the second order limiting fast system in ν,

ϕ′
2 =u2, u′

2 = −z1c12 − z2c22,

c′12 =− z1c10u2 − z1c11u1 − z1c12u0 + (z1c10 + λz2c20)(c11u0 + c10u1)

+ (z1c11 + λz2c21)c10u0,

c′22 =− z2c20u2 − z2c21u1 − z2c22u0 + (z1c10 + λz2c20)(c21u0 + c20u1)

+ (z1c11 + λz2c21)c20u0,

J ′
12 =J ′

22 = 0, τ ′ = 0.

(3.6)

The zeroth order system and the first order system have been studied in [42]. For
the second order system, one has the following results.

Lemma 3.1. System (3.6) has the following nontrivial first integrals:

G1 =
c12
c10

+ z1ϕ2 + u0u1 −
c211
2c210

+ (λ− 1)c21 +
(λ− 1)z1
z1 + z2

c10c20 +
λ(λ− 1)

2
c220,

G2 =
c22
c20

+ z2ϕ2 + u0u1 −
c221
2c220

+ (λ− 1)c21 +
(λ− 1)z1
z1 + z2

c10c20 +
λ(λ− 1)

2
c220,

G3 =c12 + c22 − u0u2 −
u2
1

2
+ c10c11 + λc20c21 +

c310
3

+
λ2

3
c320 +

z1 − z2λ

z2 − z1
c10c21

+
2λz22 − λz1z2 − z21

z1(z2 − z1)
c20c11 +

3λz2
2z1 + z2

c210c20 +
λ(z21 + 2λz22)

z1(z1 + 2z2)
c10c

2
20.

Recalling the results for the zeroth and first order systems from [42], together
with Lemma 3.1, one has

Proposition 3.1. Assume that ν ≥ 0 is small. One has
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(i) The stable manifold W s(Z) intersects BL transversally at points
(
V, ul

0 +

ul
1ν + ul

2ν
2 + o(ν2), Lk, Jk(ν), 0

)
for k = 1, 2, and the ω−limit set of NL =

ML ∩W s(Z) is

ω(NL) =
{(

ϕL
0 +ϕL

1 ν+ϕL
2 ν

2+ o(ν2), 0, cLk0+ cLk1ν+ cLk2ν
2+ o(ν2), Jk(ν), 0

)}
,

where Jk(ν) = Jk0 + Jk1ν + Jk2ν
2 + o(ν2), k = 1, 2, can be arbitrary. The

zeroth order and first order results are (recalled from [42])

ϕL
0 =V̄ − 1

z1 − z2
ln

−z2L2

z1L1
, z1c

L
10 = −z2c

L
20 =

(
z1L1

) −z2
z1−z2

(
− z2L2

) z1
z1−z2 ,

ul
0 =sgn(z1L1 + z2L2)

√
2
(
L1 + L2 +

z1 − z2
z1z2

(z1L1)
−z2

z1−z2 (−z2L2)
z1

z1−z2

)
and

ϕL
1 =0, z1c

L
11 = −z2c

L
21 = z1c

L
10

(
L1 + λL2 − cL10 − λcL20

)
,

ul
1 =

1

ul
0

(
λ

2

(
L2
2 − (cL20)

2
)
+

1

2
(L2

1 − (cL10)
2)− z2(1− λ)

z1 + z2
e(z1+z2)(V−ϕL

0 )L1L2

− cL10c
L
20 − cL11 − cL21

)
.

The result for the second order limiting fast system reads

ϕL
2 = 0,

z1c
L
12 =− z2c

L
22

=z1c
L
10

(
(λ− 1)z1
z1 + z2

L1L2 +
L2
1

2
+

λ2

2
L2
2 −

λ2z21 + z22
2z22

(cL10)
2

− z1λ− z2
z2

cL11 +
z1z2(2− λ) + z21λ

z2(z1 + z2)
(cL10)

2

)
,

ul
2 =

L3
1 − (cL10)

3

3ul
0

+
λ2

3ul
0

(
L3
2 − (cL20)

3
)
− 1

ul
0

(1
2
(ul

1)
2 + cL12 + cL22

)
+

(2λ− 1)z22 − λz21
z22u

l
0

cL10c
L
11 +

3λz2
(2z1 + z2)ul

0

(
L2
1L2 − (cL10)

2cL20
)

+
λz21 + 2λ2z22

z1(z1 + 2z2)ul
0

(
L1L

2
2 − cL10(c

L
20)

2
)
.

(3.7)

(ii) The unstable manifold Wu(Z) intersects BR transversally at points
(
0, ur

0 +

ur
1ν + ur

2ν
2 + o(ν2), Rk, Jk(ν), 1

)
for k = 1, 2, and the α−limit set of NR =

MR ∩Wu(Z) is

α(NR) =
{(

ϕR
0 +ϕR

1 ν+ϕR
2 ν

2+o(ν2), 0, cRk0+ cRk1ν+ cRk2ν
2+o(ν2), Jk(ν), 1

)}
,

where Jk(ν) = Jk0 + Jk1ν + Jk2ν
2 + o(ν2), k = 1, 2, can be arbitrary. The

zeroth order and first order results are (recalled from [42])

ϕR
0 =− 1

z1 − z2
ln

−z2R2

z1R1
, z1c

R
10 = −z2c

R
20 =

(
z1R1

) −z2
z1−z2

(
− z2R2

) z1
z1−z2 ,
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ur
0 =sgn

(
z1R1 + z2R2

)√
2
(
R1 +R2 +

z1 − z2
z1z2

(z1R1)
−z2

z1−z2 (−z2R2)
z1

z1−z2

)
and

ϕR
1 =0, z1c

R
11 = −z2c

R
21 = z1c

R
10

(
R1 + λR2 − cR10 − λcR20

)
,

ur
1 =

1

ur
0

(
λ

2

(
R2

2 − (cR20)
2
)
+

1

2

(
R2

1 − (cR10)
2
)
− z2(1− λ)

z1 + z2
e(z1+z2)ϕ

R
0 R1R2

− cR10c
R
20 − cR11 − cR21

)
.

