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Abstract In this paper, we consider a fractional predator-prey system with
two delays and incommensurate orders. Firstly, the local stability of positive
equilibrium of the system without delay is discussed. Secondly, we calculate
the critical value of Hopf bifurcation by taking one delay as bifurcation pa-
rameter. Then, as two nonidentical delays change simultaneously, the stability
switching curves, the directions of crossing and the existence of Hopf bifurca-
tion are obtained. Finally, numerical simulations are presented to verify the
given theoretical results.
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1. Introduction
Fractional calculus is a kind of generalization of integer-order calculus. Due to the
effects of memory and hereditary properties, fractional calculus can more accurately
describe the complex and rich dynamic behavior of the system rather than integer-
order calculus [12, 15]. Because of the complexity of the calculation, fractional
calculus has not been widely used for a long time. It was not until fractal theory
was introduced in [18] that fractional calculus has progressively become one of the
research hotspots. In recent years, fractional calculus has been successfully intro-
duced into various fields, such as physics, chemistry, electricity, biology, economics,
etc [3, 5, 7, 8, 21,22].

It takes a certain amount of time to complete biological evolution and physical
process, therefore delay is widely found in nature. The appearance of time delay
means that the development of the system is not only dependent on the current
state, but also related to the state in the previous period. On the other hand,
time delay can cause Hopf bifurcation. When the parameter changes slightly near
a critical value, the stability of the equilibrium of system changes, and there is
the phenomenon of periodic solution near equilibrium. For fractional-order delay
differential systems, Hopf bifurcation is also a common bifurcation phenomenon.
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In [2, 17, 25, 30], the authors chose the delay as bifurcation parameter, and studied
Hopf bifurcation of fractional-order delay differential systems.

The predator-prey model is an important model in population dynamics models
[31]. Authors in [1] analyzed the dynamic behavior of the prey-predator system
with time delays, and it was shown that the stability of the system can be changed
with the change of harvest. In [26], authors studied a delayed predator-prey system
with Beddington-DeAngelis functional response and got that the phenomenon of
Hopf bifurcation is the main factor that switching the stability of the system to
unstability with respect to delays. In [28], Wang and Tang took the Holling-III
functional response, the complex diversity of biological environment and efforts
into account, and discussed the Hopf bifurcation of a time-delayed predator-prey
system which is as follows:

dx
dt = rx(1− x(t−τ1)

K )− α(1−c)x2y
1+αh(1−c)x2 ,

dy
dt = βα(1−c)x2(t−τ2)y(t−τ2)

1+αh(1−c)x2(t−τ2)
− dy − qE0y,

(1.1)

where x(t) and y(t) are the densities of prey and predator, respectively. The growth
rate and the environmental capacity of prey are represented by r and K, respec-
tively. α denotes the attack coefficient; c (0 < c < 1) represents a dimensionless
parameter that measures habitat complexity; d is the death rate of the predator; q
is the coefficient of catchability; E0 denotes the harvesting effort; and α(1−c)x2y

1+αh(1−c)x2

is Holling-III functional response. All parameters of system (1.1) are positive.
For integer-order delay differential equations, a lot of researchers have paid too

much attention to predator-prey systems with single delay, such as [4, 14]. Even
though the integer-order predator-prey models with two delays have been discussed
in [9, 29], the approaches are to make the two delays equal or fix one delay and
choose the other one as bifurcation parameter. There is little work to consider
differential equations with two delays varying simultaneously. In [10, 16], integer-
order systems with two time delays varying simultaneously were discussed. By
analyzing the characteristic equations of the following two forms

D(s; τ1, τ2) = U0(s) + U1(s)e
−sτ1 + U2(s)e

−sτ2

and

D(s; τ1, τ2) = U0(s) + U1(s)e
−sτ1 + U2(s)e

−sτ2 + U3(s)e
−s(τ1+τ2)

respectively in [10,16], calculating the explicit expression of the stability switching
curves, and giving the judgment method of the directions of change in stability, then
the stability of the system was obtained. The method of [10, 16] has been applied
to study the stability of the integer-order systems with two time delays varying
simultaneously, such as [11,20,23].

For fractional-order delay differential equations, most of systems concerned by
scholars are systems with one or two delays, but the ways to study the systems with
two delays are either to make two delays equal or only fix one delay and choose the
other delay as bifurcation parameter, such as [13,25,27,32]. As far as we are aware,
few authors have studied the stability of fractional-order systems when two delays
change simultaneously. Therefore, it is significant to extend the method of [10, 16]
to fractional-order systems with two delays.
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Motived by the method of stability switching curves of [10,16] and based on the
system of [28], we consider a fractional-order predator-prey system with two delays
and incommensurate orders:Dγ1x(t) = rx(1− x(t−τ1)

K )− α(1−c)x2y
1+αh(1−c)x2 ,

Dγ2y(t) = βα(1−c)x2(t−τ2)y(t−τ2)
1+αh(1−c)x2(t−τ2)

− dy − qE0y,
(1.2)

where γ1, γ2 ∈ (0, 1], γ1 ̸= γ2. The other parameters have the same biological
significance as system (1.1), and initial conditions are x(t) > 0 and y(t) > 0,
t ∈ [−max{τi}, 0] (i = 1, 2). The highlights of this paper are generalized as follows:

(i) We generalize integer-order delayed predator-prey system to a new fractional
predator-prey system with two delays and incommensurate orders.

