
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 12, Number 3, June 2022, 952–963 DOI:10.11948/20220031

LIMIT CYCLES OF THE DISCONTINUOUS
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Abstract In order to understand the dynamics of the differential systems
the limit cycles play a main role, but in general their study is not easy. These
last years an increasing interest appeared for studying the limit cycles of some
classes of discontinuous piecewise differential systems, due to the rich appli-
cations of this kind of differential systems.
Very few papers studied the limit cycles of the discontinuous piecewise differ-
ential systems in spaces different from the plane R2. Here we study the limit
cycles of a class of discontinuous piecewise differential systems on the cylinder.
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1. Introduction and statement of the main
Consider the following differential equation on the cylinder (r, θ) ∈ R× S1

dr

dθ
= a0(θ) + a1(θ)r + a2(θ)r

2 + ...+ an(θ)r
n. (1.1)

All the functions ai(θ) are continuous and 2π-periodic in the variable θ. Equation
(1.1) with n = 1 is a linear differential equation having at most one limit cycle, see
for instance [4]. While for n = 2 it is a Riccati equation with at most two limit
cycles, see [6]. For n = 3 it is an Abel equation. If a3(θ) > 0 Pliss [11] proved
that the Abel equation has at most three limit cycles (see also [3, 8]). For n ≥ 4 a
constant sign in the leading coefficient an is not sufficient to bound uniformly the
number of limit cycles (see [6, 8]). Lins Neto in [8] gave a example with at least
n+ 3 limit cycles for suitable functions a and f , for the Abel equation

dx

dθ
= εf(θ)x3 + a(θ)x2 + δx,
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where |δ| is small, a(θ) is a trigonometric polynomial of degree 1, and f(θ) is a
trigonometric polynomial of degree 2n. Calanchi and Ruf [2] proved that if in
equation (1.1) n is odd, the leading term is fixed and the remaining terms are small
enough, then the number of limit cycles is at most n.

In [1] Bakhshalizadeh and Llibre considered the discontinuous piecewise differ-
ential systems of the form

ẋ = a0(θ) + a1(θ)x+ · · ·+ an(θ)x
n, if 0 ≤ θ ≤ π,

ẋ = b0(θ) + b1(θ)x+ · · ·+ bm(θ)xm, if π ≤ θ ≤ 2π,

(1.2)

where a0(θ), a1(θ), · · · , an(θ) and b0(θ), b1(θ), · · · , bm(θ) are 2π-periodic, and gave
exact bounds for the maximum number of limit cycles. On the lines of disconti-
nuity θ = 0 and θ = π of systems (1.2), the flow is defined following the rules of
Filippov [5]. In the rest of the paper always the flow on the lines of discontinuity is
defined according with Filippov. The objective of this paper is to extend the results
on the maximum number of limit cycles obtained in [1] for the discontinuous piece-
wise differential systems on the cylinder with two straight lines of separation, to
the discontinuous piecewise differential systems on the cylinder with an arbitrary
number of lines of separation.

Let C be the cylinder {(θ, x) ∈ S1 × R}. Consider the discontinuous piecewise
differential systems on the cylinder

ẋ =
m1∑
l=0

a1l(θ)x
l, if 0 ≤ θ ≤ 2π/n,

ẋ =
m2∑
l=0

a2l(θ)x
l, if 2π/n ≤ θ ≤ 2 · 2π/n,

...

ẋ =
mk∑
l=0

akl(θ)x
l, if 2π(k − 1)/n ≤ θ ≤ 2kπ/n,

...

ẋ =
mn∑
l=0

anl(θ)x
l, if 2π(n− 1)/n ≤ θ ≤ 2π,

(1.3)

where akl(θ), for k = 1, · · ·n and l = 0, 1, · · · ,mk, are 2π-periodic functions in the
variable θ. Then H(m1, · · · ,mn) denotes the maximum number of limit cycles that
the discontinuous piecewise differential systems (1.3) can exhibit.

