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Abstract We obtain sufficient conditions on the existence of infinitely many
homoclinic solutions for a class of discrete Schrödinger equations when the
nonlinearities are assumed just to be sublinear near the origin. The problem
we are going to study in this paper has two main difficulties, one is that the
nonlinear terms are locally sublinear and the other is that the associated varia-
tional functional is indefinite. Some new techniques including cutoff methods
and compact inclusions are applied here to overcome these two difficulties.
Our results also improve some existing ones in the literature.

Keywords Discrete nonlinear Schrödinger equation, homoclinic solution, mul-
tiplicity, local sublinear term, critical point theory.

MSC(2010) 39A12, 39A70, 35Q51, 35Q55.

1. Introduction
Differential and difference equations (DDEs) have been widely used to model prac-
tical problems in various fields of natural sciences [1,3,10,11,13,15–18,20,26,35–37,
41–45]. Serving as one class of the most basic DDEs, discrete nonlinear Schrödinger
(DNLS) equations play a significant role in many nonlinear phenomena, such as
Bose-Einstein condensates, nonlinear optics and biomolecular chains [10,14–16,18].
Since discrete breathers in the DNLS equations were widely observed in experi-
ments [10,16,17], it has been a growing interest in proving the existence of discrete
breathers of the DNLS equations.

Consider the discrete breathers of the following DNLS equation:

i · dψn

dt
= −∆ψn + Vnψn − fn(ψn), n = (n1, n2, · · · , nm) ∈ Zm. (1.1)
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Here m is a fixed positive integer, i is the imaginary unit, ψn = ψn(t),

∆ψn = ψ(n1+1,n2,··· ,nm) + ψ(n1,n2+1,··· ,nm) + · · ·+ ψ(n1,n2,··· ,nm+1)

+ψ(n1−1,n2,··· ,nm) + ψ(n1,n2−1,··· ,nm) + · · ·+ ψ(n1,n2,··· ,nm−1)

−2mψ(n1,n2,··· ,nm)

is the discrete Laplacian in m spatial dimensions, the (discrete) unbounded potential
V = {Vn}n∈Zm is a real-valued sequence satisfying
(V ) there exists ν0 ∈ (0, 2) such that lim|n|→+∞

Vn

|n|ν0 = +∞,

where |n| = |n1|+|n2|+...+|nm| is the length of multi–index n, and the nonlinearity
fn is gauge invariant, i.e.,

fn(e
iθu) = eiθfn(u), θ ∈ R, u ∈ R.

Since discrete breathers are spatially localized time-periodic solutions and decay
to zero at infinity, we assume that ψn of (1.1) has the form

ψn = une
−iωt, n ∈ Zm and lim

|n|→+∞
ψn = 0,

where {un} is a real-valued sequence and ω ∈ R is the temporal frequency. Then
(1.1) becomes

Lun − ωun = fn(un), n ∈ Zm (1.2)

and

lim
|n|→+∞

un = 0, (1.3)

where L := −∆+ V is defined by

Lun = −∆un + Vnun, n ∈ Zm. (1.4)

If fn(0) ≡ 0, then un ≡ 0 is a solution of (1.2), which is called the trivial solution.
As usual, we say that a solution u = {un} of (1.2) is homoclinic (to 0) if (1.3) holds.
To find the discrete breathers of (1.1), we just need to seek the homoclinic solutions
of (1.2).

In recent years, the existence and multiplicity results of homoclinic solutions for
the DNLS equations with potentials and nonlinearities have been widely discussed
by mainly using variational approaches [2,5,8,9,12,19,21–25,27–33,38–40,46–50]. To
mention a few, one may refer to [9,29,30,33,38–40,46] for the superlinear nonlinear-
ity, to [2,19,25,29,31,47–50] for the asymptotically linear nonlinearity, to [22–24] for
the mixed nonlinearity, and to [4–8,12,21,32] for the sublinear nonlinearity. Among
them, the results regarding unbounded potentials and superlinear or asymptotically-
linear terms have received special attention [8,9,14,23,24,38,39,46]. However, there
exist only a few results with unbounded potentials and sublinear terms [8, 21, 32].
Considering the importance of sublinear nonlinearity in inflation cosmology and
supersymmetric field theories, quantum mechanics and nuclear physics [3, 11, 13],
there needs a further exploration into the existence of homoclinic solutions for the
DNLS equations with unbounded potentials and sublinear terms.