The result for the second order limiting fast system reads

ϕR
2 = 0,

z1c
R
12 =− z2c

R
22

=z1c
R
10

(
(λ− 1)z1
z1 + z2

R1R2 +
R2

1

2
+

λ2

2
R2

2 −
λ2z21 + z22

2z22
(cR10)

2

− z1λ− z2
z2

cR11 +
z1z2(2− λ) + z21λ

z2(z1 + z2)
(cR10)

2

)
,

ur
2 =

R3
1 − (cR10)

3

3ur
0

+
λ2

3ur
0

(
R3

2 − (cR20)
3
)
− 1

ur
0

(1
2
(ur

1)
2 + cR12 + cR22

)
+

(2λ− 1)z22 − λz21
z22u

r
0

cR10c
R
11 +

3λz2
(2z1 + z2)ur

0

(
R2

1R2 − (cR10)
2cR20

)
+

λz21 + 2λ2z22
z1(z1 + 2z2)ur

0

(
R1R

2
2 − cR10(c

R
20)

2
)
.

(3.8)

Remark 3.1. In the expressions ul
j , u

r
j , ϕ

L
j , ϕ

R
j , c

L
ij and cRij for i = 1, 2 and j =

0, 1, 2,, the superscripts l and L indicate the left limits of the quantities at x = 0
while the superscript r and R indicate the right limits of the quantities at x = 1.

3.2. Limiting slow dynamics for the second order
Next we construct the regular layer on Z that connects ω(NL) and α(NR). After
suitable treatment (see [42] for details), the limiting slow system reads

ϕ̇ = p, ċ1 = −f1(c1,−
z1
z2

c1; ν, λν)p−
1

h(τ)
g1(c1, J1, J2; ν, λν),

J̇1 = J̇2 = 0, τ̇ = 1,

(3.9)

where

p = −
z1g1(c1, J1, J2; ν, λν) + z2g2(− z1

z2
c1, J1, J2; ν, λν)

z1(z1 − z2)h(τ)c1
.

As for the layer problem, we look for solution of (3.9) of the form

ϕ(x) = ϕ0(x) + ϕ1(x)ν + ϕ2(x)ν
2 + o(ν2),

c1(x) = c10(x) + c11(x)ν + c12(x)ν
2 + o(ν2),

Ji = Ji0 + Ji1ν + Ji2ν
2 + o(ν2),

(3.10)
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to connect ω(NL) and α(NR) given in Proposition 3.1.
For simplicity, we introduce

Tm
k = J1k + J2k, T c

k = z1J1k + z2J2k, k = 0, 1, 2 and H(x) =

∫ x

0

1

h(s)
ds.

From system (3.9), one has

• the zeroth order limiting slow system in ν,

ϕ̇0 = − T c
0

z1(z1 − z2)h(τ)c10
, ċ10 =

z2T
m
0

(z1 − z2)h(τ)
,

J̇k0 = 0, τ̇ = 1;

(3.11)

• the first order limiting slow system in ν,

ϕ̇1 = − T c
0 c11

z1(z1 − z2)h(τ)c210
− T c

1

z1(z1 − z2)h(τ)c10
,

ċ11 =
(λz1 − z2)T

m
0 c10

(z1 − z2)h(τ)
+

z2T
m
1

(z1 − z2)h(τ)
, J̇k1 = 0, τ̇ = 1;

(3.12)

• the second order limiting slow system in ν,

ϕ̇2 = −
T c
0

(
c211 − c10c12

)
z1(z1 − z2)h(τ)c310

+
T c
1 c11

z1(z1 − z2)h(τ)c210

− T c
2

z1(z1 − z2)h(τ)c10
,

ċ12 =
(λz1 − z2)T

m
0 c11

(z1 − z2)h(τ)
+

(λz1 − z2)T
m
1 c10

(z1 − z2)h(τ)
+

z2T
m
2

(z1 − z2)h(τ)
,

˙Jk2 = 0, τ̇ = 1.

(3.13)

For the second order limiting slow system, one has

Lemma 3.2. There is a unique solution
(
ϕ2(x), c12(x), J12, J22, τ(x)

)
of (3.13) such

that
(
ϕ2(0), c12(0), τ(0)

)
=

(
0, cL12, 0

)
and

(
ϕ2(1), c12(1), τ(1)

)
=

(
0, cR12, 1

)
, where

cL12 and cR12 are defined in Proposition 3.1. It is given by

ϕ2(x) =
T c
0T

m
2 − T c

2T
m
0

z1z2(Tm
0 )2

(
ln c10(x)− ln cL10

)
+ P1(x),

c12(x) = cL12 +
Tm
2

Tm
0

(
c10(x)− cL10

)
+ P2(x),

(3.14)

where

P1(x) =
T c
0

2z1z2Tm
0

[(
c11(x)

c10(x)

)2

−
(
cL11
cL10

)2

− 2

(
c12(x)

c10(x)
− cL12

cL10

)]
+

(z1λ− z2)T
c
1

z1z22T
m
0

(
c10(x)− cL10

)
+

T c
0T

m
1 − T c

1T
m
0

z1z2(Tm
0 )2

(
c11(x)

c10(x)
− cL11

cL10

)
+

Tm
1

(
T c
1T

m
0 − T c

0T
m
1

)
z1z2(Tm

0 )3
(
ln c10(x)− ln cL10

)
,
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P2(x) =
λz1 − z2

z2

(
c11(x)c10(x)− cL11c

L
10

)
− 1

3

(
λ
z1
z2

− 1
)2 (

c310(x)− (cL10)
3
)
.

