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Abstract We study a one-dimensional Poisson-Nernst-Planck system with
multiple cations having the same valences and small permanent charges. View-
ing the permanent charge as a small parameter, via regular perturbation anal-
ysis, approximations of the current-voltage (I-V) relations are derived explic-
itly, and this allows us to further study the qualitative properties of ionic flows
through membrane channels. Our main interest are small permanent charge
and channel geometry effects on the I-V relations, which additionally depend
on the nonlinear interactions with other physical parameters involved in the
model. Critical potentials are identified and their important roles played in the
study of the property of ionic flows are characterized. We perform numerical
simulations to provide more intuitive illustrations of our theoretical results.
Those non-intuitive observations from analysis of the system provide better
understandings of the mechanism of ionic flows through membrane channels,
particularly the internal dynamics that is not able to be detected via current
technology.

Keywords PNP, diffusion coefficients, permanent charges, channel geometry,
electroneutrality conditions.
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1. Introduction
The study of electrodiffusion is an extraordinarily rich area for multidisciplinary re-
search with numerous applications in different research fields, particularly, physics,
chemistry and biology. To be specific, semiconductor technology controls the migra-
tion and diffusion of quasi-particles of charge in transistors and integrated circuits
( [39,41]), chemical science deals with charged molecules in water ( [3,7,8]), and bi-
ology occurs in plasma of ions and charged organic molecules in water ( [1,9,21,42]).
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The migration of ions through open ion channels is one of the most remarkable
physical problems performed by living cells. Cells are enveloped by lipid mem-
branes which are nearly impermeable to physiological ions (mainly Na+, K+, Ca++

and Cl−). One mechanism for ions to go across these membranes is through ion
channels, which are approximately cylindrical, hollow proteins with a hole down
their middle that regulates the electro-diffusion of those ions, establishing commu-
nications among cells and the external environment ( [13, 14, 18] ). In this way,
ion channels control a wide range of biological functions, in particular, many var-
ied functions are necessary for life: channels are responsible for the initiation and
continuation of the electrical signals in the nervous system; in muscle cells, a group
of channels are responsible for the delivery ions that initiate a muscle contraction
( [18]). Consequently, it is significant for one to explore the mechanism of ion
channels.

The study of ion channels generally involves two related major topics: structures
of ion channels and ionic flow properties. The physical structure of ion channels
is defined by the channel shape and the spacial distribution of permanent charges
and the polarity of these charges. For open channels with given structures, the
main interest is on the study of its electrodiffusion property. A major challenge to
examine properties of ionic flows through membrane channels lies in the nonlinear
interplays among specific system parameters involved, particularly, the boundary
concentrations and membrane potential, permanent charge distribution within the
channel, channel geometry and diffusion coefficients. On the other hand, all present
experimental measurements about ionic flow are of input-output type ( [14]); that
is, the internal dynamics within the channel cannot be measured with the current
technology. Therefore, it is extremely difficult to extract coherent properties or
to formulate specific characteristic quantities from the experimental measurements.
Without knowing what to simulate among the potentially rich behavior presented
by ion channel problems, it is also difficult for numerical simulations to conduct any
systematic studies.

Mathematical analysis plays important and unique roles for generalizing and
understanding the principles that allow control of electrodiffusion, explaining me-
chanics of observed biological phenomena and for discovering new ones, assum-
ing a more or less explicit solution of the associated mathematical model can be
obtained. Recently, there have been some successes in mathematical analysis of
Poisson-Nernst-Planck (PNP) models for ionic flows through membrane channels.
Particularly, for those ( [4–6, 10, 11, 16, 17, 26, 27, 29–31, 33, 37, 46] etc.) that were
studied under the dynamical system framework of geometric singular perturbation
analysis, interesting phenomena of ionic flows were observed for relatively simple
setups. To be specific, rich effect of permanent charge on cation flux and anion flux
was discovered ( [27, 47]), a mechanism of declining phenomenon − increasing of
the transmembrane electrochemical potential of an ion species in a particular way
leads to decreasing of the ionic flux, was revealed ( [47]), and critical values for ionic
flows were formulated ( [4–6,10,17,25,27,29,32,46]).

In current work, we analyze a PNP system with nonzero but small permanent
charges. Our main interest is the effect on the I-V relation, which is the main tool
to characterize the most two relevant properties of ion channels: permeation and
selectivity. One is able to extract the I-V relation from solutions of the PNP system.
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1.1. One-dimensional Poisson-Nernst-Planck models
PNP system is a basic macroscopic model for electrodiffusion of charges through ion
channels ( [9,12,15,19–21,24,35,36,38], etc.). Under various reasonable conditions,
one can derive the PNP system as a reduced model from molecular dynamics,
Boltzmann equations, and variational principles ( [2, 22,23,40]).

A quasi-one-dimensional steady-state PNP model for a mixtures of n charged
particles though a single channel reads ( [34])

1

A(X)

d

dX

(
εr(X)ε0A(X)

dΦ

dX

)
= −e

( n∑
j=1

zjCj(X) +Q(X)

)
,

dJi

dX
= 0, −Ji =

1

kBT
Di(X)A(X)Ci(X)

dµi

dX
, i = 1, 2, · · · , n,

(1.1)

where

• e ≈ 1.60× 10−19 (C=coulomb) is the elementary charge,
• kB ≈ 1.38× 10−23 (JK−1) is the Boltzmann constant,
• T is the absolute temperature (unit K (kelvin)), it is T = 273.16 (K),
• Φ(X) is the electric potential with the unit V=Volt=JC−1,
• Q(X) is the permanent charge density of the channel (with unit 1/m3),
• ε0(X) is the local dielectric coefficient (with unit Fm−1),
• εr(X) is the relative dielectric coefficient (with unit 1),
• A(X) represents the area of the cross-section over the point X (with unit m2),
• n is the number of distinct types of ion species (with unit 1),
• for the jth ion species,

– Cj is the number density (with unit 1/m3),
– zj is the valence (the number of charges per particle with unit 1),
– µj is the electrochemical potential (with unit J=CV),
– Jj is the number flux density (with unit 1/s) – the number of particles

across each cross-section per unit time;
– Dj(X) is the diffusion coefficient (with unit m2/s).