In this paper, we shall prove the existence of infinitely many homoclinic solutions
of (1.2) with local sublinear terms fn for n ∈ Zm by using the classical dual fountain
theorem [34]. To this end, we have the following assumptions on fn(u) for u ∈ [−ϵ, ϵ]
with some ϵ > 0.
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(A1) fn(u) is continuous in u and fn(−u) = −fn(u) on [−ϵ, ϵ] for n ∈ Zm.

(A2) There exist c1 > 0 and max
{

3
2 ,

2+ν0

1+ν0

}
< ν1 < 2 such that

|fn(u)| ≤ c1|u|ν1−1, u ∈ [−ϵ, ϵ], n ∈ Zm. (1.5)

(A3) limu→0(Fn(u)/u
2) = +∞ uniformly for n ∈ Zm, where Fn(u) =

∫ u

0
fn(s)ds.

(A4) 2Fn(u)− fn(u)u > 0 for 0 < |u| ≤ ϵ and n ∈ Zm.

We remark that the authors in [5, 12] studied the existence of homoclinic solu-
tions of (1.2) with periodic potentials and nonlinear terms being sublinear both at
the origin and infinity. This is different from ours, since we focus on the situation
with unbounded potentials and local sublinear terms.

In addition, (1.2) with unbounded potentials was considered in [7, 8, 32]. In
those works, however, fn(u) is sublinear in u both at the origin and infinity. It also
needs to assume that the temporal frequency ω is less than λ1 [8, 32]. Here λ1 is
the smallest eigenvalue of L in l2, where

lp :=

u = {un}n∈Zm : un ∈ R, n ∈ Zm, ∥u∥p =

( ∑
n∈Zm

|un|p
) 1

p

< +∞


with the following embedding between lp spaces:

lq ⊂ lp, ∥u∥p ≤ ∥u∥q, 1 ≤ q ≤ p ≤ ∞.

In this case, it is relatively easy to obtain the homoclinic solutions of (1.2) since the
corresponding variational problem is definite.

Recently in [21] we proved the multiplicity results of homoclinic solutions of
(1.2) with unbounded potentials by mainly assuming ω < λ1 and

• there exist two constants 1 ≤ ν1 < ν2 < 2 and two positive-valued sequences
ai = {ai,n} ∈ l2/(2−νi) of i = 1, 2, such that |fn(u)| ≤ a1,n|u|ν1−1+a2,n|u|ν2−1

for u ∈ [−ϵ, ϵ] and n ∈ Zm.

We note that the above condition generally proves to be valid only for the definite
case of ω < λ1. In this work, we shall use a new assumption (A2) in order to deal
with the case of general temporal frequencies (the indefinite case of λ1 ≤ ω).

One difficulty in this work is that it is not easy to establish the variational
setting associated with (1.2) on the working space E. Usually, if the nonlinear term
f is superlinear or asymptotically-linear both at the origin and infinity, then it is
easy to write down the corresponding variational functional J of (1.2) and to verify
that J is a well-defined C1 functional on E. However, this step seems difficult to
finish if f is just sublinear near the origin. Another difficulty is that the resulting
functional J on E is indefinite and it is not easy to show the compactness of bounded
Palais–Smale (PS) sequences of J . If f is superlinear or asymptotically-linear both
at the origin and infinity, then one can prove the PS condition according to a well-
known compact embedding theorem due to Zhang and Pankov [38,39]. In contrast,
the local sublinearity of f prevents us from directly using the compact-embedding
results of [38,39] to obtain the PS condition. In this paper, we shall introduce new
tricks to overcome the difficulties. One of the key ingredients in our method is a new
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compact embedding lemma of E into lp under the assumption of (V ) (see Lemma
2.1), which extends that of [38, 39] from p ≥ 2 to p > max{1, 2/(1 + ν0)}. This
together with cutoff methods and a priori estimates ensures the well–definition of
J and the compactness of bounded PS sequences of J (see Section 3).

To the best of our knowledge, this is the first attempt in the literature on the
multiplicity of homoclinic solutions for the indefinite problem with local sublinear
terms. Moreover, our result extends some existing ones [8, 21,32].

Our main result reads as follows.

Theorem 1.1. Assume that (V ) and (A1)–(A4) hold. Then (1.2) exists infinitely
many homoclinic solutions {u(k)} satisfying maxn∈Zm |u(k)n | → 0 as k → +∞.