Corollary 1.1. The discontinuous piecewise differential systems on the cylinder C
of the form

ẋ = a0(θ) + a1(θ)x, if 0 ≤ θ ≤ 2π/3,

ẋ = b0(θ) + b1(θ)x, if 2π/3 ≤ θ ≤ 4π/3,

ẋ = c0(θ) + c1(θ)x, if 4π/3 ≤ θ ≤ 2π,

(1.4)

where ai(θ), bi(θ) and ci(θ) for i = 0, 1 are 2π-periodic functions in the variable θ,
have at most one limit cycle, i.e, H(1, 1, 1) = 1.
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Theorem 1.1. The discontinuous piecewise differential systems on the cylinder C
of the form

ẋ = a10(θ) + a11(θ)x, if 0 ≤ θ ≤ 2π/n,

ẋ = a20(θ) + a21(θ)x, if 2π/n ≤ θ ≤ 2 · 2π/n,

...

ẋ = ak0(θ) + ak1(θ)x, if 2π(k − 1)/n ≤ θ ≤ 2kπ/n,

...

ẋ = an0(θ) + an1(θ)x, if 2π(n− 1)/n ≤ θ ≤ 2π,

where ak0(θ) and ak1(θ), for k = 1, · · ·n, are 2π-periodic functions in the variable
θ, have at most one limit cycle, i.e., H(1, · · · , 1) = 1.

Corollary 1.2. The discontinuous piecewise differential systems on the cylinder C
of the form

ẋ = a0(θ) + a1(θ)x+ a2(θ)x
2, if 0 ≤ θ ≤ π,

ẋ = b0(θ) + b1(θ)x+ b2(θ)x
2, if π ≤ θ ≤ 2π,

(1.5)

where ai(θ) and bi(θ), for i = 0, 1, 2, are 2π-periodic functions in the variable θ,
have at most two limit cycles, i.e., H(2, 2) = 2.

Theorem 1.2. The discontinuous piecewise differential systems on the cylinder C
of the form

ẋ = a10(θ) + a11(θ)x+ a12x
2, if 0 ≤ θ ≤ 2π/n,

ẋ = a20(θ) + a21(θ)x+ a22x
2, if 2π/n ≤ θ ≤ 2 · 2π/n,

...

ẋ = ak0(θ) + ak1(θ)x+ ak2x
2, if 2π(k − 1)/n ≤ θ ≤ 2kπ/n,

...

ẋ = an0(θ) + an1(θ)x+ an2x
2, if 2π(n− 1)/n ≤ θ ≤ 2π,

where ak0(θ), ak1(θ) and ak2(θ), for k = 1, · · ·n, are 2π-periodic functions in the
variable θ, have at most two limit cycles, i.e., H(2, · · · , 2) = 2.

Theorem 1.3. The discontinuous piecewise differential systems on the cylinder C
of the form

ẋ = a0(θ) + a1(θ)x, if 0 ≤ θ ≤ 2π/3,

ẋ = b0(θ) + b1(θ)x+ b2(θ)x
2, if 2π/3 ≤ θ ≤ 4π/3,

ẋ = c0(θ) + c1(θ)x, if 4π/3 ≤ θ ≤ 2π,

(1.6)



Limit cycles of the piecewise differential systems 955

where ai(θ), bi(θ) and ci(θ), for i = 0, 1 or 2, are 2π-periodic functions in the
variable θ, have at most two limit cycles, i.e., H(1, 2, 1) = 2.

According to the above Corollaries 1.1, 1.2 and Theorems 1.1, 1.2, 1.3, we can
conclude the following corollary.

Corollary 1.3. The discontinuous piecewise differential systems on the cylinder
C of the form (1.3) with max{m1, · · · ,mn} ≤ 2 have at most one limit cycle if
m1 = · · · = mn = 1, i.e., H(1, · · · , 1) = 1, otherwise H(m1, · · · ,mn) = 2.