The boundary conditions are, for i = 1, 2, · · · , n,

Φ(0) = V, Ci(0) = Li > 0; Φ(l) = 0, Ci(l) = Ri > 0. (1.2)

1.2. Permanent charges
It is known that the spatial distribution of side chains in a specific channel defines
the permanent charge of the channel. The permanent charge is the key to the PNP
theory, and different channel types differ mainly in the distribution of permanent
charge. Individual channels within a channel type have the same permanent charge
since they are the same protein ( [18]). Furthermore, the role of permanent charges
in membrane channels is similar to the role of doping profiles in semiconductor
devices ( [39,44,48]).
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Very often, one model the permanent charge Q(X) through a piecewise constant
function, that is, we assume, for a partition X0 = 0 < X1 < · · · < Xm−1 < Xm = l
of [0, l] into m subintervals, Q(X) = Qj for x ∈ (Xj−1, Xj) where Qj ’s are constants
with Q1 = Qm = 0 (the intervals [X0, X1] and [Xm−1, Xm] are viewed as the
reservoirs where there is no permanent charge).

In [16], the authors established the existence and (local) uniqueness of solutions
for the problem (1.1)-(1.2) with two ion species, and the permanent charge function
is given by

Q(X) =


0, 0 < X < a,

Q0, a < X < b,

0, b < X < 1,

(1.3)

with Q0 a constant. The authors in [27] extended the work done in [16] by further
assuming Q0 in (1.3) to be small, particularly, the work focus on the permanent
charge and channel geometry effects on ionic flows. It turns out that the perma-
nent charge plays a crucial role in the nature of ionic flows and introduces a new
complicated interaction with other system parameters involved in the system, and
the various ionic fluxes. In [10, 46], the authors extended the work done in [27] by
considering the boundary layer effects on ionic flows under different setups, and
gained better understandings of the mechanism of ionic flows through membrane
channels. Recently, in [6,48], the authors considered the PNP system with multiple
cations having the same valences, beyond the existence and local uniqueness results
established via geometric singular perturbation theory, the competition between
two cations due to the small permanent charges and nonlinear interplays with other
system parameters is characterized in detail. Rich dynamics of ionic flows through
membrane channels are observed, particularly, the internal dynamics, which cannot
be detected via current technology. The studies in [6,27,48] provides better under-
standings of the qualitative properties of ionic flows through membrane channels.

1.3. Problem set-up
For definiteness, we will take the following setting in this work:

(A1) We consider three ion species with z1 = z2 = z > 0 and z3 < 0 under the
electroneutrality boundary conditions given by

n∑
k=1

zkLk =

n∑
k=1

zkRk = 0. (1.4)

(A2) The permanent charge is defined by (1.3).
(A3) For the electrochemical potential µi, we only consider the ideal component

µid
i modeled by

µid
k (X) = zkeΦ(X) + kBT ln

Ck(X)

C0
, (1.5)

with some characteristic number density C0 defined by

C0 = max
1≤i≤n

{
Li,Ri, sup

X∈[0,l]

|Q(X)|
}
. (1.6)
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(A4) We assume εr(X) = 1 and Di(X) = Di, where Di is some positive constant.

In the sequel, we will assume (A1)–(A4). We first make a dimensionless rescaling
following [18]. With C0 given in (1.6), let

ε2 =
εrε0kBT

e2l2C0
, x =

X

l
, h(x) =

A(X)

l2
, Di = lC0Di,

ϕ(x) =
e

kBT
Φ(X), ci(x) =

Ci(X)

C0
, Ji =

Ji

Di
,

V =
e

kBT
V, Li =

Li

C0
, Ri =

Ri

C0
.

(1.7)

The BVP (1.1)-(1.2) then becomes (noting that z1 = z2 = z)

ε2

h(x)

d

dx

(
h(x)

d

dx
ϕ

)
= −zc1 − zc2 − z3c3 −Q(x),

dc1
dx

+ zc1
dϕ

dx
= − J1

h(x)
,

dc2
dx

+ zc2
dϕ

dx
= − J2

h(x)
,

dc3
dx

+ z3c3
dϕ

dx
= − J3

h(x)
,

dJk
dx

= 0,

(1.8)

with the boundary conditions, for i = 1, 2, 3,

ϕ(0) = V, ci(0) = Li > 0; ϕ(1) = 0, ci(1) = Ri > 0. (1.9)

The electroneutrality boundary conditions (1.4) correspondingly reads

z(L1 + L2) + z3L3 = 0, z(R1 +R2) + z3R3 = 0. (1.10)

2. Brief description of the dynamical system frame-
work

Our analysis is based on the so-called geometric singular perturbation theory. One
may refer to [48] for details. Here, we just briefly describe the process. To get
started, we rewrite system (1.1) into a standard form for singularly perturbed sys-
tems and convert the boundary value problem (1.8)-(1.9) to a connection problem.