Here, from [42],

T c
0 =

z1(z1 − z2)(c
R
10 − cL10)

H(1)(ln cR10 − ln cL10)

(
ϕL
0 − ϕR

0

)
, Tm

0 =
(z1 − z2)(c

R
10 − cL10)

z2H(1)
,

T c
1 =

z1(z1 − z2)
(
cL10 − cR10

)
H(1)

(
ln cL10 − ln cR10

) N, Tm
1 =

z1 − z2
z2H(1)

M

with

M = cR11 − cL11 +
z1λ− z2

2z2
(cL10 + cR10)(c

L
10 − cR10),

N =
ϕL
0 − ϕR

0

ln cL10 − ln cR10

(
cR11
cR10

− cL11
cL10

+
z1λ− z2

2z2
(cL10 − cR10)

)
− ϕL

0 − ϕR
0

cL10 − cR10
M.

In particular,

J12 =

(
z2T

m
0 − T c

0

)(
cR12 − cL12 − P2(1)

)
(z2 − z1)(cR10 − cL10)

− z1z2T
m
0

(z2 − z1)(ln cR10 − ln cL10)
P1(1),

J22 =

(
T c
0 − z1T

m
0

)(
cR12 − cL12 − P2(1)

)
(z2 − z1)(cR10 − cL10)

+
z1z2T

m
0

(z2 − z1)(ln cR10 − ln cL10)
P1(1).

Proof. Taking the integral from 0 to x for the first two equations in (3.13), re-
spectively, together with c12(0) = cL12 and ϕ2(0) = 0, one has

ϕ2(x) =− T c
0

z1(z1 − z2)

(∫ x

0

c211(s)

h(s)c310(s)
ds−

∫ x

0

c12(s)

h(s)c210(s)
ds

)
+

T c
1

z1(z1 − z2)

∫ x

0

c11(s)

h(s)c210(s)
ds− T c

2

z1(z1 − z2)

∫ x

0

1

h(s)c10(s)
ds,

c12(x) =cL12 +
(z1λ− z2)T

m
0

z1 − z2

∫ x

0

c11(s)

h(s)
ds+

(z1λ− z2)T
m
1

z1 − z2

∫ x

0

c10(s)

h(s)
ds

+
Tm
2

Tm
0

(
c10(x)− cL10

)
.

(3.15)

From (3.11) and (3.12), by careful computations, one has∫ x

0

c11(s)

h(s)c10(s)
ds =

z1 − z2
z2Tm

0

∫ x

0

c11(s)ċ10(s)

c10(s)
ds =

z1 − z2
z2Tm

0

∫ x

0

c11(s)d ln c10(s)

=
z1 − z2
z2Tm

0

(
c11(x) ln c10(x)− cL11 ln c

L
10 −

∫ x

0

ċ11(s) ln c10(s)ds
)

=
z1 − z2
z2Tm

0

(
c11(x) ln c10(x)− cL11 ln c

L
10

)
− λz1 − z2

z2

∫ x

0

c10(s) ln c10(s)

h(s)
ds

− Tm
1

Tm
0

∫ x

0

ln c10(s)

h(s)
ds

=
z1 − z2
z2Tm

0

(
c11(x) ln c10(x)− cL11 ln c

L
10

)
− (z1 − z2)(λz1 − z2)

2z22T
m
0

∫ x

0

ln c10(s)dc
2
10(s)
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− (z1 − z2)T
m
1

z2(Tm
0 )2

∫ x

0

ln c10(s)dc10(s)

=
z1 − z2
z2Tm

0

(
c11(x) ln c10(x)− cL11 ln c

L
10

)
− (z1 − z2)(z1λ− z2)

2z22T
m
0

(
c210(x) ln c10(x)

− (cL10)
2 ln cL10 −

1

2
(c210(x)− (cL10)

2)
)
− (z1 − z2)T

m
1

z2(Tm
0 )2

(
c10(x) ln c10(x)− cL10 ln c

L
10

− c10(x) + cL10
)
.

Similarly,∫ x

0

c10(s)

h(s)
ds =

z1 − z2
2z2Tm

0

(
c210(x)− (cL10)

2
)
,∫ x

0

c11(s)

h(s)
ds =

z1 − z2
z2Tm

0

(
c11(x)c10(x)− cL11c

L
10 −

z1λ− z2
3z2

(
c310(x)− (cL10)

3
))

− (z1 − z2)T
m
1

2z2(Tm
0 )2

(
c210(x)− (cL10)

2
)
,∫ x

0

c11(s)

h(s)c210(s)
ds =

z1 − z2
z2Tm

0

(
cL11
cL10

− c11(x)

c10(x)

)
+

(z1 − z2)(z1λ− z2)

z22T
m
0

(
c10(x)− cL10

)
+

(z1 − z2)T
m
1

z2(Tm
0 )2

(
ln c10(x)− ln cL10

)
,∫ x

0

c211(s)

h(s)c310(s)
ds =

z1 − z2
z2Tm

0

(
(cL11)

2

2(cL10)
2
− c211(x)

2c210(x)

)
+

z1λ− z2
z2

∫ x

0

c11(s)

h(s)c10(s)
ds

+
Tm
1

Tm
0

∫ x

0

c11(s)

h(s)c210(s)
ds,∫ x

0

c12(s)

h(s)c210(s)
ds =

z1 − z2
z2Tm

0

(
cL12
cL10

− c12(x)

c10(x)

)
+

z1λ− z2
z2

∫ x

0

c11(s)

h(s)c10(s)
ds

+
(z1λ− z2)T

m
1

z2Tm
0

H(x) +
Tm
2

Tm
0

∫ x

0

1

h(s)c10(s)
ds,∫ x

0

1

h(s)c10(s)
ds =

z1 − z2
z2Tm

0

(
ln c10(x)− ln cL10

)
.