Here we present an example to demonstrate our result. Let s ∈ (1.5, 2) and

fn(u) ≡


|u|s−2u, |u| ≤ 1,

e|u|−1 sin (0.5πu) , |u| > 1,

Vn = |n|2, n ∈ Zm. (1.6)

Then it is easy to verify that Vn and fn in (1.6) satisfy the conditions of Theorem
1.1. Thus, (1.2) admits infinitely many homoclinic solutions converging to zero.
We emphasize that fn(u) in (1.6) is not sublinear at infinity. Moreover, it does not
satisfy the following standard assumption:

• there exist a > 0 and p > 2 such that |fn(u)| ≤ a(1 + |u|p−1) for u ∈ R and
n ∈ Zm,

which plays an important role in proving the existence of homoclinic solutions of
DNLS equations with unbounded potentials and superlinear terms by using varia-
tional approaches [14,23,38,39,46].

The remaining of this paper reads as follows. In Section 2, we first establish the
variational setting associated with (1.2) and then present some key lemmas which
are useful for proving Theorem 1.1. Finally, we present a rigorous proof of Theorem
1.1 in the last section.

2. Preliminaries
In the section, we make some preparations in order to confirm our main result.

We first introduce the working space for the problem. It follows from (V ) that
V = {Vn} is bounded from below. Without loss of generality, we assume that

Vn ≥ 1 for n ∈ Zm. (2.1)

Thus, L = −∆+ V given in (1.4) is a positive unbounded self–adjoint operator in
l2. Denote

E = {u ∈ l2 : L1/2u ∈ l2}.

Then E is a Hilbert space equipped with the norm

∥u∥E = ∥L1/2u∥2, u ∈ E.

We remark that the following compact embedding plays an important role for
our main result.
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Lemma 2.1. If V satisfies condition (V ), then the embedding map from E into lp
is compact for p ∈ (max{1, 2/(1 + ν0)},+∞].

Proof. We first see from [39] that the lemma is true for p ≥ 2. Hence, assume
that p ∈ (max{1, 2/(1 + ν0)}, 2). Let q = ν0/(2 − p). Obviously, pq > 1. For any
positive integer m, denote

Wm = inf
|n|≥m

Vn
|n|ν0

.

Then Wm → +∞ as m→ +∞. Let K ⊂ E be a bounded set. It follows from (2.1)
that there exists M > 0 such that for any u = {un} ∈ K and any positive integer
m, ∑

|n|≥m

|un|p =
∑

|n|≥m, |n|q|un|≤1

|un|p +
∑

|n|≥m, |n|q|un|>1

|un|p

≤
∑

|n|≥m

|n|−pq +
∑

|n|≥m, |n|q|un|>1

(|n|q|un|)p|n|−pq

≤
∑

|n|≥m

|n|−pq +
∑

|n|≥m, |n|q|un|>1

(|n|q|un|)2|n|−pq

≤
∑

|n|≥m

|n|−pq +
∑

|n|≥m

|un|2|n|ν0

≤
∑

|n|≥m

|n|−pq +
1

Wm

∑
|n|≥m

Vn|un|2

≤
∑

|n|≥m

|n|−pq +
M

Wm
.

Thus, for any given ε > 0, there is a positive integer m0 such that∑
|n|≥m0

|un|p ≤ ε.

This implies that K is relatively compact in lp. The proof is completed.
Condition (V ) implies that the spectrum σ(L) of L is discrete and consists of

finite-multiplicity eigenvalues accumulating to +∞ (see [39]). We can assume that

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · → +∞

are all eigenvalues of L (counted in their multiplicities) and the corresponding set
of eigenfunctions is {ek}+∞

k=1, which forms an orthogonal basis in l2. Let E =
E−⊕E0⊕E+, where E+, E0 and E− correspond to the positive, zero and negative
part of the spectrum of L− ω in E, respectively.

Assume that there exist two positive integers m∗ and m∗ with m∗ > m∗ ≥ 1
such that

λm∗ < ω = λm∗+1 = · · · = λm∗ < λm∗+1. (2.2)
Then it holds that

E− = span{e1, · · · , em∗} and E0 = span{em∗+1, · · · , em∗}.

We also admit the cases of m∗ = 0 and m∗ = m∗ ≥ 1, in corresponding to E− = {0}
and E0 = {0}, respectively.
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For any u, v ∈ E = E−⊕E0⊕E+ with u = u−+u0+u+ and v = v−+v0+v+,
we define an inner product (·, ·) and the corresponding norm ∥ · ∥ on E by

(u, v) = ((L− ω)u+, v+)2 − ((L− ω)u−, v−)2 + (u0, v0)2, ∥u∥ = (u, u)
1
2 ,

where (·, ·)2 is the inner product in l2. Clearly, ∥ · ∥ and ∥ · ∥E are equivalent, and
the decomposition E = E− ⊕E0 ⊕E+ is orthogonal with respect to both (·, ·) and
(·, ·)2.