Upon introducing u = εϕ̇ and τ = x. System (1.1) becomes

εϕ̇ = u, εu̇ = −zc1 − zc2 − z3c3 −Q(x)− ε
hτ (τ)

h(τ)
u,

εċ1 = −zc1u− ε

h(τ)
J1, εċ2 = −zc2u− ε

h(τ)
J2, εċ3 = −z3c3u− ε

h(τ)
J3,

J̇1 = J̇2 = J̇3 = 0, τ̇ = 1,

(2.1)

where overdot denotes the derivative with respect to the variable x.
Viewing ε as a small parameter, we treat the system (2.1) to be a singularly

perturbed one with state variables (ϕ, u, c1, c2, c3, J1, J2, J3, τ) in the phase space
R9.
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For ε > 0, the rescaling x = εξ of the independent variable x gives rise to

ϕ′ = u, u′ = −zc1 − zc2 − z3c3 −Q(x)− ε
hτ (τ)

h(τ)
u,

c′1 = −zc1u− ε

h(τ)
J1, c′2 = −zc2u− ε

h(τ)
J2, c′3 = −z3c3u− ε

h(τ)
J3,

J ′
1 = J ′

2 = J ′
3 = 0, τ ′ = ε,

(2.2)

where prime denotes the derivative with respect to the variable ξ.
Let BL and BR be the subsets of the phase space R9 defined by

BL ={(V, u, L1, L2, L3, J1, J2, J3, 0) ∈ R9 : arbitrary u, J1, J2, J3},
BR ={(0, u, R1, R2, R3, J1, J2, J3, 1) ∈ R9 : arbitrary u, J1, J2, J3}.

(2.3)

Then the original boundary value problem is equivalent to a connecting problem:
finding a solution of (2.1) or (2.2) from BL to BR (refer to [28] for more details).

Considering the jumps of the function (1.3) at x = a and x = b, we divide the
interval [0, 1] into three subintervals [0, a], [a, b] and [b, 1], where the intervals [0, a]
and [b, 1] represent the reservoirs, and the interval [a, b] represents the channel.
To construct a singular orbit over the whole interval [0, 1], we first construct a
singular orbit on each of the subintervals. We first preassign the values of ϕ, c1, c2
and c3 at x = a and x = b:

ϕ(a) = ϕ[a], ck(a) = c
[a]
k ; ϕ(b) = ϕ[b], ck(b) = c

[b]
k , k = 1, 2, 3. (2.4)

These eight unknown values will be determined along our construction of a
singular orbit on the whole interval [0, 1] (See Figure 1 adopted from [48] for a more
intuitive illustration).

(i) The singular orbit on [0, a] consists of two boundary layers Γ0
l and Γa

l and one
regular layer Λl with (ϕ, c1, c2, c3, τ) being

(V, L1, L2, L3, 0) at x = 0 and (ϕ[a], c
[a]
1 , c

[a]
2 , c

[a]
3 , a) at x = a.

Once (ϕ[a], c
[a]
1 , c

[a]
2 , c

[a]
3 ) is given, the flux densities J l

k and the value ul(a) are
uniquely determined.

(ii) The singular orbit on [a, b] consists of two boundary layers Γa
m and Γb

m and
one regular layer Λm with (ϕ, c1, c2, c3, τ) being

(ϕ[a], c
[a]
1 , c

[a]
2 , c

[a]
3 , a) at x = a and (ϕ[b], c

[b]
1 , c

[b]
2 , c

[b]
3 , b) at x = b.

Once (ϕ[a], c
[a]
1 , c

[a]
2 , c

[a]
3 ) and (ϕ[b], c

[b]
1 , c

[b]
2 , c

[b]
3 ) are given, the flux densities Jm

k

and the value um(a) and um(b) are uniquely determined.
(iii) The singular orbit on [b, 1] consists of two boundary layers Γb

r and Γ1
r and one

regular layer Λr with (ϕ, c1, c2, c3, τ) being

(ϕ[b], c
[b]
1 , c

[b]
2 , c

[b]
3 , b) at x = b and (0, R1, R2, R3, 1) at x = 1.

Once (ϕ[b], c
[b]
1 , c

[b]
2 , c

[b]
3 ) is given, the flux densities Jr

k and the value ur(b) are
uniquely determined.
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Figure 1. Illustration of a singular orbit projected to the space of (u,
∑

zkck, τ) under current setup.

To obtain a singular orbit on the whole interval [0, 1], one need

J l
k = Jm

k = Jr
k , ul(a) = um(a), um(b) = ur(b), k = 1, 2, 3. (2.5)

This consists of eight conditions. The number of conditions is exactly the same
as the number of unknowns in (2.4).

The singular orbit constructed above consists of nine pieces Γ0
l ∪Λl ∪Γa

l ∪Γa
m ∪

Λm ∪ Γb
m ∪ Γb

r ∪ Λr ∪ Γ1
r. Once a singular orbit is constructed, one then can apply

Exchange Lemma, to show that, for ε > 0 small, there is a unique solution close to
the singular orbit (see Theorem 1 in [48] for details).

3. Effects on I-V relations from small permanent
charges

We first recall some results from [48], and our discussion will take great advantage of
them. In [48], the matching conditions (2.5) leads to the set of nonlinear algebraic
equations, for k = 1, 2, which eventually determines the existence and local unique
of singular orbits,

0 = C [a]
(
ez(ϕ

[a]−ϕ[a,m]) − ez(ϕ
[a]−ϕ[a,l])

)
+ c

[a]
3

(
ez3(ϕ

[a]−ϕ[a,m]) − ez3(ϕ
[a]−ϕ[a,l])

)
+Q0(ϕ

[a] − ϕ[a,m]),

0 = C [b]
(
ez(ϕ

[b]−ϕ[b,r]) − ez(ϕ
[b]−ϕ[b,m])

)
+ c

[b]
3

(
ez3(ϕ

[b]−ϕ[b,r]) − ez3(ϕ
[b]−ϕ[b,m])

)
−Q0(ϕ

[b] − ϕ[b,m]),

0 = zc
[a]
1 ez(ϕ

[a]−ϕ[a,m]) + zc
[a]
2 ez(ϕ

[a]−ϕ[a,m]) + z3c
[a]
3 ez3(ϕ

[a]−ϕ[a,m]) +Q0,

0 = zc
[b]
1 ez(ϕ

[b]−ϕ[b,m]) + zc
[b]
2 ez(ϕ

[b]−ϕ[b,m]) + z3c
[b]
3 ez3(ϕ

[b]−ϕ[b,m]) +Q0,

Jk = A1B1
Lk − c

[a,l]
k ez(ϕ

a,l−V )