Substituting these integrals into (3.15) and regrouping some terms, one obtain
the ϕ2 and c12 equations in (3.14). Evaluating ϕ2 and c12 in (3.14) at x = 1, one
can uniquely solve the two resulting algebraic equations in J12 and J22, and obtain
their expressions. This completes the proof.

4. Effects on ionic flows from finite ion sizes
We now examine the finite ion size effect on the I-V relation I = z1D1J1 + z2D2J2
and the individual fluxes Jk = DkJk, k = 1, 2 based on the explicit approximations
obtained from the solutions to the limiting PNP systems. Of particular interest
are i) the ion size effect from the second order terms I2 = z1D1J12 + z2D2J22 and
Jk2 = DkJk2; ii) the interplay between the first order and second order terms (the
effect from the combination); and iii) the characterization of ion size effects close to
L = R.



918 Y. Bao, J. Chen, L. Zhang & M. Zhang

For our following discussions, we assume electroneutrality boundary conditions

z1L1 = −z2L2 = L, z1R1 = −z2R2 = R. (4.1)

Lemma 4.1. Under conditions (4.1), one has

ϕL
0 = V, z1c

L
10 = −z2c

L
20 = L, z1c

R
10 = −z2c

R
20 = R,

ϕR
0 = ϕL

1 = cL11 = cL21 = ϕR
1 = cR11 = cR21 = 0, ϕL

2 = cL12 = cL22 = ϕR
2 = cR12 = cR22 = 0.

From Lemmas 3.2 and 4.1, we have (the expressions for Jk0 and Jk1 are from [42])

Lemma 4.2. Assume L ̸= R. Under conditions (4.1), one has

J10 =
L−R

z1H(1)

(
1 +

e

kBT

z1V

lnL− lnR

)
, J20 = − L−R

z2H(1)

(
1 +

e

kBT

z2V

lnL− lnR

)
,

J11 =
λz1 − z2
z1z2H(1)

f0(L,R)f1(L,R)
e

kBT
V − λz1 − z2

2z21z2H(1)

(
L2 −R2

)
,

J21 =− λz1 − z2
z1z2H(1)

f0(L,R)f1(L,R)
e

kBT
V +

λz1 − z2
2z1z22H(1)

(
L2 −R2

)
,

J12 =
(λz1 − z2)

2

z21z
2
2H(1)

f0(L,R)
(
f2(L,R) +

1

2
f2
0 (L,R)

) e

kBT
V +

(λz1 − z2)
2

3z31z
2
2H(1)

(
L3 −R3

)
,

J22 =− (λz1−z2)
2

z21z
2
2H(1)

f0(L,R)
(
f2(L,R)+

1

2
f2
0 (L,R)

) e

kBT
V − (λz1−z2)

2

3z21z
3
2H(1)

(
L3−R3

)
,

where

f0(L,R) =
L−R

lnL− lnR
, f1(L,R) = f0(L,R)− L+R

2
,

f2(L,R) =
1

3

(
R2 +RL+ L2

)
− 3(L+R)

4
f0(L,R).

In particular,

I0(V ; 0) =
e(z1D1 − z2D2)

kBTH(1)
f0(L,R)V +

D1 −D2

H(1)

(
L−R

)
,

I1(V ;λ, 0) =
e(λz1 − z2)(z1D1 − z2D2)

z1z2kBTH(1)
f0(L,R)f1(L,R)V

− (λz1 − z2)(D1 −D2)

2z1z2H(1)

(
L2 −R2

)
,

I2(V ;λ, 0) =
e(z1D1 − z2D2)(λz1 − z2)

2

z21z
2
2kBTH(1)

f0(L,R)
(
f2(L,R) +

1

2
f2
0 (L,R)

)
V

+
(D1 −D2)(λz1 − z2)

2

3z21z
2
2H(1)

(
L3 −R3

)
.

(4.2)

To end this section, we introduce the following result, which will be used in our
later discussion.

Lemma 4.3. Assume L > R. One has

(i) f0(L,R) > 0, f1(L,R) < 0;
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(ii) For f2(L,R), for simplicity, we rewrite it as f2(x) with x = L
R > 1. Then,

there exists an x∗ > 1 such that f2(x) < 0 for 1 < x < x∗, and f2(x) > 0 for
x > x∗.

Furthermore, for fixed R > 0,

lim
L→R

f0(L,R) = R, lim
L→R

f1(L,R) = 0 and lim
L→R

f2(L,R) = −R2

2
.

4.1. Critical potentials and their role descriptions
In this subsection, our main concern is identifying the critical potentials and the
roles they play in the study of finite ion size effects on ionic flows.

Definition 4.1. We define nine potentials V c
k , V c

1k and V c
2k, k = 0, 1, 2 by

Ik(V
c
k ;λ, 0) = 0, J1k(V

c
1k;λ, 0) = 0, J2k(V

c
2k;λ, 0) = 0.