We can see from Lemma 2.1 that for each p ∈ (max{1, 2/(1 + ν0)},+∞], there
exists ρp > 0 such that

∥u∥p ≤ ρp∥u∥, u ∈ E. (2.3)

For the reader’s convenience, we end this section by giving some notations and
definitions, and by citing a dual variant fountain theorem, in order to obtain the
main result.

Definition 2.1 ( [34]). Let J ∈ C1(E,R) and c ∈ R. The function J satisfies the
(PS)c condition if any sequence {u(k)} ⊂ E such that

J(u(k)) → c, J ′(u(k)) → 0 (2.4)

has a convergent subsequence.

As usual, the sequence {u(k)} satisfying (2.4) is called as a (PS)c sequence.
Assume that E = ⊕+∞

j=1Ej , where Ej is a finite dimensional subspace of E for
each j ≥ 1. Denote Yk := ⊕k

j=1Ej and Zk := ⊕+∞
j=kEj .

Definition 2.2 ( [34]). Let J ∈ C1(E,R) and c ∈ R. The function J satisfies the
(PS)∗c condition (with respect to {Yk}) if any sequence {u(k)} ⊂ E such that

k → +∞, u(k) ∈ Yk, J(u(k)) → c, J ′ |Yk
(u(k)) → 0 (2.5)

contains a subsequence converging to a critical point of J .

Here the sequence {u(k)} in (2.5) is called as a (PS)∗c sequence (with respect to
{Yk}).

Lemma 2.2 (Dual fountain theorem [34]). Let J ∈ C1(E,R) be an invariant func-
tional. If, for every k ≥ k0, there exist ϱk > γk > 0 such that

(B1) ak := infu∈Zk, ∥u∥=ϱk
J(u) ≥ 0,

(B2) bk := maxu∈Yk, ∥u∥=γk
J(u) < 0,

(B3) dk := infu∈Zk, ∥u∥≤ϱk
J(u) → 0 as k → +∞,

(B4) J satisfies the (PS)∗c condition for every c ∈ [bk0 , 0),

then J has a sequence of negative critical values converging to 0.

3. Proof of the main result
We can see from (A1) that the nonlinear terms fn(u) and Fn(u) in our assumptions
are locally defined near the origin 0. In order to establish the variational setting as-
sociated with (1.2) on the working space E, it needs to modify the global definitions
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of fn(u) and Fn(u). To this end, we change Fn(u) for u outside a neighborhood of
0 to get a new function on R. For d ∈ (0, (λm∗+1 − ω)/2) with λm∗+1 defined in
(2.2), we see from (A3) that there exists δ ∈ (0, ϵ/2) with ϵ given in (A1), such that

Fn(u) ≥ du2, n ∈ Zm, |u| ≤ 2δ. (3.1)

Set
Hn(u) := ζ(|u|)Fn(u) + (1− ζ(|u|))du2, n ∈ Zm, u ∈ R, (3.2)

where ζ ∈ C1([0,+∞), [0,+∞)) is a cut-off function satisfying ζ(s) = 1 for s ∈ [0, δ],
ζ(s) = 0 for s ∈ [2δ,+∞) and ζ ′(s) < 0 for s ∈ (δ, 2δ). It follows that Hn(u) is
continuously differentiable in u ∈ R for each n ∈ Zm. By (3.2), a direct computation
shows that

hn(u) := H ′
n(u) = ζ(|u|)(fn(u)− 2du) + ζ ′(|u|)

(
Fn(u)

|u|
− d|u|

)
u+ 2du (3.3)

for n ∈ Zm and u ̸= 0. We also have hn(0) = 0 for n ∈ Zm.

Lemma 3.1. For H and h respectively given in (3.2) and (3.3), one has the fol-
lowing conclusions.

(i) There exists a constant c such that

|hn(u)| ≤ c(|u|+ |u|ν1−1), n ∈ Zm, u ∈ R. (3.4)

(ii) H̃n(u) := 2Hn(u)− hn(u)u ≥ 0 for u ∈ R and n ∈ Zm, and H̃n(u) = 0 if and
only if u = 0 or |u| ≥ 2δ where δ is given in (3.1).

Proof. (i) It follows from (1.5) and 2δ < ϵ that

|fn(u)| ≤ c1|u|ν1−1, n ∈ Zm, |u| ≤ 2δ.

Note from (3.3) that for n ∈ Zm,

hn(u) = fn(u) for |u| < δ and hn(u) = 2du for |u| > 2δ.