H(a)
= A2B2

c
[b,r]
k −Rke

−zϕ[b,r]

H(1)−H(b)
,
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J3 = − z

z3
A1

lnL− lnC [a,l]ez3(ϕ
a,l−V )

H(a)
= − z

z3
A2

lnC [b,r] − lnRe−z3ϕ
[b,r]

H(1)−H(b)
,

ϕ[b,m] = ϕ[a,m] − T cy0, c
[b,m]
1 =

J2c
[a,m]
1 − J1c

[a,m]
2

J1 + J2
ezT

cy0 − J1 · A3(y0),

c
[b,m]
2 =

J1c
[a,m]
2 − J2c

[a,m]
1

J1 + J2
ezT

cy0 − J2 · A3(y0),

Tm =
(z − z3)(C

[b,m] − C [a,m]) + z3Q0(ϕ
[b,m] − ϕ[a,m])

z3(H(b)−H(a))
. (3.1)

where, for k = 1, 2,

ϕL = V, cL1 = L1, cL2 = L2, cL3 = L3, ϕ[a,l] = ϕ[a] − 1

z − z3
ln

−z3c
[a]
3

zC [a]
,

c
[a,l]
k = c

[a]
k

(−z3c
[a]
3

zC [a]

) z
z−z3

, c
[a,l]
3 = c

[a]
3

(−z3c
[a]
3

zC [a]

) z3
z−z3

,

c
[b,r]
k = c

[b]
k

(−z3c
[b]
3

zC [b]

) z
z−z3

, cb,r3 = c
[b]
3

(−z3c
[b]
3

zC [b]

) z3
z−z3

,

ϕ[b,r] = ϕ[b] − 1

z − z3
ln

−z3c
[b]
3

zC [b]
, ϕR = 0, cR1 = R1, cR2 = R2, cR3 = R3,

c
[a,m]
k = c

[a]
k ez(ϕ

[a]−ϕ[a,m]), c
[a,m]
3 = c

[a]
3 ez3(ϕ

[a]−ϕ[a,m]),

c
[b,m]
k = c

[b]
k ez(ϕ

[b]−ϕ[b,m]), c
[b,m]
3 = c

[b]
3 ez3(ϕ

[b]−ϕ[b,m]),

A1 =
L− C [a,l]

lnL− lnC [a,l]
, B1 =

lnL− lnC [a,l]ez(ϕ
[a,l]−V )

L− C [a,l]ez(ϕ[a,l]−V )
,

A2 =
C [b,r] −R

lnC [b,r] − lnR
, B2 =

lnC [b,r] − lnRe−zϕ[b,r]

C [b,r] −Re−zϕ[b,r]
,

A3(y) =
Q0

zTm

(
1− ezz3T

my
)
− C [a,m]

J1 + J2
ezz3T

my.

(3.2)

Here,

Tm = J1 + J2 + J3, T c = z(J1 + J2) + z3J3, L = L1 + L2, R = R1 +R2,

C [a] = c
[a]
1 + c

[a]
2 , C [b] = c

[b]
1 + c

[b]
2 , C [a,l] = c

[a,l]
1 + c

[a,l]
2 ,

C [a,m] = c
[a,m]
1 + c

[a,m]
2 , C [b,r] = c

[b,r]
1 + c

[b,r]
2 .

(3.3)

Assuming |Q0| is small, the author in [48] employed regular perturbation analysis
to expand all unknown quantities in (3.1)-(3.2) in Q0, for example, for k = 1, 2, 3,

ϕ[a] = ϕ
[a]
0 + ϕ

[a]
1 Q0 + ϕ

[a]
2 Q2

0 + o(Q2
0), ϕ[b] = ϕ

[b]
0 + ϕ

[b]
1 Q0 + ϕ

[b]
2 Q2

0 + o(Q2
0),

c
[a]
k = c

[a]
k0 + c

[a]
k1Q0 + c

[a]
k2Q

2
0 + o(Q2

0), c
[b]
k = c

[b]
k0 + c

[b]
k1Q0 + c

[b]
k2Q

2
0 + o(Q2

0),

y0 = y00 + y01Q0 + y02Q
2
0 + o(Q2

0), Jk = Jk0 + Jk1Q0 + Jk2Q
2
0 + o(Q2

0).

(3.4)

Upon introducing

α =H(a)/H(1), β = H(b)/H(1), (3.5)
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and, corresponding to (3.3),

Tm
0 = J10 + J20 + J30, C

[a]
i =c

[a]
1i + c

[a]
2i , Cb

i = c
[b]
1i + c

[b]
2i , i = 0, 1, (3.6)

the following result is established in [48], which is the starting point of current work.

Lemma 3.1. Assume the conditions (1.10). For k = 1, 2, one has

Jk0 =
f0(L,R)f1(L,R;V )

H(1)

(
Lk −Rke

−zV
)
,

J30 = − z

z3

f0(L,R)

H(1)
(lnL− lnR+ z3V ) ,

Jk1 = f1(L,R;V )
A (z3(1−B)V + lnL− lnR)

(z − z3)H(1) (lnL− lnR)
2

(
Lk −Rke

−zV
)
,

J31 =
A (z3V + lnL− lnR) (z(1−B)V + lnL− lnR)

(z3 − z)H(1) (lnL− lnR)
2 ,

(3.7)

where

f0(L,R) =
L−R

lnL− lnR
, f1(L,R;V ) =

lnL− lnR+ zV

L−Re−zV
,

A =
(α− β) (L−R) f0(L,R)

ω(α)ω(β)
, B =

lnω(β)− lnω(α)

A

with ω(s) = (1− s)L+ sR.

For later discussion, we recall the function γ(t) for t > 0 from [48] with

γ(t) =
t ln t− t+ 1

(t− 1) ln t
, for t ̸= 1, and γ(1) =

1

2
. (3.8)

Some related results (corresponding to Lemmas 6, 7 and 8 in [48]) are restated
as follows:

Lemma 3.2. For t > 0, one has 0 < γ(t) < 1, γ′(t) > 0, limt→0 γ(t) = 0 and
lim
t→∞

γ(t) = 1.