Remark 4.1. Actually, in Definition 4.1, I0, J10 and J20 are independent of the
parameter λ.

Directly from Lemma 4.2 and Definition 4.1, one has

Lemma 4.4. Suppose L ̸= R. Then,

z1V
c
10 = z2V

c
20 = −kBT

e
(lnL− lnR), V c

0 =
z1(D1 −D2)

z1D1 − z2D2
V c
10,

z1V
c
11 = z2V

c
21 =

kBT

2e

L2 −R2

f0(L,R)f1(L,R)
, V c

1 =
z1(D1 −D2)

z1D1 − z2D2
V c
11,

z1V
c
12 = z2V

c
22 = −kBT

3e

L3 −R3

f0(L,R)
(
1
2f

2
0 (L,R) + f2(L,R)

) , V c
2 =

z1(D1 −D2)

z1D1 − z2D2
V c
12.

In particular, one has

V c
0 =

z1D1V
c
10 − z2D2V

c
20

z1D1 − z2D2
, V c

1 =
z1D1V

c
11 − z2D2V

c
21

z1D1 − z2D2
, V c

2 =
z1D1V

c
12 − z2D2V

c
22

z1D1 − z2D2
.

From Lemma 4.2, direct calculations yield

Lemma 4.5. Assume L ̸= R. Under conditions (4.1), one has ∂V I0 > 0, ∂V I1 >
0, ∂V I2 > 0; ∂V J10 > 0, ∂V J11 > 0, ∂V J12 > 0; and ∂V J20 < 0, ∂V J21 <
0, ∂V J22 < 0.

It follows from Lemma 4.5 that

Proposition 4.1. Assume L ̸= R. Regarding Ik, J1k and J2k, k = 0, 1, 2 as func-
tions of V , one has

(i) I0, I1 and I2 are all increasing in V. Furthermore, I0 > 0 (resp. I0 < 0) if
V > V c

0 (resp. V < V c
0 ); I1 > 0 (resp. I1 < 0) if V > V c

1 (resp. V < V c
1 );

and I2 > 0 (resp. I2 < 0) if V > V c
2 (resp. V < V c

2 ).
(ii) J10, J11 and J12 are all increasing in V . Furthermore, J10 > 0 (resp. J10 < 0)

if V > V c
10 (resp. V < V c

10); J11 > 0 (resp. J11 < 0) if V > V c
11 (resp.

V < V c
11); and J12 > 0 (resp. J12 < 0) if V > V c

12 (resp. V < V c
12).
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(iii) J20, J21 and J22 are all decreasing in V . Furthermore, J20 < 0 (resp. J20 > 0)
if V > V c

20 (resp. V < V c
20); J21 < 0 (resp. J21 > 0) if V > V c

21 (resp.
V < V c

21); and J22 < 0 (resp. J22 > 0) if V > V c
22 (resp. V < V c

22).

The scaling laws for I0, I1, Jk0, Jk1, (k = 1, 2) and their critical potentials have
been discussed in [47]. For I2, Jk2 and their critical potentials defined in the Defi-
nition 4.1, one has

Proposition 4.2. Viewing I2, Jk2, V
c
2 and V c

k2 as functions of (L,R) for k = 1, 2,
one has

(i) I2, J12 and J22 are homogeneous of degree three in (L,R), that is, for any
s > 0, I2(V ; sL, sR) = s3I2(V ;L,R), J12(V ; sL, sR) = s3J12(V ;L,R) and
J22(V ; sL, sR) = s3J22(V ;L,R);

(ii) V c
2 and V c

12, V
c
22 are homogeneous of degree zero in (L,R), that is, taking V c

2

for example, for any s > 0, V c
2 (sL, sR) = V c

2 (L,R).

Proof. Note that f0(sL, sR) = sf0(L,R) and f2(sL, sR) = s2f2(L,R) for any
s > 0, where f0(L,R) and f2(L,R) are defined in Lemma 4.2. The statements can
be verified directly.

In terms of the parameters (D1, D2), (L,R) and λ, we can provide a partial
order for the critical potentials identified in the Definition 4.1, which is crucial for
us to further discuss the finite ion size effects on ionic flows.

Lemma 4.6. Assume L > R, D2 > D1 and λ > 1. One has

(i) V c
11 < V c

12 < V c
10, V

c
20 < V c

22 < V c
21 and V c

0 < V c
2 < V c

1 if 1 < x < x∗,
(ii) V c

12 < V c
11 < V c

10, V c
20 < V c

21 < V c
22 and V c

0 < V c
1 < V c

2 if x > x∗,

where, with x = L/R > 1, x∗ is the unique zero of the function

p(x) = −9(x+ 1)2 lnx+ 6(x2 − 1) + 8(x2 + x+ 1) lnx.

Proof. We provide a detailed proof for the order of V c
10, V

c
11 and V c

12 for both
1 < x < x∗ and x > x∗. From Lemma 4.4, direct calculation gives

V c
10 − V c

11 = −kBT

e

lnL− lnR

z1

f0(L,R)

f1(L,R)
.