Moreover, for n ∈ Zm and |u| ∈ [δ, 2δ], we have

|hn(u)| ≤ |fn(u)|+ 2d|u|+ max
|u|∈[δ,2δ]

∣∣∣∣ζ ′(|u|)(Fn(u)

|u|
− d|u|

)∣∣∣∣ · |u|+ 2d|u|

≤ c1|u|ν1−1 + c2|u|+ 4d|u|
≤ c(|u|+ |u|ν1−1),

where c2 = max|u|∈[δ,2δ] |ζ ′(|u|) (Fn(u)/|u| − d|u|)| and c = c1+ c2+4d. Thus, (3.4)
is verified.

(ii) For n ∈ Zm, we see from (3.3) and the definition of H̃n that

H̃n(u) = ζ(|u|)(2Fn(u)− fn(u)u)− ζ ′(|u|)
(
Fn(u)− du2

)
|u|. (3.5)

Noting that
ζ(|u|) > 0 ≥ ζ ′(|u|), |u| < 2δ, (3.6)
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and ζ(|u|) = ζ ′(|u|) = 0 for |u| ≥ 2δ, it follows from (A4) and (3.1) that H̃n(u) ≥
0. By (3.5) and the definition of ζ, we know that H̃n(u) = 0 if either u = 0
or |u| ≥ 2δ. Conversely, assume by contradiction that there exist n0 ∈ Zm and
u0 ∈ (−2δ, 0) ∪ (0, 2δ) such that H̃n0

(u0) = 0. Then we obtain from (A4) and (3.6)
that

ζ(|u0|)(2Fn0
(u0)− fn0

(u0)u0) = ζ ′(|u0|)
(
Fn0

(u0)− du20
)
|u0| ≤ 0, (3.7)

which contradicts the fact that the first term in (3.7) must be positive when 0 <
|u| < 2δ. This finishes the proof.

Lemma 3.2. If u(k) ⇀ u in E, then w(k) → w in l2, where w(k) =
{
hn(u

(k)
n )
}
n∈Zm

and w = {hn(un)}n∈Zm .

Proof. Since u(k) ⇀ u in E, we see that u(k) → u in l2 and l2ν1−2, respectively.
Thus {∥u(k)∥2} and {∥u(k)∥2ν1−2} are bounded. It is true for n ∈ Zm that

|hn(u(k)n )− hn(un)|2 ≤ 2(|hn(u(k)n )|2 + |hn(un)|2)
≤ 2c2((|u(k)n |+ |u(k)n |ν1−1)2 + (|un|+ |un|ν1−1)2)

≤ 6c2(|u(k)n |2 + |u(k)n |2ν1−2 + |un|2 + |un|2ν1−2),

which implies that ∑
n∈Zm

|hn(u(k)n )− hn(un)|2

≤ 6c2
∑

n∈Zm

(|u(k)n |2 + |u(k)n |2ν1−2 + |un|2 + |un|2ν1−2)

= 6c2(∥u(k)∥22 + ∥u(k)∥2ν1−2
2ν1−2 + ∥u∥22 + ∥u∥2ν1−2

2ν1−2)

< +∞. (3.8)

By using the Lebesgue dominated convergence theorem, we have

lim
k→+∞

∑
n∈Zm

|hn(u(k)n )− hn(un)|2 =
∑

n∈Zm

lim
k→+∞

|hn(u(k)n )− hn(un)|2 = 0.

The lemma is proved.
To confirm Theorem 1.1, we consider the following auxiliary equation associated

with (1.2):
Lun − ωun = hn(un), n ∈ Zm (3.9)

with the boundary condition (1.3), where hn is given in (3.3). It suffices to show
that (3.9) has a sequence {u(k)} in E with all u(k) ̸= 0 such that the l∞-norm of
u(k) converges to zero. Take k large enough such that the l∞-norm of u(k) is less
than δ, where δ is given in (3.1). Then hn(u

(k)
n ) = fn(u

(k)
n ) for n ∈ Zm and (3.9) is

reduced to (1.2). Thus Theorem 1.1 follows.
Consider the functional J defined on E by

J(u) =
1

2
∥u+∥2 − 1

2
∥u−∥2 −

∑
n∈Zm

Hn(un), (3.10)
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where Hn(u) is given in (3.2). We claim that J is a well-defined C1 functional on
E, and for the derivative J ′ of J ,

(J ′(u), v) = ((L− ω)u, v)2 −
∑

n∈Zm

hn(un)vn, u, v ∈ E. (3.11)

In fact, it follows from (3.4) that

|Hn(u)| ≤ d0(|u|2 + |u|ν1), n ∈ Zm, u ∈ R,

for some d0 > 0. This gives us that∑
n∈Zm

Hn(un) ≤
∑

n∈Zm

d0(|u|2 + |u|ν1)

≤ d0(∥u∥22 + ∥u∥ν1
ν1
).