Lemma 3.3. Set t = L/R. A has the same sign with that of R−L, that is, if t > 1,
then A < 0, and if t < 1, then A > 0.

We comment that for the analysis in Section 3.1, the sign of A(1−B) is crucial.
Since the sign of A has been handled in Lemma 3.3, we next characterize the sign
of 1−B.

Lemma 3.4. Suppose t = L/R > 1 and γ(t) is given in (3.8). One has B > 0,
and 1−B → 0 as t → 1. Moreover,

(i) if γ(t) ≤ α, then z
z3

< 0 < 1−B and V1 < 0 < V2;
(ii) if α < γ(t) < α− z

z3 ln t , then, there exists a unique β1 ∈ (α, 1) such that
(ii1) z

z3
< 1−B < 0 and V2 < V1 < 0, for β ∈ (α, β1);

(ii2) z
z3

< 1−B = 0, for β = β1;
(ii3) z

z3
< 0 < 1−B and V1 < 0 < V2, for β ∈ (β1, 1).
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(iii) if γ(t) > α− z
z3 ln t , then, there exists a unique β∗

1 ∈ (α, β1) such that
(iii1) 1−B < z

z3
< 0 and V1 < V2 < 0, for β ∈ (α, β∗

1);
(iii2) 1−B = z

z3
< 0 and V2 = V1 < 0, for β = β∗

1 ;
(iii3) z

z3
< 1−B < 0 and V2 < V1 < 0, for β ∈ (β∗

1 , β1);
(iii4) z

z3
< 1−B = 0, for β = β1;

(iii5) z
z3

< 0 < 1−B and V1 < 0 < V2, for β ∈ (β1, 1).

3.1. Effects on I-V relations from small permanent charge
We are interested in studying the effect on the I-V relations from nonzero but small
permanent charge, which additionally depends on nonlinear interaction with other
physical parameters. To be specific, we consider the I-V relations of the form

I(V ) = I0(V ) +Q0I1(V ) + o(Q0),

where, from Lemma 3.1 with L∗
d = D1L1 +D2L2 and R∗

d = D1R1 +D2R2, one has

I0(V ) = zD1J10 + zD2J20 + z3D3J30

=
zf0(L,R)

H(1)

(
f1(L,R;V )

(
L∗
d −R∗

de
−zV

)
−D3 (lnL− lnR+ z3V )

)
,

I1 = zD1J11 + zD2J21 + z3D3J31

=
Azz3(1−B)

(z − z3)H(1) (lnL− lnR)
2

(
z (V − V1) (V − V2)

L−Re−zV

(
L∗
d −R∗

de
−zV

)
− z3D3

(
V − z

z3
V1

)(
V − z3

z
V2

))
,

(3.9)

where

V1 =
1

z
ln

R

L
, V2 =

1

z3(1−B)
ln

R

L
. (3.10)

The leading term I1 that contains the small permanent charge effects is our main
concern, and the sign of A(1−B) characterized by Lemmas 3.3 and 3.4 is crucial in
our following discussion. For simplicity, we will focus on the case with A(1−B) > 0,
and similar arguments can be applied to the case with A(1−B) < 0.

For convenience, we introduce some functions of the potential V , viewing L, R,
L∗
d, R∗

d, V1, V2, D3, z and z3 as fixed parameters, ft1(V ) and gt1(V ) as follows:

ft1(V )=z (2V −V1−V2)
(
L−Re−zV

)(
L∗
de

zV −R∗
d

)
+z2

(
R∗

dL−L∗
dR

)
(V−V1) (V−V2)

− z3D3

(
2V − z

z3
V1 −

z3
z
V2

)(
L−Re−zV

)2
ezV ,

gt1(V ) =z
[
2
(
L∗
d −R∗

de
−zV

)
+ z (2V − V1 − V2)

(
L∗
d +R∗

de
−zV

)]
− z3D3

[
2
(
L−Re−zV

)
+ z

(
2V − z

z3
V1 −

z3
z
V2

)(
L+Re−zV

)]
.

(3.11)

For the leading term I1 as a function of the membrane potential V , one has

dI1
dV

=
zz3A(1−B)

(z − z3)H(1) (lnL− lnR)
2

e−zV

(L−Re−zV )
2 ft1(V ),
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and
f ′
t1(V ) =

dft1
dV

= ezV
(
L−Re−zV

)
gt1(V ).

Straightforward calculations give the following results and we skip their proofs.

Lemma 3.5. V = Vt0 is the unique inflection point of gt1(V ) given by

Vt0 =
6
(
zR∗

d − z3D3R
)
+ z2R∗

d(V1 + V2)− zz3D3R
(

z
z3
V1 +

z3
z V2

)
2z

(
zR∗

d − z3D3R
) .

Furthermore, g′t1(V ) attains its global minimum at V = Vt0, and

g′t1(Vt0) = 2z
(
zL∗

d − z3D3L−
(
zR∗

d − z3D3R
)
e−zVt0

)
.

Lemma 3.6. For the function gt1(V ), one has

(i) if g′t1(Vt0) ≥ 0, then g′t1(V ) ≥ 0 for all V . Furthermore, gt1(V ) has a unique
zero Vt1;

(ii) if g′t1(Vt0) < 0, then there exist two zeros of g′t1(V ), say Vt2 and Vt3 with Vt2 <
Vt3 for convenience. gt1(V ) increases on (−∞, Vt2), decreases on (Vt2, Vt3),
and increases on (Vt3,∞). gt1(V ) attains its local maximum at V = Vt2 and
its local minimum at V = Vt3. Furthermore,
(ii1) if gt1(Vt2) > 0 and gt1(Vt3) = 0, then gt1(V ) has two zeros Vt3 and Vt4.
(ii2) if gt1(Vt2) > 0 and gt1(Vt3) < 0, then gt1(V ) has three zeros Vt5, Vt6 and

Vt7, for convenience, we assume that Vt5 < Vt6 < Vt7.
(ii3) if gt1(Vt2) > 0 and gt1(Vt3) > 0, then gt1(V ) has a unique zero Vt8.
(ii4) if gt1(Vt2) < 0 and gt1(Vt3) < 0, then gt1(V ) has a unique zero Vt9.
(ii5) if gt1(Vt2) = 0 and gt1(Vt3) < 0, then gt1(V ) has two zeros Vt2 and Vt10.