(ii) The stability and the Hopf bifurcation of a fractional predator-prey system
with two delays and incommensurate orders are obtained. It is shown that the
delay and the order play an important role in the stability and the existence
of Hopf bifurcation of the corresponding fractional-order system.

(iii) To the best of our knowledge, there are not many results on the stability of
fractional-order system and the existence of Hopf bifurcation with two delays
varying simultaneously. Discriminating from the general ways that making
two delays equal or fixing one delay and choosing another delay as bifurca-
tion parameter, this paper is the case that the stability of system and the
existence of Hopf bifurcation are obtained by taking two delays as bifurcation
parameters, and the stable region is a two-dimensional region about τ1 and
τ2.

(iv) The method of determining the stability of the system by calculating the
stability switching curves is first applied to the fractional differential equa-
tions with two delays. It is meaningful to study fractional-order differential
equations with two delays.

The paper is organized as folllows. In Section 2, some basic knowledge and
necessary lemmas on fractional calculus are presented. In Section 3, using the
method in [10, 16], the stability and the existence of Hopf bifurcation of system
(1.2) are obtained by calculating the stability switching curves and the directions of
change in stability, taking the two delays as bifurcation parameters and considering
the simultaneous change of the two delays. In Section 4, we perform numerical
simulations to confirm the theoretical results. This paper ends with a conclusion.

2. Preliminaries
In fractional derivatives, the Grunwald-Letnikov(G-L) definition, the Riemann-
Liouville(R-L) definition and the Caputo definition are commonly used. Then the
Caputo definition can not only simplify the Laplace transform properly, but also
allow that the initial conditions of the corresponding fractional-order equation can
be expressed in integer order, which is more suitable for practical mathematical
problems. In this paper, all the fractional derivatives are the Caputo definition.
Next, we will introduce the Caputo definition and two fundamental lemmas for the
following theoretical analysis.
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Definition 2.1 ( [24]). The Caputo fractional-order derivative is defined as follows:

Dγf(t) =
1

Γ(n− γ)

∫ t

t0

(t− s)n−γ−1fn(s)ds,

where f(t) ∈ Cn([t0,∞),R), t > t0, n− 1 ≤ γ < n, n ∈ Z+, and Γ(·) is the Gamma
function.

When 0 < γ < 1, we have

Dγf(t) =
1

Γ(n− γ)

∫ t

t0

(t− s)γf
′
(s)ds.

Lemma 2.1 ( [19]). Consider the fractional-order systemDγx(t) = f(t, x(t)),

x(0) = x0,
(2.1)

where γ ∈ (0, 1] and f(t, x(t)) : R+ × Rn → Rn. The equilibria of system (2.1) are
locally asymptotically stable if all eigenvalues λi (i = 1, 2, . . . , n) of the Jacobian
matrix ∂f(t,x)

∂x evaluated at the equilibria satisfy | arg(λi) |> γπ
2 .

Lemma 2.2 ( [6]). For given n-dimensional linear fractional-order system:

Dγ1x1(t) = α11x1(t− τ11) + α12x2(t− τ12) + · · ·+ α1nxn(t− τ1n),

Dγ2x2(t) = α21x1(t− τ21) + α22x2(t− τ22) + · · ·+ α2nxn(t− τ2n),

...

Dγnxn(t) = αn1x1(t− τn1) + αn2x2(t− τn2) + · · ·+ αnnxn(t− τnn),

(2.2)

where γi ∈ (0, 1] (i = 1, 2, · · · , n), and the initial conditions xi(t) ∈ C[−max {τij} , 0],
t ∈ [−max {τij} , 0] (i, j = 1, 2, · · · , n).

Let

∆(s) =



sγ1 − α11e
−sτ11 −α12e

−sτ12 · · · −α1ne
−sτ1n

−α21e
−sτ21 sγ2 − α22e

−sτ22 · · · −α2ne
−sτ2n

...
... . . . ...

−αn1e
−sτn1 −αn2e

−sτn2 · · · sγn − αnne
−sτnn


,

where ∆(s) is the characteristic matrix of system (2.2). The zero solution of system
(2.2) is locally asymptotically stable if all the roots of det(∆(s)) = 0 possess negative
real parts.