From Lemma 4.3, one has f0(L,R) > 0 and f1(L,R) < 0 for L > R. It follows that
V c
10 − V c

11 > 0, that is, V c
10 > V c

11. Similarly,

V c
11 − V c

12 =
kBT

e

1

6z1

L−R

f1(L,R)( 12f
2
0 (L,R) + f2(L,R))

q(L,R),

where q(L,R) = 3(L + R)
(
1
2f

2
0 (L,R)f2(L,R)

)
+ 2(L2 + LR + R2)f1(L,R). With

x = L/R, q(L,R) can be written as

q(x) =
R3(x− 1)

4(lnx)2
p(x),

where p(x) = −9(x + 1)2 lnx + 6(x2 − 1) + 8(x2 + x + 1) lnx. Careful calculation
yields

p′(x) = −18(x+ 1) lnx− 9(x2 + 2x+ 1)

x
+ 12x+ 8(2x+ 1) lnx+

8(x2 + x+ 1)

x
,
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p′′(x) = −2 lnx+
1

x2
− 10

x
+ 9, p′′′(x) =

−2(x2 − 5x+ 1)

x3
.

It is easy to check that p(1) = p′(1) = p′′(1) = 0 and p′′′(x) > 0 (resp. p′′′(x) < 0)
if 1 < x < x1 (resp. x > x1), where x1 (actually equals 5+

√
21

2 ) is the unique zero
of p′′′(x) = 0. This indicates that p′′(x) is increasing over (1, x1) and decreasing
for x > x1. Together with p′′(1) = 0 and lim

x→+∞
p′′(x) = −∞, we get p′′(x) > 0

(resp. p′′(x) < 0) over (1, x2) (resp. x > x2), where x2 > x1 is the unique root of
p′′(x) = 0 for x > 1. Similar argument shows that

• p′(x) > 0 (resp. p′(x) < 0) over (1, x3) (resp. x > x3), where x3 > x2 is the
unique root of p′(x) = 0 for x > 1;

• p(x) > 0 (resp. p(x) < 0) over (1, x∗) (resp. x > x∗), where x∗ > x3 is the
unique root of p(x) = 0 for x > 1.

It follows that q(x) > 0 (resp. q(x) < 0) for x ∈ (1, x∗) (resp. x > x∗). Therefore,
V c
11 − V c

12 < 0 (resp. V c
11 − V c

12 > 0) for x ∈ (1, x∗) (resp. x > x∗).
Together with V c

10 > V c
11, one has V c

12 < V c
11 < V c

10 for x > x∗. On the other
hand, for x ∈ (1, x∗), we have V c

11 < V c
12 and V c

11 < V c
10. To get the total order

of V c
10, V c

11 and V c
12, we further compare V c

10 with V c
12. Similar argument leads to

V c
10 > V c

12 for x > 1, and hence V c
11 < V c

12 < V c
10 for 1 < x < x∗. This completes the

proof.
From Proposition 4.1, Lemma 4.5 and Lemma 4.6, we obtain

Theorem 4.1. Assume L > R, D2 > D1 and λ > 1. For the individual fluxes
Jk(V ), k = 1, 2 and the total flux I(V ), with |J1(V )|, |J2(V )| and |I(V )| denoting
the magnitude of J1(V ), J2(V ) and I(V ), respectively. One has, for 1 < x < x∗,
where x∗ is identified in Lemma 4.6,

(A) For the individual flux J1(V ),
(A1) if V < V c

11, J10(V ) < 0, J11(V ) < 0 and J12(V ) < 0, that is, the ion
size effects from J11(V ) and J12(V ) both reduce J1(V ) while both enhance
|J1(V )|;

(A2) if V c
11 < V < V c

12, J10(V ) < 0, J11(V ) > 0 and J12(V ) < 0, that
is, the ion size effect from J11(V ) enhances J1(V ), while the one from
J12(V ) reduces J1(V ). Furthermore, J11(V ) reduces |J1(V )| while J12(V )
enhances |J1(V )|;

(A3) if V c
12 < V < V c

10, J10(V ) < 0, J11(V ) > 0 and J12(V ) > 0, that is, the
ion size effects from J11(V ) and J12(V ) both enhance J1(V ) while both
reduce |J1(V )|;

(A4) if V > V c
10, J10(V ) > 0, J11(V ) > 0 and J12(V ) > 0, that is, the ion

size effects from J11(V ) and J12(V ) both enhance J1(V ) and |J1(V )|.
(B) For the individual flux J2(V ),

(B1) if V < V c
20, J20(V ) > 0, J21(V ) > 0 and J22(V ) > 0, that is, the ion

size effects from J21(V ) and J22(V ) both enhance J2(V ) and |J2(V )|;
(B2) if V c

20 < V < V c
22, J20(V ) < 0, J21(V ) > 0 and J22(V ) > 0, that is, the

ion size effects from J21(V ) and J22(V ) enhance J2(V ). Furthermore,
J21(V ) and J22(V ) reduce |J2(V )|;
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(B3) if V c
22 < V < V c

21, J20(V ) < 0, J21(V ) > 0 and J22(V ) < 0, that is, the
ion size effect from J21(V ) enhances J2(V ) while the one from J22(V )
reduces J2(V ). Furthermore, J22(V ) enhances |J2(V )| while J21(V ) re-
duces |J2(V )|;

(B4) if V > V c
21, J20(V ) < 0, J21(V ) < 0 and J22(V ) < 0, that is, the ion size

effects from J21(V ) and J22(V ) both reduce J2(V ) while both enhances
|J2(V )|.