We see from (2.3) that J is well defined on E. For any u, v ∈ E and any sequence
{θn} with θn ∈ (0, 1) for n ∈ Zm, similarly to the proof of (3.8), it is true that∑

n∈Zm

max
t∈(0,1)

|hn(un + tθnvn)vn| < +∞.

Combining (3.10) and the above inequality, we have

(J ′(u), v) = lim
t→0+

J(u+ tv)− J(u)

t

= lim
t→0+

1

2t
[((L− ω)(u+ tv), u+ tv)2 − ((L− ω)u, u)2]

− lim
t→0+

1

t

∑
n∈Zm

[Hn(un + tvn)−Hn(un)]

= ((L− ω)u, v)2 − lim
t→0+

[ ∑
n∈Zm

hn(un + tθnvn)vn

]
= ((L− ω)u, v)2 −

∑
n∈Zm

hn(un)vn.

This verifies (3.11). Next, we show that the derivative J ′ is continuous. Let u(k) →
u ∈ E as k → +∞. For any v ∈ E, we have

|(J ′(u(k))− J ′(u), v)|

≤
∣∣∣((L− ω)(u(k) − u), v

)
2

∣∣∣+ ∑
n∈Zm

∣∣∣hn(u(k)n )− hn(un)
∣∣∣ |vn|

≤ ok(1) + ∥v∥2

[ ∑
n∈Zm

∣∣∣hn(u(k)n )− hn(un)
∣∣∣2] 1

2

,

where ok(1) means ok(1) → 0 as k → +∞. It follows from Lemma 3.2 that

(J ′(u(k))− J ′(u), v) → 0 as k → +∞,

which implies J ∈ C1(E,R). The claim is confirmed.
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We see from (3.11) that (3.9) is the corresponding Euler-Lagrange equation of
J . To find nontrivial homoclinic solutions of (3.9), we need only to look for nonzero
critical points of J in E.

Before seeking nonzero critical points of J , we check critical points at the zero
energy level.

Lemma 3.3. Assume that (A1)–(A4) are satisfied. Then 0 is the unique critical
point of J such that J(u) = 0.

Proof. It is easy to see that 0 is a critical point of J with J(u) = 0. Let u ∈ E
be a critical point of J with J(u) = 0. Then we have

0 = 2J(u)− (J ′(u), u) =
∑

n∈Zm

H̃n(un).

It follows from Lemma 3.1 that either un = 0 or |un| ≥ 2δ for each n ∈ Zm. We
claim that un ≡ 0. If it is not true, then we have Aδ := {n ∈ Zm : |un| ≥ 2δ} ̸= ∅
and

0 = ((L− ω)u, v)2 −
∑

n∈Zm

hn(un)vn

= ((L− ω)u, v)2 −
∑
n∈Aδ

hn(un)vn

= ((L− ω)u, v)2 − 2d
∑
n∈Aδ

unvn

= (Lu, v)2 − (2d+ ω) · (u, v)2.

This is impossible since d ∈ (0, (λm∗+1 − ω)/2). The proof is completed.
In what follows, we verify the conditions in Lemma 2.2 to find nonzero critical

points of J in E.

Lemma 3.4. There exist a positive integer k0 and two sequences {ϱk} and {γk}
with 0 < γk < ϱk for k ≥ k0 and ϱk → 0 as k → +∞ such that

ak := inf
u∈Zk, ∥u∥=ϱk

J(u) ≥ 0, (3.12)

bk := max
u∈Yk, ∥u∥=γk

J(u) < 0, and (3.13)

dk := inf
u∈Zk, ∥u∥≤ϱk

J(u) → 0, as k → +∞, (3.14)

where Yk = span{e1, · · · , ek} and Zk = span{ek, ek+1, · · · }.

Proof. Note that Zk ⊂ E+ for k ≥ m∗ +1, where m∗ is specified in (2.2). In this
case, we get for u ∈ Zk that

J(u) =
1

2
∥u∥2 −

∑
n∈Zm

Hn(un)

≥ 1

2
∥u∥2 − c

∑
n∈Zm

(|un|2 + |un|ν1)

=
1

2
∥u∥2 − c(∥u∥22 + ∥u∥ν1

ν1
)