Theorem 1.4. For every positive integer k there are discontinuous piecewise dif-
ferential systems on the cylinder C of the form

ẋ = a(θ)x, if 0 ≤ θ ≤ 2π/3,

ẋ = b2(θ)x
2 + εb3(θ)x

3, if 2π/3 ≤ θ ≤ 4π/3,

ẋ = c(θ)x, if 4π/3 ≤ θ ≤ 2π,

(1.7)

where a(θ), c(θ) and bi(θ) for i = 2, 3, are 2π-periodic functions in the variable θ,
having at least k limit cycles on the cylinder, i.e., H(1, 3, 1) = +∞.

According to the above Theorem 1.4, we can conclude the following corollary.

Corollary 1.4. The discontinuous piecewise differential systems on the cylinder C
of the form (1.3) with max{m1, · · · ,mn} ≥ 3 have at least k limit cycles for any
positive integer k, i.e., H(m1, · · · ,mn) = +∞.

All the results of this section are proved in section 2.
Here we study the limit cycles of piecewise differential systems on the cylin-

der separated by straight lines. People interested in the limit cycles of piecewise
differential systems in the plane R2 and separated by straight lines can see the
papers [9, 10] and the references cited there.

2. Proof of the main results

In this section we will prove the main results as stated in Corollaries 1.1, 1.2, 1.4
and Theorems 1.1, 1.2, 1.3, 1.4.

Proof of Corollary 1.1. Consider the discontinuous piecewise differential systems
(1.4). The solution of the first equation of (1.4) satisfying x(0) = ρ is

x1(θ, ρ) = (I1(θ) + ρ) eK1(θ),

I1(θ) =

∫ θ

0

a0(s)e
−K1(s)ds,

K1(s) =

∫ s

0

a1(w)dw.
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The solution of the second equation of (1.4) satisfying x(2π/3) = x1(2π/3, ρ) is

x2(θ, x1(π/3, ρ)) = (I2(θ) + x1(π/3, ρ)) e
K2(θ),

I2(θ) =

∫ θ

2π
3

b0(s)e
−K2(s)ds,

K2(s) =

∫ s

2π
3

b1(w)dw,

and the solution of the third equation of (1.4) satisfying x(4π/3)=x2(4π/3, x1(2π/3, ρ))

is

x3(θ, x2(4π/3, x1(2π/3, ρ))) = (I3(θ) + x2(4π/3, x1(2π/3, ρ))) e
K3(θ),

I3(θ) =

∫ θ

4π
3

c0(s)e
−K3(s)ds,

K3(s) =

∫ s

4π
3

c1(w)dw.

Define the function

Π1(ρ) = x3(2π, x2(4π/3, x1(2π/3, ρ)))− ρ

= eK3(2π)
(
eK1(2π/3)+K2(4π/3)I1(2π/3)+eK2(4π/3)I2(4π/3)+I3(2π)

)
+(eK1(2π/3)+K2(4π/3)+K3(2π) − 1)ρ.

Thus the periodic orbits of the discontinuous piecewise differential systems (1.4) are
associated with the zeros of the linear equation Π1(ρ) = 0. Clearly there is at most
one zero. Thus the discontinuous piecewise differential systems (1.4) have at most
one limit cycle.

The proof of Theorem 1.1 is similar to the proof of Corollary 1.1.
Proof of Corollary 1.2. Consider the discontinuous piecewise differential systems
(1.5). On the two bands of the cylinder with θ ∈ [0, π] and θ ∈ [π, 2π] we have a
Riccati differential equation.

Suppose that we have a periodic solution x(θ) = xp(θ)|θ∈[0,π] ∪ xq(θ)|θ∈[π,2π].
Then doing the change of variable x → X1 where

X1(θ) =
1

x(θ)− xp(θ)
,

we write the first differential equation in (1.5) with θ ∈ [0, π] as
dX1

dθ
= −a2(θ)−

(
2a2(θ)xp(θ) + a1(θ)

)
X1. (2.1)

Then the solution of the linear equation (2.1) with θ ∈ [0, π] is written as

X1(θ) = (N1(θ) +X1(0)) e
M1(θ),

N1(θ) =

∫ θ

0

−a2(s)e
−M1(s)ds,

M1(s) =

∫ s

0

−
(
2a2(w)xp(w) + a1(w)

)
dw.
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Undoing the change of variables we obtain that the solution of the first equation of
(1.5) satisfying x(0) = ρ is

x1(θ, ρ) =
A1(θ) +B1(θ)ρ

C1(θ) +D1(θ)ρ
,

where

A1(θ) = xp(θ)e
M1(θ) (1− xp(0)N1(θ))− xp(0),

B1(θ) = xp(θ)N1(θ)e
M1(θ) + 1,

C1(θ) = eM1(θ) (1− xp(0)N1(θ)) ,

D1(θ) = eM1(θ)N1(θ).