(C) For the total flow rate of charge I,
(C1) if V < V c

0 , then, I0(V ) < 0, I1(V ) < 0 and I2(V ) < 0, that is, the ion
size effects from I1(V ) and I2(V ) both reduce I(V ). Furthermore, I1(V )
and I2(V ) both enhance |I(V )|;

(C2) if V c
0 < V < V c

2 , then, I0(V ) > 0, I1(V ) < 0 and I2(V ) < 0, that is, the
ion size effects from I1(V ) and I2(V ) both reduce I(V ) and |I(V )|;

(C3) if V c
2 < V < V c

1 , then, I0(V ) > 0, I1(V ) < 0 and I2(V ) > 0, that is,
the ion size effect from I1(V ) reduces I(V ) while I2(V ) enhances I(V ).
Furthermore, I1(V ) reduces |I(V )|, but I2(V )enhances |I(V )|;

(C4) if V > V c
1 , then, I0(V ) > 0, I1(V ) > 0 and I2(V ) > 0, that is, the ion

size effects from I1(V ) and I2(V ) both enhance I(V ) and |I(V )|.

Remark 4.2. For the case with x > x∗, similar results as those stated in Theorem
4.1 can be obtained.

4.2. Essential effects from finite ion sizes
To better understand the finite ion size effects on ionic flows, we introduce another
three critical potentials V b

1 , V
b
2 and V b, which characterizes the essential effects on

ionic flows from finite ion sizes, that is, the combining effects from the first and the
second order terms.

For convenience in our following discussion, we define three functions Ib(V ;λ),
Jb
1(V ;λ) and Jb

2(V ;λ) by

Ib(V ;λ) = I1(V ;λ) + νI2(V ;λ), Jb
1(V ;λ) = J11(V ;λ) + νJ12(V ;λ),

Jb
2(V ;λ) = J21(V ;λ) + νJ22(V ;λ).

Definition 4.2. We define three critical potentials V b
1 , V

b
2 and V b by

Ib(V b;λ) = 0, Jb
1(V

b
1 ;λ) = 0 and Jb

2(V
b
2 ;λ) = 0.

Lemma 4.7. Assume L ̸= R and λ > 1, one has

z1V
b
1 = z2V

b
2 = −kBT

e

z1λ−z2
3z1z2

(L2 +RL+R2)ν − 1
2 (L+R)

z1λ−z2
z1z2

(
1
2f

2
0 (L,R) + f2(L,R)

)
ν + f1(L,R)

(lnL− lnR),

V b =
z1(D1 −D2)

z1D1 − z2D2
V b
1 .

We comment that the critical potentials defined in Definition 4.2 balance the
ion size effects on the total flux I(V ), and the individual fluxes J1(V ) and J2(V ),
respectively. Also, V b and V b

k as functions of (L,R) don’t share the scaling laws



Higher order contributions from finite ion sizes 923

as other critical potentials defined in Definition 4.1, which is not a surprise since it
reflects the mixed ion size effects from both the first and the second order correc-
tions.

Lemma 4.8. Assume L > R, D2 > D1 and λ > 1. One has V c
0 < V b, V c

10 > V b
1

and V c
20 < V b

2 .

Notice that ∂V J
b
1 = −∂V J

b
2 = ∂V Ib

z1D1−z2D2
= e

kBT
z1λ−z2
z1z2

f0(L,R)
H(1) g(L,R), where

g(L,R) = f1(L,R) + ν
z1λ− z2
z1z2

(
f2(L,R) +

1

2
f2
0 (L,R)

)
.

From Lemma 4.3, together with the valence z2 < 0, for the function g(L,R), one
has

Lemma 4.9. Assume L > R. One has g(L,R) < 0.

Together with Lemma 4.8, we obtain

Theorem 4.2. Assume L > R and λ > 1. For ν > 0 small, one has

(i) Ib(V ) is increasing in the potential V . Hence, Ib(V ) > 0 (resp. Ib(V ) < 0)
if V > V b (resp. V < V b); that is, the ion size eventually enhances (resp.
reduces) the total flux I(V ) if V > V b (resp. V < V b). Furthermore, the ion
size eventually enhances (resp. reduces) |I(V )| if V > V b or V < V c

0 (resp.
V c
0 < V < V b).

(ii) Jb
1(V ) is increasing in the potential V . Hence, Jb

1(V ) > 0 (resp. Jb
1(V ) < 0)

if V > V b
1 (resp. V < V b

1 ), that is, the ion size eventually enhances (resp.
reduces) the individual flux J1(V ) if V > V b

1 (resp. V < V b
1 ). Furthermore,

the ion size eventually enhances (resp. reduces) |J1(V )| if V < V b
1 or V > V c

10

(resp. V b
1 < V < V c

10).
(iii) Jb

2(V ) is decreasing in the potential V . Hence, Jb
2(V ) > 0 (resp. Jb

2(V ) < 0)
if V < V b

2 (resp. V > V b
2 ), that is, the ion size eventually enhances (resp.

reduces) the individual flux J2(V ) if V < V b
2 (resp. V > V b

2 ). Furthermore,
the ion size eventually enhances (resp. reduces) |J2(V )| if V > V b

2 or V < V c
20

(resp. V c
20 < V < V b

2 ).

We now provide a result of the total order of the critical potentials V b
k and V b,

k = 1, 2.

Lemma 4.10. Assume L > R, D2 > D1 and λ > 1. One has V b
1 < V b < V b

2 .

Correspondingly, the following result can be established.