974 G. Lin, Z. Zhou & J. Yu

≥ 1

2
∥u∥2 − cβ2

k∥u∥2 − cζν1

k ∥u∥ν1 , (3.15)

where βk := supAk
∥u∥2, ζk := supAk

∥u∥ν1
and Ak := {u ∈ Zk : ∥u∥ = 1}. We

claim that βk → 0 as k → +∞. In fact, it is clear that 0 < βk+1 ≤ βk. Thus,
there exists β0 ≥ 0 such that βk → β0 as k → +∞. For each k ≥ m∗ + 1, there
exists u(k) ∈ Zk such that ∥u(k)∥ = 1 and ∥u(k)∥2 > βk/2. By the definition of
Zk, u(k) ⇀ 0 in E, and so u(k) → 0 in l2. Thus we have proved that β0 = 0.
Similarly, we can show that ζk → 0 as k → +∞. Thus, there exists a positive
integer k0 ≥ m∗ + 1 such that

cβ2
k ≤ 1

4
and ϱk := (8cζν1

k )
1

2−ν1 < 1

for k ≥ k0. Obviously, ϱk → 0 as k → +∞. For u ∈ Zk with ∥u∥ = ϱk, it follows
from (3.15) that

J(u) ≥ 1

4
∥u∥2 − cζν1

k ∥u∥ν1 =
1

8
ϱ2k.

This proves (3.12).
Next, we prove (3.13). By the definition of Yk, for each k ≥ k0, dimYk < +∞.

Thus there exists Tk > 0 such that ∥u∥2 ≤ Tk∥u∥22 for u ∈ Yk. By (A3) and (3.2),
there exists sk ∈ (0, ϵ/2) such that

Hn(u) ≥ Tk|u|2, n ∈ Zm, |u| < sk.

For u ∈ Yk with ∥u∥ = γk := min{sk/(2ρ∞), ϱk/2} where ρ∞ and ϱk are respectively
given in (2.3) and (3.12), we have

J(u) =
1

2
∥u+∥2 − 1

2
∥u−∥2 −

∑
n∈Zm

Hn(un)

≤ 1

2
∥u+∥2 − Tk

∑
n∈Zm

|un|2

=
1

2
∥u+∥2 − Tk∥u∥22

≤ 1

2
∥u∥2 − ∥u∥2

= −1

2
∥u∥2.

In other words, it holds that

max
u∈Yk, ∥u∥=γk

J(u) ≤ −1

2
γ2k,

and so (3.13) is proved.
Since ϱk → 0 as k → +∞, we see that

dk = inf
u∈Zk, ∥u∥≤ϱk

J(u) → J(0) = 0

as k → +∞, which verifies (3.14). The proof is completed.
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Lemma 3.5. J satisfies the (PS)∗α condition for α ∈ R.

Proof. Assume that {u(k)} is a (PS)∗α sequence in E for α ∈ R. In order to
show that {u(k)} has a convergent subsequence in E, we first claim that {∥u(k)∥}
is bounded. Assume by contradiction that, up to a subsequence, ∥u(k)∥ → +∞ as
k → +∞. Let

w(k) =
u(k)

∥u(k)∥
, w(k)+ =

u(k)+

∥u(k)∥
, w(k)− =

u(k)−

∥u(k)∥
, w(k)0 =

u(k)0

∥u(k)∥
.

Then w(k) = w(k)+ + w(k)− + w(k)0 and ∥w(k)∥ = 1. Taking a subsequence if
necessary, there exists w ∈ E such that

w(k) ⇀ w, w(k)+ ⇀ w+, w(k)− → w−, w(k)0 → w0, in E.

Thus, we have

w(k) → w, w(k)+ → w+, w(k)− → w−, w(k)0 → w0, in l2.

Case 1: w = 0. It holds that

w(k)− → 0, w(k)0 → 0, in E,

which implies that

∥w(k)−∥2 → 0, ∥w(k)0∥2 → 0, as k → +∞. (3.16)

Since {u(k)} is a (PS)∗α sequence in E, we have

ok(1) =
1

∥u(k)∥2
(J ′(u(k)), u(k)+)

=
1

∥u(k)∥2

[
(u(k)+, u(k)+)−

∑
n∈Zm

hn(u
(k)
n )u(k)+n

]

= ∥w(k)+∥2 − 1

∥u(k)∥2
∑

n∈Zm

hn(u
(k)
n )u(k)+n . (3.17)

In addition, we see from (A2), (2.3) and (3.4) that

1

∥u(k)∥2
∑

n∈Zm

|hn(u(k)n )u(k)+n |

≤
c
∑

n∈Zm(|u(k)n |+ |u(k)n |ν1−1)|u(k)+n |
∥u(k)∥2

≤
c∥u(k)+∥2(∥u(k)∥2 + ∥u(k)∥ν1−1

2ν1−2)