Similarly we write the second differential equation of (6) in θ ∈ [π, 2π] as

dX2

dθ
= −b2(θ)−

(
2b2(θ)xq(θ) + b1(θ)

)
X2 (2.2)

doing the change
X2(θ) =

1

x(θ)− xq(θ)
.

Both changes of variables the change of variables x → X1 when x ∈ [0, π] and
the change of variables x → X2 when x ∈ [π, 2π] coincide on the periodic orbits
intersection with the straight lines x = 0 and π, so the structure of the discontinuous
piecewise differential systems (1.5) is preserved. Indeed,

X1(0) = X2(2π) =
1

x(0)− xp(0)
=

1

x(2π)− xq(2π)
,

X1(π) = X2(π) =
1

x(π)− xp(π)
=

1

x(π)− xq(π)
,

because x(0) = x(2π), xp(0) = xq(2π) and xp(π) = xq(π) on the periodic orbits.
Then the solution of the differential equation (2.2) is

X2(θ) = (N2(θ) +X2(π)) e
M2(θ),

N2(θ) =

∫ θ

π

−b2(s)e
−M2(s)ds,

M2(s) =

∫ s

π

−
(
2b2(w)xq(w) + b1(w)

)
dw.

Undoing the change of variables we get the solution of the second equation of (1.5)
satisfying x(π) = x1(π, ρ) is

x2(θ, ρ) =
A2(θ) +B2(θ)x1(π, ρ)

C2(θ) +D2(θ)x1(π, ρ)

=
C1(π)A2(θ) +A1(π)B2(θ) + (D1(π)A2(θ) +B1(π)B2(θ))ρ(
C1(π)C2(θ) +A1(π)D2(θ) + (B1(π)D2(θ) +D1(π)D2(θ))ρ

,
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where

A2(θ) = xq(θ)e
M2(θ) (1− xq(π)N2(θ))− xq(π),

B2(θ) = xq(θ)N2(θ)e
M2(θ) + 1,

C2(θ) = eM2(θ) (1− xq(π)N2(θ)) ,

D2(θ) = eM2(θ)N2(θ).

Define the function Π2(ρ) = x2(2π, x1(π, ρ))− ρ, which is

A2C1 +A1B2 + (A2D1 +B1B2 − C1C2 −A1D2)ρ− (B1D2 +D1D2)ρ
2

C1C2 +A1D2 + (B1D2 +D1D2)ρ
,

with A1 = A1(π), B1 = B1(π), C1 = C1(π), D1 = D1(π) and A2 = A2(2π), B2 =
B2(2π), C2 = C2(2π), D2 = D2(2π). Thus the periodic orbits of the discontinuous
piecewise differential systems (1.5) are associated with the zeros of the equation
Π2(ρ) = 0. It follows that the discontinuous piecewise differential systems (1.5)
have at most two limit cycles.

The proof of Theorem 1.2 is similar to the proof of Corollary 1.2.
Proof of Theorem 1.3. Consider the discontinuous piecewise differential systems
(1.6). On the second band of the cylinder, i.e., θ ∈ [2π/3, 4π/3], we have a Riccati
differential equation.

Suppose that there is a periodic solution

x(θ) = xr(θ)|θ∈[0,2π/3] ∪ xs(θ)|θ∈[2π/3,4π/3] ∪ xt(θ)|θ∈[4π/3,2π].