3. Main results
In this section, we discuss the stability of system (1.2) and the existence of Hopf
bifurcation. We first analyze the existence of positive equilibrium of system (1.2).
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Next, we discuss the local stability of the positive equilibrium of the system (1.2)
without delay by Routh-Hurwitz criterion. Then, we address the existence of Hopf
bifurcation at the positive equilibrium of the system (1.2) with one delay by taking
τ1 and τ2 as bifurcation parameter, respectively. Finally, applying the method of
[10,16], we study the change in stability of the positive equilibrium and the existence
of Hopf bifurcation of the system (1.2) when two delays change simultaneously.

3.1. Existence of positive equilibrium of system (1.2)

The equilibria J0, JK , J∗ of system (1.2) can be obtained by the following equations: rx(1− x
K )− α(1−c)x2y

1+αh(1−c)x2 = 0,

βα(1−c)x2y
1+αh(1−c)x2 − dy − qE0y = 0,

where

J = (0, 0), JK = (K, 0), J∗ = (x∗, y∗),

x∗ =

√
d+ qE0

α(1− c)(β − (d+ qE0)h)
, y∗ =

βrx∗

d+ qE0
(1− x∗

K
).

When the following assumptions (H1) and (H2) hold:

(H1) : β − (d+ qE0)h > 0,

(H2) : 1− x∗

K
> 0,

J∗ is a unique positive equilibrium of system (1.2).
Using the transformation P1(t) = x(t)− x∗, P2(t) = y(t)− y∗, the system (1.2)

can be written asDγ1P1(t) = r(P1(t) + x∗)(1− P1(t−τ1)+x∗

K )− α(1−c)(P1(t)+x∗)2(P2(t)+y∗)
1+αh(1−c)(P1(t)+x∗)2 ,

Dγ2P2(t) =
βα(1−c)(P1(t−τ2)+x∗)2(P2(t−τ2)+y∗)

1+αh(1−c)(P1(t−τ2)+x∗)2 − (d+ qE0)(P2(t) + y∗).
(3.1)

The linearization of the system (1.2) at J∗ isDγ1P1(t) = a11P1(t) + a12P2(t) + b11P1(t− τ1),

Dγ2P2(t) = a22P2(t) + c21P1(t− τ2)− a22P2(t− τ2),
(3.2)

where

a11 =
r(K − x∗)[αh(1− c)x∗2 − 1]

K[1 + αh(1− c)x∗2]
,

a12 =− d+ qE0

β
< 0,

a22 =− (d+ qE0) < 0,

b11 =− rx∗

K
< 0,



986 Y. Zhu, S. Li, & Y. Dai

c21 =
2βr(K − x∗)

K[1 + αh(1− c)x∗2]
> 0.

The corresponding characteristic equation at J∗ is

D(s; τ1, τ2) = U0(s) + U1(s)e
−sτ1 + U2(s)e

−sτ2 + U3(s)e
−s(τ1+τ2) = 0, (3.3)

where

U0(s) =sγ1+γ2 − a22s
γ1 − a11s

γ2 + a11a22,

U1(s) =− b11s
γ2 + a22b11,

U2(s) =a22s
γ1 − a11a22 − a12c21,

U3(s) =− a22b11.

3.2. Stability analysis of positive equilibrium J∗ of system (1.2)
without delay

When τ1 = τ2 = 0, Eq.(3.3) becomes:

sγ1+γ2 − (a11 + b11)s
γ2 − a12c21 = 0. (3.4)

To get the following result, the hypothesis (H3) is given:

(H3) : a11 + b11 < 0.

Theorem 3.1. For τ1 = τ2 = 0, the positive equilibrium J∗ of system (1.2) is
locally asymptotically stable if (H1)− (H3) are satisfied.

Proof. The proof is done by contradiction.
Due to

U0(0) + U1(0) + U2(0) + U3(0) = −a12c21 > 0,

s = 0 is not a root of Eq.(3.4).
Suppose Eq.(3.4) has roots, which are denoted as ρeκi, and ρ > 0, κ ∈ [−π

2 ,
π
2 ].

Substituting s = ρeκi = ρ(cosκ+ i sinκ) into Eq.(3.4), and separating the real and
imaginary parts, then the following equations can be obtained:

ργ1+γ2 cos(γ1 + γ2)κ− (a11 + b11)ρ
γ2 cos γ2κ− a12c21 = 0, (3.5)

ργ1+γ2 sin(γ1 + γ2)κ− (a11 + b11)ρ
γ2 sin γ2κ = 0. (3.6)

For Eq.(3.6), we can get

ργ1(sin γ1κ cos γ2κ+ cos γ1κ sin γ2κ)− (a11 + b11) sin γ2κ = 0.