Theorem 4.3. Assume L > R, D2 > D1 and λ > 1. For ν > 0 small, one has

(i) If V < V b
1 , then, the ion size effect eventually reduces both J1(V ) and I(V )

while enhances J2(V );
(ii) If V b

1 < V < V b, then, the ion size effect eventually enhances both J1(V ) and
J2(V ) while reduces I(V );

(iii) If V b < V < V b
2 , then, the ion size effect eventually enhances J1(V ), J2(V )

and I(V );
(vi) If V > V b

2 , then, the ion size eventually enhances J1(V ) and I(V ) while
reduces J2(V ).
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4.3. Ion size effects near L=R
As L → R, I1(V ;λ, 0) → 0 and Jk1(V ;λ, 0) → 0. In other words, as L → R, the
leading terms I1(V ;λ, 0), J11(V ;λ, 0) and J21(V ;λ, 0) cannot provide information
for the effects from finite ion size, and higher order terms need to be considered.
While this is the motivation of the work, we surprisingly found that the second
order terms I2, J12 and J22 are also approach zero as L → R. To summarize, one
has

Lemma 4.11. Fixed R > 0. Then, for k = 1, 2,

lim
L→R

J10(V ; 0) = − lim
L→R

J20(V ; 0) =
R

H(1)

e

kBT
V, lim

L→R
Jk1(V ;λ, 0) = 0,

lim
L→R

Jk2(V ;λ, 0) = 0, lim
L→R

I0(V ; 0) =
(z1D1 − z2D2)R

H(1)

e

kBT
V, lim

L→R
Ik(V ;λ, 0) = 0.

Proposition 4.3. As L → R, one has

(i) V c
10 = V c

20 = V c
0 = 0; V c

11 → −∞, V c
21 → ∞, V c

1 → −∞ if D1 > D2, and
V c
1 → ∞ if D1 < D2; V c

12 → −∞, V c
22 → ∞, V c

2 → −∞ if D1 > D2, and
V c
2 → ∞ if D1 < D2.

(ii) Ik(V ;λ), J1k(V ;λ) and J2k(V ;λ) all approach zero for k = 1, 2; that is, the
ion size effect does not affect the total flux I(V ) and the individual fluxes
Jk(V ), k = 1, 2; and hence does not affact |I(V )| and |Jk(V )| for k = 1, 2.

4.4. Numerical illustrations
To provide more intuitive illustration of the effects on ionic flows from finite ion sizes,
we perform the following numerical simulations to the approximations obtained in
Lemma 4.2. To be specific, we consider the cation to be Na+ and the anion to be
Cl−, and λ is the ratio of the volume of Na+ to Cl−. We may take ( [48,53])

DNa = 1.334× 10−9m2/s, DCl = 2.032× 10−9m2/s, kB = 1.38× 10−23JK−,

T = 298.15K, e = 1.602× 10−19C, z1 = −z2 = 1 and λ = 1.885.

Our main interest is to identify the critical potentials V c
k , V c

1k and V c
2k identified

in Definition 4.1 (see Figure 1 for L ̸= R and Figure 3 for L close to R), and the
critical potential V b

k and V b defined in Definition 4.2 (see Figure 2) for L ̸= R;
and observe the monotonicity of Ik, J1k, J2k, Ib and Jb

k viewed as functions of the
potential V . This provides more intuitive understandings of our analytical results
(such as Theorems 4.1 and 4.2).

5. Concluding remarks
In this work, we further study the effects on ionic flows from finite ion sizes via
the method of asymptotic expansions up to the second order due to the observation
that the first-order terms approach zero, in other words, the finite ion size effects on
ionic flows disappear, when the left and right boundary concentrations are close for
the same ion species. On the other hand, considering higher order terms may help
us perceive the properties of the expansion and generalize it for any size, not just
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Figure 1. Numerical identifications of the critical potentials V c
k , V c

1k and V c
2k for k = 0, 1, 2. The

monotonicity of the functions Ik(V ), J1k(V ) and J2k(V ) for k = 0, 1, 2 is shown clearly in each figure.
This provides intuitive illustration of Theorem 4.1 with 1 < x < x∗ = 339.75691.
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The monotonicity of the functions I0(V ), J10(V ) and J20(V ) (solid line in each figure) and the functions
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intuitive illustration of Theorem 4.2.
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Figure 3. Numerical identifications of the critical potentials V c
k , V c

1k and V c
2k for k = 0, 1, 2. The

monotonicity of the functions Ik(V ), J1k(V ) and J2k(V ) for k = 0, 1, 2 is shown clearly in each figure
for the case with L close to R. It is clear that, for k = 1, 2, the values of V c

0 and V c
k0 become very small,

the values of V c
k V c

1k and V c
2k for k = 1, 2 become very large, and the curves Ik, J1k and J2k become

very small as L close to R. The observation is consistent with our analytical results stated in Section
4.3.

the small sizes of ions. For L ̸= R, the interactions between the first-order and the
second-order terms are also described to better understand the ionic flow properties.
Moreover, critical potentials are identified to help us monitor the dynamics of ionic
flows. In particular, some critical potentials such as V b, V b

1 and V b
2 identified in

the Definition 4.2, can be estimated experimentally. Take the potential V b for
example, one can take an experimental I-V relation as I(V ;λ, ν) and numerically
(or analytically) compute I0(V ) for ideal case that allows one to get an estimate of
V b. However, as L → R, we surprisingly found that the second order terms are also
approaching 0. We would like to propose the following conjecture for the specific
setup in this work: all higher order terms in the finite ion size will approach 0 as
L → R. The analysis in this work, particularly for the case L ̸= R, will provide
complementary information and better understanding of the mechanism of ionic
flows through membrane channels. Numerical simulations performed in this work
provide intuitive illustration of our main analytical results.
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We finally comment that, for this simple setup, complicated nonlinear inter-
actions among physical parameters, particularly, the diffusion constants (D1, D2)
and the boundary concentrations (L,R) are characterized, which are not intuitive,
and provide some deep insights into the internal dynamics of ionic flows through
membrane channels. This could be very helpful for the future studies along this
direction, not only mathematically or numerically, but experimentally since the
internal dynamics of ion channels cannot be measured with present technology.
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