In what follows for studying the limit cycles on the cylinder of systems (7) we will
do three changes of variables, in each strip of cylinder defined by the straight lines
θ = 0, θ = 2π/3 and θ = 4π/3. Later on we will show that these changes of variables
coincide on the three straight lines θ = 0, θ = 2π/3 and θ = 4π/3. Then doing the
change of variable x → Xr, where

Xr(θ) =
1

x(θ)− xr(θ)
,

we write the first differential equation of (1.6) with θ ∈ [0, 2π/3] as

dXr

dθ
= −a1(θ)Xr. (2.3)

Then the solution of the linear equation (2.3) with θ ∈ [0, 2π/3] with an initial value
Xr(0) is written as

Xr(θ,Xr(0)) = Xr(0)e
K1(θ),

K1(θ) =

∫ θ

0

(−a1(s))ds.

Correspondingly we obtain the solution of the first differential equation of (1.6)
with θ ∈ [0, 2π/3] satisfying x(0) = ρ is

x1(θ, ρ) =
xr(θ)e

K1(θ) − xr(0)

eK1(θ)
+

ρ

eK1(θ)
.
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Note that on the cylinder with θ ∈ [2π/3, 4π/3] we have a Riccati differential
equation. Then doing the change of variable x → Xs, where

Xs(θ) =
1

x(θ)− xs(θ)
,

we write the second differential equation of (1.6) with θ ∈ [2π/3, 4π/3] as

dXs

dθ
= −b2(θ)−

(
2b2(θ)xs(θ) + b1(θ)

)
Xs. (2.4)

The solution of the linear equation (2.4) with θ ∈ [2π/3, 4π/3] is written as

Xs(θ) = (I2(θ) +Xs(2π/3)) e
K2(θ),

I2(θ) =

∫ θ

2π
3

−b2(s)e
−K2(s)ds,

K2(s) =

∫ s

2π
3

−
(
2b2(w)xs(w) + b1(w)

)
dw.

Undoing the change of variables the solution of the second equation of (1.6) satis-
fying x(2π/3) = x1(2π/3, ρ) is

x2(θ, ρ) =
A(θ) +B(θ)ρ

C(θ) +D(θ)ρ
, (2.5)

where

A(θ) = xs(θ)e
K2(θ)

(
eK1(2π/3) − I2(θ)xr(0)

)
− xr(0)

B(θ) = I2(θ)xs(θ)e
K2(θ) + 1,

C(θ) = eK2(θ)
(
eK1(2π/3) − I2(θ)xr(0)

)
,

D(θ) = I2(θ)e
K2(θ).

Similarly, doing the change of variable x → Xt, where

Xt(θ) =
1

x(θ)− xt(θ)
,

we write the third differential equation of (1.6) with θ ∈ [4π/3, 2π] as

dXt

dθ
= −c1(θ)Xt. (2.6)

Then the solution of the linear equation (2.6) with an initial value Xt(4π/3) is
written as

Xt(θ,Xt(4π/3)) = Xt(4π/3)e
K3(θ),

K3(θ) =

∫ θ

0

(−c1(s))ds.
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Correspondingly the solution of the third differential equation of (1.6) with θ ∈
[4π/3, 2π] satisfying x(4π/3) = x2(4π/3, ρ) is

x3(θ, ρ) =
xt(θ)e

K3(θ) + x2(4π/3, ρ)− xt(4π/3)

eK3(θ)
. (2.7)

Note that we need to check that the change of variables x → Xr when x ∈ [0, 2π/3],
the change of variables x → Xs when x ∈ [2π/3, 4π/3], the change of variables
x → Xt when x ∈ [4π/3, 2π] coincide on the periodic orbits intersection with
the straight lines θ = 0, 2π/3 and 4π/3, and consequently the structure of the
discontinuous piecewise differential systems (1.6) is preserved. Indeed,

Xr(0) = Xt(2π) =
1

x(0)− xr(0)
=

1

x(2π)− xt(2π)
,

Xr(2π/3) = Xs(2π/3) =
1

x(2π/3)− xr(2π/3)
=

1

x(2π/3)− xs(2π/3)
,

Xs(4π/3) = Xt(4π/3) =
1

x(4π/3)− xs(4π/3)
=

1

x(4π/3)− xt(4π/3)
,

because x(0) = x(2π), xr(0) = xt(2π) and xr(2π/3) = xs(2π/3) and xs(4π/3) =
xt(4π/3) on the periodic orbits.