Theorem 3.1. Assume B ̸= 1, A(1 − B) > 0 and Q0 > 0 small. For the leading
term I1 containing the small permanent charge effects, one has

(i) if one of the following conditions holds,
(a) g′t1(Vt0) ≥ 0;
(b) g′t1(Vt0) < 0, gt1(Vt2) > 0, and gt1(Vt3) ≥ 0;
(c) g′t1(Vt0) < 0, gt1(Vt2) ≤ 0, and gt1(Vt3) < 0;
(d) g′t1(Vt0) < 0, gt1(Vt2) > 0, gt1(Vt3) < 0, ft1(Vt6) ≤ 0; and ft1(Vt7) < 0;
(e) g′t1(Vt0) < 0, gt1(Vt2) > 0, gt1(Vt3) < 0, ft1(Vt6) > 0; and ft1(Vt7) ≥ 0;

where some notations are introduced in the proof, then, there exists a criti-
cal V c

g1 such that I1 increases on
(
− ∞, V c

g1

)
and decreases on

(
V c
g1,+∞

)
.

Furthermore,
(i1) if I1(V c

g1) > 0, then, I1 has two zeros V z
g1 and V z

g2 with V z
g1 < V z

g2, such
that, if V < V z

g1 or V > V z
g2 (resp. V z

g1 < V < V z
g2), then I1 < 0 (resp.

I1 > 0);
(i2) if I1(V c

g1) = 0, then, I1 has a unique zero V z
g3, in fact, V z

g3 = V 1c
g , such

that, if V < V z
g3 or V > V z

g3, then I1 < 0;
(i3) if I1(V c

g1) < 0, then, for any V , I1 < 0.
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(ii) If g′t1(Vt0) < 0, gt1(Vt2) > 0, gt1(Vt3) < 0, ft1(Vt6) > 0; and ft1(Vt7) < 0,
then, there exists three critical potentials V c

g2, V c
g3 and V c

g4, such that I1
increases on

(
− ∞, V c

g2

)
, decreases on

(
V c
g2, V

c
g3

)
, increases on

(
V c
g3, V

c
g4

)
,

and decreases on
(
V c
g4,+∞

)
. Furthermore,

(ii1) if I1(V c
g2) < 0 and I1(V c

g4) < 0, then, for any V , I1 < 0;
(ii2) if I1(V c

g2) < 0 and I1(V c
g4) = 0, then, I1 has a unique zero V z

g4, in fact,
V z
g4 = V c

g4, such that, if V ̸= V z
g4, then I1 < 0;

(ii3) if I1(V c
g2) < 0 and I1(V c

g4) > 0, then, I1 has two zeros V z
g5 and V z

g6 with
V z
g5 < V z

g6, such that, if V < V z
g5 or V > V z

g6 (resp. V z
g5 < V < V z

g6),
then, I1 < 0 (resp. I1 > 0);

(ii4) if I1(V c
g2) = 0 and I1(V c

g4) < 0, then, I1 has a unique zero V z
g7, in fact,

V z
g7 = V c

g2, such that, if V ̸= V z
g7, then I1 < 0;

(ii5) if I1(V c
g2) = 0 and I1(V c

g4) = 0, then, I1 has two zeros V z
g8 and V z

g8 with
V z
g8 < V z

g9, such that, if V < V z
g8 or V > V z

g9 or V z
g8 < V < V z

g9, then,
I1 < 0;

(ii6) if I1(V c
g2) = 0 and I1(V c

g4) > 0, then, I1 has three zeros V z
g10, V z

g11 and
V z
g12 with V z

g10 < V z
g11 < V z

g12, in fact, V z
g10 = V c

g2, such that, if V < V z
g10

or V > V z
g12 or V z

g10 < V < V z
g11 (resp. V z

g11 < V < V z
g12), then, I1 < 0

(resp. I1 > 0);
(ii7) if I1(V c

g2) > 0 and I1(V c
g4) < 0, then, I1 has two zeros V z

g13 and V z
g14 with

V z
g13 < V z

g14, such that, if V < V z
g13 or V > V z

g14 (resp. V z
g13 < V < V z

g14),
then, I1 < 0 (resp. I1 > 0);

(ii8) if I1(V c
g2) > 0 and I1(V c

g4) = 0, then, I1 has three zeros V z
g15, V z

g16 and
V z
g17 with V z

g15 < V z
g16 < V z

g17, in fact, V z
g17 = V c

g4, such that, if V < V z
g15

or V > V z
g17 or V z

g16 < V z
g17 (resp. V z

g15 < V < V z
g16), then, I1 < 0 (resp.

I1 > 0);
(ii9) if I1(V c

g2) > 0 and I1(V c
g4) > 0, then, I1 has four zeros V z

g18, V z
g19, V z

g20,
and V z

g21 with V z
g18 < V z

g19 < V z
g20 < V z

g21, such that, if V < V z
g18 or V >

V z
g21 or V z

g19 < V < V z
g20 (resp. V z

g18 < V < V z
g19 or V z

g20 < V < V z
g21),

then, I1 < 0 (resp. I1 > 0);
(ii10) if I1(V c

g2) > 0 and I1(V c
g3) = 0, then, I1 has three zeros V z

g22, V z
g23 and

V z
g24 with V z

g22 < V z
g23 < V z

g24, in fact, V z
g23 = V c

g3, such that, if V < V z
g22

or V > V z
g24 (resp. V z

g22 < V < V z
g23 or V z

g23 < V z
g24), then, I1 < 0 (resp.