Due to the definitions of a12 and c21, the ranges of γ1, γ2 and κ, the properties of
trigonometric functions and (H3), then a12c21 < 0, a11+b11 < 0, γ1κ, γ2κ ∈ [−π

2 ,
π
2 ],

cos γ1κ, cos γ2κ > 0, and sin γ1κ and sin γ2κ have the same sign. Thus, κ = 0 is
the only root to Eq.(3.6). From Eq.(3.5), we can know that κ = 0 is not a root to
Eq.(3.5). Accordingly, there is no common root to Eq.(3.5) and Eq.(3.6). Therefore,
the null hypothesis is not true if ρ > 0 and (H3) are satisfied.

In conclusion, all common eigenvalues of Eq.(3.5) and Eq.(3.6) have negative
real parts if (H1)− (H3) hold. This completes the proof.
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3.3. Stability analysis of positive equilibrium J∗ of system (1.2)
with one delay

In this subsection, we analyze the stability of positive equilibrium J∗ of system (1.2)
with one delay by taking τ1 and τ2 as bifurcation parameter, respectively.

3.3.1. Stability analysis of positive equilibrium J∗ of system (1.2) with
τ1 > 0, τ2 = 0

When τ1 > 0, τ2 = 0, the characteristic equation (3.3) can be transformed into the
following form:

sγ1+γ2 − a11s
γ2 − a12c21 − b11s

γ2e−sτ1 = 0. (3.7)
Let s = ω10(cos

π
2 + i sin π

2 ) (ω10 > 0) be a root of Eq.(3.7), then by substituting
s into Eq.(3.7) and separating the real and imaginary parts, we can obtain the
following equations:

b11ω
γ2

10 cos
γ2π
2 cosω10τ1 + b11ω

γ2

10 sin
γ2π
2 sinω10τ1

= ωγ1+γ2

10 cos (γ1+γ2)π
2 − a11ω

γ2

10 cos
γ2π
2 − a12c21,

b11ω
γ2

10 sin
γ2π
2 cosω10τ1 − b11ω

γ2

10 cos
γ2π
2 sinω10τ1

= ωγ1+γ2

10 sin (γ1+γ2)π
2 − a11ω

γ2

10 sin
γ2π
2 .

(3.8)

Then  cosω10τ1 =
−a11ω

γ2
10 +ω

γ1+γ2
10 cos

γ1π
2 −a12c21 cos

γ2π
2

b11ω
γ2
10

,

sinω10τ1 =
−ω

γ1+γ2
10 sin

γ1π
2 −a12c21 sin

γ2π
2

b11ω
γ2
10

.
(3.9)

It follows from Eq.(3.9) and sin2 ω10τ1 + cos2 ω10τ1 = 1 that

ω2γ1+2γ2

10 − 2a12c21ω
γ1+γ2

10 cos
(γ1 + γ2)π

2
+ (a211 − b211)ω

2γ2

10

− 2a11ω
γ1+2γ2

10 cos
γ1π

2
+ 2a11a12c21ω

γ2

10 cos
γ2π

2
+ a212c

2
21 = 0.

(3.10)

Suppose that ω10 is a positive root to Eq.(3.10) and by means of the first equation
of Eq.(3.9) we can derive that

τ1j =
1

ω10

{
arccos

(
−a11ω

γ2

10 + ωγ1+γ2

10 cos γ1π
2 − a12c21 cos

γ2π
2

b11ω
γ2

10

)
+ 2jπ

}
,

j = 0, 1, 2, · · · .
(3.11)

Define the bifurcation point

τ10 = min {τ1j} , j = 0, 1, 2, · · · ,

where τ1j is given by Eq.(3.11).
To further present our main results, the following assumption is needed:

(H4) :
(γ1 + γ2)ω

γ1

10 cos(ω10τ10 +
γ1π
2 )− γ2a11 cosω10τ10 − γ2b11

b11ω2
10

̸= 0.
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Lemma 3.1. Let s(τ1) = ϵ(τ1) + iω(τ1) be the root of Eq.(3.7), ϵ(τ10) = 0 and
ω(τ10) = ω10. If (H4) holds, then

Re[
ds

dτ1
]−1
∣∣∣
ω=ω10,τ1=τ10

̸= 0.

Proof. Taking the derivative of Eq.(3.7) with respect to τ1, then it is deduced
that

[(γ1 + γ2)s
γ1+γ2−1 − γ2a11s

γ2−1 − γ2b11s
γ2−1e−sτ1 + τ1b11s

γ2e−sτ1 ]
ds

dτ1

+ b11s
γ2+1e−sτ1 = 0.

Thus, we can get that

[
ds

dτ1
]−1 =

−(γ1 + γ2)s
γ1esτ1 + γ2a11e

sτ1 + γ2b11
b11s2

− τ1
s
. (3.12)

It acquires from Eq.(3.12) that

Re[
ds

dτ1
]−1
∣∣∣
ω=ω10,τ1=τ10

=
(γ1+γ2)ω

γ1

10 cos(ω10τ10+
γ1π
2 )−γ2a11 cosω10τ10−γ2b11

b11ω2
10

̸= 0.
(3.13)

Hence, (H4) implies that transversality condition holds. This ends the proof of
Lemma 3.1.