Define the function Π3(ρ) = x3(2π, ρ)− ρ. Then by (2.5) and (2.7) we obtain

Π3(ρ) =
E(2π) + F (2π)ρ− eK3(2π)D(4π/3)ρ2

eK3(2π) (C(4π/3) +D(4π/3)ρ)
,

where

E(θ) = (xt(θ)e
K3(θ) − xt(4π/3))C(4π/3) +A(4π/3),

F (θ) = (xt(θ)e
K3(θ) − xt(4π/3))D(4π/3) +B(4π/3)− eK3(θ)C(4π/3).

Thus the periodic orbits of the discontinuous piecewise differential systems (1.6) are
associated with the zeros of the equation Π3(ρ) = 0. Clearly there is at most two
zeros, and therefore the discontinuous piecewise differential systems (1.6) have at
most two limit cycles.

Proof of Theorem 1.4. We consider the discontinuous piecewise differential sys-
tems

ẋ = a(θ)x, if 0 ≤ θ ≤ 2π/3,

ẋ = b2(θ)x
2, if 2π/3 ≤ θ ≤ 4π/3,

ẋ = c(θ)x, if 4π/3 ≤ θ ≤ 2π.

(2.8)

The solution of the first differential equation of (2.8) with θ ∈ [0, 2π/3] satisfying
x(0) = ρ is

x1(θ, ρ) = ρeJ1(θ), J1(θ) =

∫ θ

0

a(s)ds.
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On the other hand the solution of the second differential equation of (2.8) with
θ ∈ [2π/3, 4π/4] satisfying x(2π/3) = x1(2π/3, ρ) is

x2(θ, ρ) =
ρeJ1(2π/3)

1− ρeJ1(2π/3)J2(θ)
, J2(θ) =

∫ θ

2π
3

b2(s)ds.

Eventually the solution of the third differential equation of (2.8) with θ ∈ [4π/3, 2π]
satisfying x(4π/3) = x2(4π/3, ρ) is

x3(θ, ρ) =
ρeJ1(2π/3)+J3(θ)

1− ρeJ1(2π/3)J2(4π/3)
, J3(θ) =

∫ θ

4π
3

c(s)ds.

Define the function

Π4(ρ) = x3(2π, ρ)− ρ =
ρeJ1(2π/3)+J3(2π)

1− ρeJ1(2π/3)J2(4π/3)
− ρ.

Then Π4(ρ) ≡ 0 if we assume

J1(2π/3) + J3(2π) = J2(4π/3) = 0, (2.9)

where we choose the functions a(θ), b2(θ) and c(θ) in order that the equalities (2.9)
hold. We obtain that the discontinuous piecewise differential systems (2.8) has a
continuum of periodic solutions in the neighborhood of ρ = 0.

In what follows we consider the discontinuous piecewise differential systems (1.7)
with a small parameter ε. The solution of the first differential equation of (1.7)
with θ ∈ [0, 2π/3] satisfying x(0) = ρ is x1(θ, ρ) given in (12). Let x2(θ, ρ, ε) denote
the solution of the second differential equation with initial value x2(2π/3, ρ, ε) =
x1(2π/3, ρ) = ρeJ1(2π/3) = x̄1. Then the solution x2(θ, x̄1, ε) can be expanded with
respect to ε as follows

x2(θ, x̄1, ε) = x20(θ, x̄1) + x21(θ, x̄1)ε+O(ε2),

where
x20(θ, x̄1) = x2(θ, x̄1, ε)|ε=0

and
x21(θ, x̄1) = ∂x2(θ, x̄1, ε)/∂ε|ε=0.

Similarly the solution x3(θ, ρ, ε) of the third differential equation of systems (1.7)
with θ ∈ [4π/3, 2π] satisfying x3(4π/3, ρ, ε) = x2(4π/3, x̄1, ε) = x̄2 is

x3(θ, x̄2, ε) = x2(4π/3, x̄1, ε)e
J3(θ).