I1 > 0);
(ii11) if I1(V c

g2) > 0 and I1(V c
g3) > 0, then, I1 has two zeros V z

g25 and
V z
g26 with V z

g25 < V z
g26, such that, if V < V z

g25 or V > V z
g26 (resp.

V z
g25 < V < V z

g26), then, I1 < 0 (resp. I1 > 0).

Proof. The discussion is based on Lemma 3.5 and Lemma 3.6, which consists of
two parts. Part one deals with the monotone results for statements (i) and (ii).
More precisely, treating I1 as a function of the potential V , we identify the critical
points of I and study the sign of dI

dV , from which one gets the information of the
monotonicity of I. In the second part, we examine the zeroes of I and its sign.
Part I: Critical potentials and Monotonicity of I. We first focus on the
conditions (a)-(e) in (i).

(a) If g′t1(Vt0) ≥ 0, from Lemma 3.6, f ′
t1(V ) has two zeros V1 and Vt1. Further-

more, V1 > Vt1 if gt1(V1) > 0; V1 = Vt1 if gt1(V1) = 0; and V1 < Vt1 if gt1(V1) < 0.
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For V1 < Vt1, one has ft1(V ) increases on (−∞, V1), decreases on (V1, Vt1), and
increases on (Vt1,∞). Note that ft1(V ) attains its local maximum at V = V1 and
ft1(V1) = 0. Together with lim

V→−∞
ft1(V ) = −∞ and lim

V→∞
ft1(V ) = ∞. ft1(V ) has

an additional zero, say V 1c
g with V 1c

g > V1. Note also that gt1(V ) increases on
(−∞, Vt1) and V1 < Vt1. We have gt1(V1) < gt1(Vt1) = 0. Therefore, as V → V1,

dI1
dV

=
z3A(1−B)ezV1gt1(V1)

2(z − z3)H(1) (lnL− lnR)
2
R

> 0.

We conclude that dI1

dV < 0 for V > V 1c
g , and dI1

dV > 0 for V < V 1c
g . The result also

holds for the case with V1 ≥ Vt1, which can be discussed similarly.
The discussion for (b): g′t1(Vt0) < 0, gt1(Vt2) > 0, and gt1(Vt3) ≥ 0; and (c):

g′t1(Vt0) < 0, gt1(Vt2) ≤ 0, and gt1(Vt3) < 0 follows exactly the same as this in (a).
As for other cases, one has if g′t1(Vt0) < 0, gt1(Vt2) > 0 and gt1(Vt3) < 0, then it

follows from Lemma 3.6 that f ′
t1(V ) has four zeros V1, Vt5, Vt6 and Vt7. Without

loss of generality, we assume V1 < Vt5 < Vt6 < Vt7 (other cases can be argued
similarly). Then, ft1(V ) increases on (−∞, V1), decreases on (V1, Vt5), increases on
(Vt5, Vt6), decreases on (Vt6, Vt7), and increases on (Vt7,∞). Note that ft1 attains
its local maximum at V = V1, and ft1(V1) = 0. One immediately has ft1(Vt5) < 0.
For the values of ft1(Vt6) and ft1(Vt7), one has the following three cases

• ft1(Vt6) ≤ 0 and ft1(Vt7) < 0 corresponding to case (d) of (i);
• ft1(Vt6) > 0 and ft1(Vt7) ≥ 0 corresponding to case (e) of (i);
• ft1(Vt6) > 0 and ft1(Vt7) < 0 corresponding to the statement (ii).

The discussion for those cases is similar, we take ft1(Vt6) < 0 and ft1(Vt7) < 0 for
example. It is easy to see that if ft1(Vt6) < 0 and ft1(Vt7) < 0, then ft1(V ) has two
zeros V1 and V 1c

g , from the fact the ft1(V ) → +∞ as V → +∞. Note that dI1

dV > 0

as V → V1, one then has, dI1

dV < 0 if V > V 1c
g , and dI1

dV > 0 if V < V 1c
g .

Part II: Sign of I1. Together with the arguments in our first step, the results of
the sign of I1 follow directly from the observation that I1(V ) → −∞ as V → ±∞.

Remark 3.1. In Theorem 3.1,

(i) To clarify the notations introduced in this work, we emphasize that for the
notation V c

gk and V z
gk in Theorem 3.1, g stands for “general”; c stands for

“critical”, which corresponds to the critical point of the term I1(V ); while z
stands for “zero”, which corresponds to the zero of I1(V ) = 0.

(ii) The critical potentials identified in current work further depend on the nonlin-
ear interaction with other physical parameters involved in the system, which
has been analyzed in great details (Lemmas 3.3, 3.4, 3.5, 3.6 and Theorem 3.1).
Because of the complexity and the nonlinearity, although explicit expressions
of these critical potentials, except some special ones, cannot be obtained, we
would like to point out that, for V z

gk, the zeros of I1(V ), identified in The-
orem 3.1, one is able to take an experimental I-V relation as I(V ;Q0) and
numerically (or analytically) compute I0(V ; 0) for ideal case which allows one
to obtain an estimate of V z

gk by examing the zeros of I(V ;Q0)− I0(V ; 0). The
characterization of these critical potentials provides better understanding of
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the ionic flow properties of interest, and could stimulate further studies on
related ion channel problems.

(iii) Our discussion in Theorem 3.1 focuses on the case with A < 0 and 1−B < 0.
Similar discussions can be applied to other cases, such as A < 0 and 1−B > 0,
which has been studied in [45] with A replaced by M and B replaced by N .