According to Lemma 2.1, Lemma 2.2 and Lemma 3.1, the following theorem can
be concluded.

Theorem 3.2. When τ1 > 0, τ2 = 0, the following results are obtained if (H1) −
(H4) hold:

(i) The positive equilibrium J∗ of system (1.2) is locally asymptotically stable for
τ1 ∈ [0, τ10).

(ii) Hopf bifurcation will happen around the positive equilibrium J∗ of system (1.2)
for τ1 = τ10.

3.3.2. Stability analysis of positive equilibrium J∗ of system (1.2) with
τ1 = 0, τ2 > 0

When τ1 = 0, τ2 > 0, the characteristic equation (3.3) can be written as:

sγ1+γ2 − a22s
γ1 − (a11 + b11)s

γ2 + a22(a11 + b11)

+ (a22s
γ1 − a11a22 − a12c21 − a22b11)e

−sτ2 = 0.
(3.14)

Let s = ω20(cos
π
2 + i sin π

2 ) (w20 > 0) be a root of Eq.(3.14), then it follows
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from Eq.(3.14) with separating the real and imaginary parts that

(a22ω
γ1

20 cos
γ1π

2
− a22(a11 + b11)− a12c21) cosω20τ2 + a22ω

γ1

20 sin
γ1π

2
sinω20τ2

=− ωγ1+γ2

20 cos
(γ1 + γ2)π

2
+ a22ω

γ1

20 cos
γ1π

2
+ (a11 + b11)(−a22 + ωγ2

20 cos
γ2π

2
),

a22ω
γ1

20 sin
γ1π

2
cosω20τ2 − (a22ω

γ1

20 cos
γ1π

2
− a22(a11 + b11)− a12c21) sinω20τ2

=− ωγ1+γ2

20 sin
(γ1 + γ2)π

2
+ a22ω

γ1

20 sin
γ1π

2
+ (a11 + b11)ω

γ2

20 sin
γ2π

2
.

(3.15)
In view of Eq.(3.15), we have

cosω20τ2

=
a222ω

2γ1

20 + a222(a11 + b11)
2 + a12a22c21(a11 + b11)

a222ω
2γ1

20 +(a22(a11+b11)+a12c21)2−2(a222(a11+b11)+a12a22c21)ω
γ1

20 cos
γ1π
2

−
(a12a22c21 + 2a222(a11 + b11))ω

γ1

20 cos
γ1π
2

a222ω
2γ1

20 +(a22(a11+b11)+a12c21)2−2(a222(a11+b11)+a12a22c21)ω
γ1

20 cos
γ1π
2

−
(a22ω

2γ1

20 + a12c21(a11 + b11) + a22(a11 + b11)
2)ωγ2

20 cos
γ2π
2

a222ω
2γ1

20 +(a22(a11+b11)+a12c21)2−2(a222(a11+ vb11)+a12a22c21)ω
γ1

20 cos
γ1π
2

+
2a22(a11 + b11)ω

γ1+γ2

20 cos γ1π
2 cos γ2π

2 + a12c21ω
γ1+γ2

20 cos (γ1+γ2)π
2

a222ω
2γ1

20 +(a22(a11+b11)+a12c21)2−2(a222(a11+b11)+a12a22c21)ω
γ1

20 cos
γ1π
2

≡G1(ω20),

sinω20τ2

=
a12a22c21ω

γ1

20 sin
γ1π
2

a222ω
2γ1

20 +(a22(a11+b11)+ va12c21)2−2(a222(a11+b11)+a12a22c21)ω
γ1

20 cos
γ1π
2

+
(a22ω

2γ1

20 + a12c21(a11 + b11) + a22(a11 + b11)
2)ωγ2

20 sin
γ2π
2

a222ω
2γ1

20 +(a22(a11+b11)+a12c21)2−2(a222(a11+b11)+a12a22c21)ω
γ1

20 cos
γ1π
2

+
−2a22(a11 + b11)ω

γ1+γ2

20 sin γ2π
2 cos γ1π

2 − a12c21ω
γ1+γ2

20 sin (γ1+γ2)π
2

a222ω
2γ1

20 +(a22(a11+b11)+a12c21)2−2(a222(a11+b11)+a12a22c21)ω
γ1

20 cos
γ1π
2

≡G2(ω20).
(3.16)

By Eq.(3.16) and sin2 ω20τ2 + cos2 ω20τ2 = 1, we can get

G2
1(ω20) +G2

2(ω20) = 1. (3.17)

Suppose that ω20 is a positive root to Eq.(3.17) and we can derive that

τ2j =
1

ω20
{arccos(G1(ω20)) + 2jπ} , j = 0, 1, 2, · · · . (3.18)

Define the bifurcation point

τ20 = min {τ2j} , j = 0, 1, 2, · · · ,

where τ2j is defined by Eq.(3.18).
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In order to present our main results, the additional hypothesis is useful and
necessary:

(H5) :
M1

M2
̸= 0,

where M1 and M2 can be obtained by Eq.(3.21).