Then we similarly obtain a function

Πε
4(ρ, ε) = x3(2π, x̄2, ε)− ρ

= x2(4π/3, x̄1, ε)e
J3(2π) − ρ

=
(
x20(4π/3, x̄1)e

J3(2π) − ρ
)
+ x21(4π/3, x̄1)e

J3(2π)ε+O(ε2).
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In order to find the number of zeros of the equation Πε
4 = 0, associated with the

number of limit cycles of the discontinuous piecewise differential systems (1.7), first
we have

ẋ2(θ, x̄1, ε) = ẋ20(θ, x̄1) + ẋ21(θ, x̄1)ε+O(ε2)

= b2(θ)
(
x20(θ, x̄1) + x21(θ, x̄1)ε+O(ε2)

)2
+ εb3(θ)

×
(
x20(θ, x̄1) + x21(θ, x̄1)ε+O(ε2)

)3
+O(ε2).

From this equality we get

ẋ20(θ, x̄1) = b2(θ)x
2
20(θ, x̄1), (2.10)

with the initial value x20(2π/3, x̄1) = ρeJ1(2π/3) and

ẋ21(θ, x̄1) = 2b2(θ)x20(θ, x̄1)x21(θ, x̄1) + b3(θ)x
3
20(θ, x̄1), (2.11)

with an initial value x21(2π/3, x̄1) = 0, where ẋ2i(θ, x̄1) = ∂x2i(θ, x̄1)/∂θ for i =
0, 1. Integrating the differential equation (2.10) in the interval [2π/3, 4π/3], by (2.9)
we get

x20(4π/3, ρ) =
ρeJ1(2π/3)

1− ρeJ1(2π/3)J2(4π/3)
= ρeJ1(2π/3).

On the other hand we get

b2(θ)x20(θ, x̄1) =
ẋ20(θ, x̄1)

x20(θ, x̄1)
,

from the differential equation (2.10). Substituting the previous equality in (2.11),
we have

∂

∂θ

(
x21(θ, x̄1)

x2
20(θ, x̄1)

)
= b3(θ)x20(θ, x̄1).

Integrating this differential equation in the interval [2π/3, 4π/4] and combining the
assumption (2.9), we obtain

x21(4π/3, x̄1) = x2
20(4π/3, x̄1)

∫ 4π
3

2π
3

b3(θ)x20(θ, x̄1)dθ

= ρ3e3J1(2π/3)

∫ 4π
3

2π
3

b3(θ)

1− ρeJ1(2π/3)J2(θ)
dθ.

We further obtain

Πε
4(ρ, ε) =

(
x20(4π/3, x1)e

J3(2π) − ρ
)
+ x21(4π/3, x1)e

J3(2π)ε+O(ε2)

= ερ3e2J1(2π/3)M(ρ) +O(ε2),

where

M(ρ) =

∫ 4π
3

2π
3

b3(θ)

1− ρeJ1(2π/3)J2(θ)
dθ,

is a Melnikov function. It follows from the Implicit Function Theorem that the
simple zeros of M(ρ) which are non-zero can be associated with the simple zeros of



Limit cycles of the piecewise differential systems 963

the function Πε
4(ρ, ε) distinct from zero. More concretely, if ρ = ρ0 ̸= 0 satisfying

M(ρ0) = 0 and M ′(ρ0) ̸= 0, then there exists a differential function ϕ such that
ϕ(0) = ρ0 and Πε

4(ϕ(ε), ε) ≡ 0 for a small enough ε.
For any n ∈ N we choose

b2(θ) = cos(eJ1(2π/3)θ), b3(θ) = P (sin(eJ1(2π/3)θ)),

where P is a polynomial of degree n in the variable sin(eJ1(2π/3)θ). We introduce
the family of analytic functions

Ik(ρ) =

∫ 4π
3

2π
3

sink t

1− ρ sin t
dt,

where t = eJ1(2π/3)θ and k is a positive integer. By Theorem A of [7] the maximum
number of zeros of M(ρ) is the same as the degree n of the polynomial P (sin t).
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