We finally point out that compared to the work done in [27] for the PNP sys-
tem with two oppositely charged particles, the qualitative properties of ionic flows
studied in current work is more complicated and more rich, and new phenomena
are observed (one may also refer to [5] for more details). Take the leading term I1
that contains the permanent charge effects for example, in [27], it is a quadratic
function in the potential V , which has at most two critical potentials V ±

q such that
I1(V ±

q ) = 0 (the third statement in Theorem 4.15 in [27]), however, in this paper,
from (3.9), the following factors is involved in I1(V )

z (V − V1) (V − V2)

L−Re−zV

(
L∗
d −R∗

de
−zV

)
− z3D3

(
V − z

z3
V1

)(
V − z3

z
V2

)
,

from which one is able to obtain four zeros ((ii9) in Theorem 3.1). This is not
surprising because much more ion interactions are involved in our current system.
Both works demonstrate the key role of the permanent charge in the study of ionic
flows through membrane channels.

4. Numerical simulations
To better understand the analytical results obtained in current work, we further
perform numerical simulations to provide a more intuitive illustrations. To get
started, the system (1.1)-(1.9) is rewritten as a system of first order ordinary dif-
ferential equations. We introduce u = εϕ̇, it then follows that

εϕ̇ = u, εu̇ = −z1c1 − z2c2 − z3c3 −Q(x)− ε
hx(x)

h(x)
u,

εċ1 = −z1c1u− ε
J1
h(x)

, εċ2 = −z2c2u− ε
J2
h(x)

, εċ3 = −z3c3u− ε
J3
h(x)

,

J̇1 = J̇2 = J̇3 = 0

(4.1)

with boundary conditions

ϕ(0) = V, ck(0) = Lk; ϕ(1) = 0, ck(1) = Rk, k = 1, 2, 3. (4.2)

For our simulation to (4.1)-(4.2), we further choose z1 = z2 = −z3 = 1, D1 = 2,
D2 = 8, D3 = 10, a = 0.475, b = 0.6266, ε = 0.01, Q0 = 0.01, r0 = 0.5

Q(x) =


0, 0 < x < a,

Q0, a < x < b,

0, b < x < 1,

and h(x) =


π
(
− x+ r0 + a

)2
, 0 ≤ x < a,

πr20, a ≤ x < b,

π
(
x+ r0 − b

)2
, b ≤ x < 1.

(4.3)

For the choice of h(x), please refer to [48] for explanations. Recall that

L = L1 + L2, R = R1 +R2, L∗
d = D1L1 +D2L2, R∗

d = D1R1 +D2R2,
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α =
H(a)

H(1)
, β =

H(b)

H(1)
, t =

L

R
.

It follows from h(x) defined in (4.3) that α = 0.4 and β = 0.649.
We point our that our numerical simulations under the above setups are con-

sistent with our analytical results. More precisely, we conduct the following six
experiments by choosing different values for Lk and Rk for k = 1, 2:

(c1) L1 = 24, L2 = 6, R1 = 9 and R2 = 2,
(c2) L1 = 16, L2 = 5, R1 = 1 and R2 = 5,
(c3) L1 = 14.4866, L2 = 3.14, R1 = 1 and R2 = 9,
(c4) L1 = 16.4, L2 = 1, R1 = 1 and R2 = 9,
(c5) L1 = 14.11315, L2 = 1, R1 = 1 and R2 = 9,
(c6) L1 = 15, L2 = 1, R1 = 1 and R2 = 9.

Our main interest is I1(V ; ε), approximation of I1(V ; 0) defined in (3.9) given by

I1(V ; ε) = I(V ;Q0; ε)− I(V ; 0; ε).

Our numerical simulations show that

(e1) Case (c1) corresponds to (i1) in Theorem 3.1, see Figure 2;
(e2) Case (c2) corresponds to (ii1) in Theorem 3.1, see Figure 3;
(e3) Case (c3) corresponds to (ii2) in Theorem 3.1, see Figure 4;
(e4) Case (c4) corresponds to (ii3) in Theorem 3.1, see Figure 5;
(e5) Case (c5) corresponds to (ii10) in Theorem 3.1, see Figure 6;
(e6) Case (c6) corresponds to (ii9) in Theorem 3.1, see Figure 7.

The monotonicity and the sign of I1(V ; ε) can be seen clearly from the graphs in
Figures 2-7.
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Figure 2. I1(V ; ε), the approximation of I1(V ), has two zeros V z
g1 and V z

g2, and a critical point V c
g1

with V z
g1 < V c

g1 < V z
g2.

We comment that other cases in Theorem 3.1 can be tested numerically by
choosing different boundary concentrations.
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Figure 3. I1(V ; ε), the approximation of I1(V ), has no zeros, but has three critical point V c
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V c
g4 with V c

g2 < V c
g3 < V c

g4.
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5. Concluding remarks
We analyze the Poisson-Nernst-Planck system with two cations having the same
valences and one anion, which include small permanent charges. Particularly, we
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study the effects on the I-V relations from the small permanent charge. Detailed
analysis is provided, from which one can better understand the dynamics of ionic
flows, particularly the internal dynamics, which are non-intuitive and cannot be
detected by current technology. The leading term I1(V ) of the I-V relations that
contains small permanent charge effects is analyzed; critical potentials that balance
the small permanent charge effects on the I-V relations are identified, and their crit-
ical roles played in the study of ionic flow properties are characterized. Numerical
simulations are performed to provide more intuitive illustrations of the analytical
results, and they are consistent.

Finally, we would like to point out that that the setup in this work is relatively
simple, but it is reasonable for synthetic channels, and it is a starting point for
further study of more realistic models. The simple model studied allows us to
obtain a more explicit expression of the I-V relations in terms of physical parameters
of the problem so that we are able to extract concrete information of the effects
from nonzero but small permanent charges, which further depends on the nonlinear
interaction with other physical parameters. Moreover, the discussion in this simpler
setting provides better understanding of the qualitative properties of ionic flows
through membrane channels, and detailed characterization of the interplay among
different physical parameters involved in the model.
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