Lemma 3.2. Let s(τ2) = σ(τ2) + iω(τ2) be the root of Eq.(3.14), σ(τ20) = 0 and
ω(τ20) = ω20, then

Re[
ds

dτ2
]−1
∣∣∣
ω=ω20,τ2=τ20

̸= 0.

Proof. Taking the derivative of Eq.(3.14) with respect to τ2, it is calculated that

[(γ1 + γ2)s
γ1+γ2−1 − γ2(a11 + b11)s

γ2−1 + γ1a22s
γ1−1(e−sτ2 − 1)− τ2a22s

γ1e−sτ2

+ τ2(a12c21+a22(a11+b11))e
−sτ2 ]

ds

dτ2
−s(a22(s

γ1−a11−b11)−a12c21)e
−sτ2 =0.

Clearly, we can get that

[
ds

dτ2
]−1 =

((γ1 + γ2)s
γ1+γ2−1 − γ1a22s

γ1−1 − γ2(a11 + b11)s
γ2−1)esτ2 + γ1a22s

γ1−1

s(a22sγ1 − a22(a11 + b11)− a12c21)

− τ2
s
.

(3.19)

By calculation, it deduces from Eq.(3.19) that

Re[
ds

dτ2
]−1
∣∣∣
ω=ω20,τ2=τ20

=
M1

M2
, (3.20)

where

M1 =γ1a22(a11a22 + a22b11 + a12c21) cos
γ1π

2

− γ1a22(a11a22 + a22b11 + a12c21)ω
γ1

20 cos(
γ1π

2
+ ω20τ20)

− (γ1 + γ2)a22ω
2γ1+γ2

20 cos(
γ2π

2
+ ω20τ20)

+ 2γ2a22(a11 + b11)ω
γ1+γ2

20 cos(
γ2π

2
+ ω20τ20) cos

γ1π

2
+ γ1a

2
22ω

2γ1

20 cosω20τ20

− γ2(a11 + b11)(a11a22 + a12c21 + a22b11)ω
γ2

20 cos(
γ2π

2
+ ω20τ20)− γ1a

2
22ω

2γ1

20

+ γ1(a11a22 + a22b11 + a12c21)ω
γ1+γ2

20 cos(
(γ1 + γ2)π

2
+ ω20τ20),

M2 =a222ω
2γ1+2
20 + (a222(a11 + b11)

2 + a212c
2
21 + 2a12a22c21(a11 + b11))ω

2
20

− 2a22(a11a22 + a22b11 − a12c21)ω
γ1+2
20 cos

γ1π

2
.

(3.21)
Therefore, (H5) implies that transversality condition holds. This fulfills the

proof of Lemma 3.2.
According to Lemma 2.1, Lemma 2.2 and Lemma 3.2, we can get the following

theorem.
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Theorem 3.3. When τ1 = 0, τ2 > 0, the following results can be determined if
(H1)− (H3) and (H5) are satisfied:

(i) The positive equilibrium J∗ of system (1.2) is locally asymptotically stable for
τ2 ∈ [0, τ20).

(ii) System (1.2) has a branch of periodic solutions bifurcating from the positive
equilibrium near τ2 = τ20.

3.4. Stability analysis of system (1.2) with two delays τ1, τ2 > 0
and τ1 ̸= τ2

To analyze the stability of system (1.2) when two delays change at the same time,
stability switching curves, directions of crossing and Hopf bifurcation are discussed
in this subsection.

Let R, R+, N0, Z and C be the sets of real numbers, nonnegative real numbers,
nonnegative integer numbers, integer numbers and complex numbers, respectively.
Similary, R2 and R2

+ denotes the sets of 2-dimensional vectors with components in
R and R+.

Based on [16], in order to ensure that the equation of the form of Eq.(3.3) is the
characteristic equation of a time-delay system, the following four assumptions are
necessary.

(H6): There are finite number of characteristic roots on C+ :={s∈C : Re(s)>0},
if

deg(U0(s)) ≥ max {deg(U1(s)),deg(U2(s)),deg(U3(s))} .