∥u(k)∥2

≤ c∥w(k)+∥2

(
∥w(k)∥2 +

ρν1−1
2ν1−2∥u(k)∥ν1−1

∥u(k)∥

)
→ 0 (3.18)

as k → +∞. Combining (3.17) and (3.18) gives us that

∥w(k)+∥2 → 0 as k → +∞. (3.19)
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Thus, by using (3.16) and (3.19), we obtain

1 = ∥w(k)∥2 = ∥w(k)+∥2 + ∥w(k)−∥2 + ∥w(k)0∥2 → 0

as k → +∞. This is a contradiction.
Case 2: w ̸= 0. In this case, it is true that

ok(1) = (u(k)+, ϕ(k))− (u(k)−, ϕ(k))−
∑

n∈Zm

hn(u
(k)
n )ϕ(k)n

where ϕ(k) = ϕ |Yk
for ϕ =

∑+∞
i=1 tiei ∈ E and Yk = span{e1, · · · , ek}. Then we can

obtain that

ok(1) =
(u(k)+, ϕ(k))

∥u(k)∥
− (u(k)−, ϕ(k))

∥u(k)∥
−
∑

n∈Zm 2du
(k)
n ϕ

(k)
n

∥u(k)∥

−
∑

n∈Zm(hn(u
(k)
n )− 2du

(k)
n )ϕ

(k)
n

∥u(k)∥
= (w(k)+, ϕ(k))− (w(k)−, ϕ(k))− 2d · (w(k), ϕ(k))2

−
∑

n∈Zm(hn(u
(k)
n )− 2du

(k)
n )ϕ

(k)
n

∥u(k)∥
. (3.20)

Similarly to the proof of (3.4), we can see that

|hn(u)− 2du| ≤ C|u|ν1−1, n ∈ Zm, u ∈ R,

for some C > 0. It follows from (A2) and (2.3) that

1

∥u(k)∥
∑

n∈Zm

|(hn(u(k)n )− 2du(k)n )ϕ(k)n |

≤ C

∥u(k)∥
∑

n∈Zm

|u(k)n |ν1−1|ϕ(k)n |

≤
C∥u(k)∥ν1−1

2ν1−2∥ϕ(k)∥2
∥u(k)∥

≤
Cρν1−1

2ν1−2∥u(k)∥ν1−1∥ϕ(k)∥2
∥u(k)∥

. (3.21)

Letting k → +∞, (3.20) together with (3.21) shows that

(w+, ϕ)− (w−, ϕ)− 2d · (w, ϕ)2 = 0, w ∈ E.

This is impossible since d ∈ (0, (λm∗+1 − ω)/2).
In summary of the above two cases, we have shown that {u(k)} is bounded in

E.
Next, we verify that {u(k)} admits a convergent subsequence in E. By the

boundedness of {u(k)} in E, we may assume that

u(k) ⇀ u in E.

Then we have
u(k)+ ⇀ u+ in E and u(k)+ → u+ in l2.
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Since (J ′(u(k))− J ′(u), u(k)+ − u+) → 0 as k → +∞, we see from (3.11) that

∥u(k)+ − u+∥2 = ok(1) +
∑

n∈Zm

(hn(u
(k)
n )− hn(un))(u

(k)+
n − u+n ).

Note from Lemma 3.2 that∑
n∈Zm

(hn(u
(k)
n )− hn(un))(u

(k)+
n − u+n )

≤

[ ∑
n∈Zm

(hn(u
(k)
n )− hn(un))

2

] 1
2

∥u(k)+ − u+∥2 → 0

as k → +∞. This further implies that u(k)+ → u+ in E. Since dim(E− ⊕ E0) <
+∞, we obtain that both u(k)− → u− and u(k)0 → u0 in E. As a result, u(k) → u
in E. The proof is finished.
Proof of Theorem 1.1. We have verified the conditions in Lemma 2.2. It follows
that J has a sequence of nontrivial critical points {u(k)} in E satisfying J(u(k)) → 0
as k → +∞. Thus, {u(k)} is a sequence of nontrivial homoclinic solutions of (3.9).
In addition, {u(k)} is also a (PS)0 sequence in E. Similarly to the proof of Lemma
3.5, we can show that J satisfies the (PS)0 condition. Up to a subsequence, we
assume that u(k) → u in E. Since 0 is a critical point of J with J(0) = 0, we see
from Lemma 3.3 that u = 0. Thus, u(k) → 0 in E. According to (2.3), we find
u(k) → 0 in l∞. Let k be large enough such that ∥u(k)∥∞ < δ with δ given in (3.1).
Then hn(u

(k)
n ) = fn(u

(k)
n ) for n ∈ Zm and (3.9) becomes (1.2). The desired result

follows and the proof is completed.
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