(H7): No zero frequency: for any τ1 and τ2, the following equation

U0(0) + U1(0) + U2(0) + U3(0) ̸= 0

is true.
(H8): The polynomials Ui(s) (i = 0, 1, 2, 3) have no common factors, which

means that they’re coprime polynomials.
(H9): The polynomials Ui(s) (i = 0, 1, 2, 3) satisfy the condition, which is

lim
s→∞

(∣∣∣∣U1(s)

U0(s)

∣∣∣∣+ ∣∣∣∣U2(s)

U0(s)

∣∣∣∣+ ∣∣∣∣U3(s)

U0(s)

∣∣∣∣) < 1.

To make sure that the Eq.(3.3) is the characteristic equation of the system (1.2),
next, we verify that the above four hypotheses (H6)− (H9) for Eq.(3.3) are true:

(i) According to Eq.(3.3) and γ1, γ2 ∈ (0, 1], we can know that

deg(U0(s)) = γ1 + γ2, deg(U1(s)) = γ2, deg(U2(s)) = γ1, deg(U3(s)) = 0.

Hence,

deg(U0(s)) ≥ max {deg(U1(s)),deg(U2(s)),deg(U3(s))} .

That means that (H6) is true.
(ii) Obviously, U0(0)+U1(0)+U2(0)+U3(0) = −a12c21 ̸= 0, thus (H7) is satisfied.
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(iii) If (H8) is not ture, then there is a common factor c(s) of the highest de-
gree such that Ui(s) = c(s)hi(s) (i = 0, 1, 2, 3), then hi(s) are not reducible.
Therefore, Eq.(3.3) can be written as

c(s)[h0(s) + h1(s)e
−sτ1 + h2(s)e

−sτ2 + h3(s)e
−s(τ1+τ2)] = 0,

which still satisfies (H8). Therefore, (H8) is naturally true.
(iv) For (H9), the hypothesis is naturally satisfied if the delay equation is of re-

tarded type. In fact, (H9) is the exclusion of large oscillations, that is, the
exclusion of iω being the root to Eq.(3.3), if ω is arbitrarily large. Hence, ω
is bounded.

3.4.1. Stability switching curves

Applying the method of [10, 16], the feasible region of the system (1.2) is found in
this subsubsection. Then all pairs of points (τ1, τ2) in the feasible region such that
the characteristic equation (3.3) at least has one pair of pure imaginary roots, which
constitute the stability switching curves T .

We need to find a series of points (τ1, τ2) ∈ R2
+, such that the charisteristic

equation (3.3) has a root s = iω = ω(cos π
2 + i sin π

2 ) (ω > 0). It’s obvious by (H7)
that s ̸= 0. Therefore, the characteristic equation (3.3) can be written as

D(iω; τ1, τ2) = U0(iω)+U1(iω)e
−iωτ1 +(U2(iω)+U3(iω)e

−iωτ1)e−iωτ2 = 0. (3.22)

Since |e−iωτ2 | = 1, we can get

|U0 + U1e
−iωτ1 | = |U2 + U3e

−iωτ1 |. (3.23)

Square both sides of Eq.(3.23), and it could be equal to

(U0 + U1e
−iωτ1)(U0 + U1e

iωτ1) = (U2 + U3e
−iωτ1)(U2 + U3e

iωτ1).

By calculation, we can obtain that

|U0|2 + |U1|2 − |U2|2 − |U3|2 = 2E1(ω) cos(ωτ1)− 2E2(ω) sin(ωτ1), (3.24)

where

E1(ω) =Re(U2U3)− Re(U0U1)

=a12a22b11c21 − a11b11ω
2γ2 + b11ω

γ1+2γ2 cos
γ1π

2

+ 2a11a22b11ω
γ2 cos

γ2π

2
− 2a22b11ω

γ1+γ2 cos
γ1π

2
cos

γ2π

2
,

E2(ω) =Im(U2U3)− Im(U0U1)

=b11ω
γ1+2γ2 sin

γ1π

2
− 2a22b11ω

γ1+γ2 sin
γ1π

2
cos

γ2π

2
.

There is a continnous function such that

θ1(ω) = arg
{
U2U3 − U0U1

}
,

which means that

E1(ω) =
√

E1(ω)2 + E2(ω)2 cos(θ1(ω)),
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E2(ω) =
√
E1(ω)2 + E2(ω)2 sin(θ1(ω)).

Therefore, Eq.(3.24) can be equivalently written as

|U0|2 + |U1|2 − |U2|2 − |U3|2 = 2
√
E1(ω)2 + E2(ω)2 cos(θ1(ω) + ωτ1). (3.25)

Since | cos(θ1(ω)+ωτ1)| ≤ 1, then for any τ1 ∈ R+, there’s a necessary condition
that satisfies the above equation:

F (ω) = (|U0|2 + |U1|2 − |U2|2 − |U3|2)2 − 4(E1(ω)
2 + E2(ω)

2) ≤ 0. (3.26)

Based on (H7), we can get that F (0) ̸= 0. When ω → +∞, then F (ω) → +∞
by (H6) and (H9). Therefore, F (ω) has a finite number of roots on R+. The range
of ω satisfying Eq.(3.26) is denoted by Ω, which is

Ω = {ω|F (ω) ≤ 0} . (3.27)

From Eq.(3.25), let

cos(ϕ1(ω)) =
|U0|2 + |U1|2 − |U2|2 − |U3|2

2
√
E1(ω)2 + E2(ω)2

, ϕ1 ∈ [0, π].

Then
τ±1,n1

(ω) =
±ϕ1(ω)− θ1(ω) + 2n1π

ω
, n1 ∈ Z. (3.28)

Substituting Eq.(3.28) into Eq.(3.22), we can get

τ±2,n2
(ω) =

1

ω
arg

{
−U2 + U3e

−iωτ1±

U0 + U1e−iωτ1±

}
+ 2n2π, n2 ∈ Z. (3.29)

Another way to calculate τ2 is to analyze τ2 in the same way that we analyzed
for τ1, which gives

D(iω; τ1, τ2) = U0(iω)+U2(iω)e
−iωτ2 +(U1(iω)+U3(iω)e

−iωτ2)e−iωτ1 = 0, (3.30)

then, we have
τ±2,n2

(ω) =
±ϕ2(ω)− θ2(ω) + 2n2π

ω
, n2 ∈ Z, (3.31)

where

cos(ϕ2(ω)) =
|U0|2 − |U1|2 + |U2|2 − |U3|2

2
√
E3(ω)2 + E4(ω)2

, ϕ2 ∈ [0, π],

E3(ω) =
√

E3(ω)2 + E4(ω)2 cos(θ2(ω)),

E4(ω) =
√

E3(ω)2 + E4(ω)2 sin(θ2(ω)),

and

E3(ω) =Re(U1U3)− Re(U0U2)

=a222ω
2γ1 + 2a11a22ω

γ1+γ2 cos
γ1π

2
cos

γ2π

2
+ a12c21ω

γ1+γ2 cos
(γ1 + γ2)π

2

− (a22ω
2γ1 − a22b

2
11 + a211a22 + a11a12c21)ω

γ2 cos
γ2π

2
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− a22(2a11a22 + a12c21)ω
γ1 cos

γ1π

2
+ a11a12a22c21 + (a211 − b211)a

2
22,

E4(ω) =Im(U1U3)− Im(U0U2)

=(a22(−a211 + b211 − ω2γ1)− a11a12c21)ω
γ2 sin

γ2π

2
− a12a22c21ω

γ1 sin
γ1π

2

+ a12c21ω
γ1+γ2 sin

(γ1 + γ2)π

2
+ 2a11a22ω

γ1+γ2 cos
γ1π

2
sin

γ2π

2
.

Similarly to Eq.(3.26), we have

F1(ω) = (|U0|2 + |U2|2 − |U1|2 − |U3|2)2 − 4(E3(ω)
2 + E4(ω)

2)2 ≤ 0. (3.32)

By comparing Eq.(3.26) and Eq.(3.32), it is not difficult to find that they are
equivalent. The range of ω that satisfies Eq.(3.26) is the same as the range of ω that
satisfies Eq.(3.32), and they are denoted as Ω. Ω is also known as the feasible region
and it is consistent with the range of all frequencies corresponding to all points on
the stability switching curves.

From the above derivation, we can get that the stability switching curves are

T :=
{
(τ±1,n1

(ω), τ±2,n2
(ω)) ∈ R2

+ : ω ∈ Ω, n1, n2 ∈ Z
}
. (3.33)

3.4.2. Directions of crossing

With the previous discussion, in this subsubsection, we will focus on the directions
of change in the stability of system (1.2).

Suppose (τ∗1 , τ
∗
2 ) ∈ T , and there exists ω∗ > 0 such that (iω∗; τ∗1 , τ

∗
2 ) is a root

of the characteristic equation (3.3). If ∂D
∂s (iω

∗; τ∗1 , τ
∗
2 ) ̸= 0, then let s(τ∗1 , τ

∗
2 ) =

η(τ∗1 , τ
∗
2 ) + iω(τ∗1 , τ

∗
2 ) be a simple root of Eq.(3.3). In the neighborhood of (τ∗1 , τ∗2 ),

η(τ∗1 , τ
∗
2 ) = 0 and ω(τ∗1 , τ

∗
2 ) = ω∗ are satisfied. We call the increasing direction of

ω ∈ Ω as the positive direction of the stability switching curves T , and as moving
along the positive direction of the curves T , the left-hand (right-hand) side is called
as the region on the left (right).

Due to the tangent vector of T along the positive direction is m = (
∂τ∗

1

∂ω∗ ,
∂τ∗

2

∂ω∗ ),
the normal vector of T pointing to the right region is n = (

∂τ∗
2

∂ω∗ ,− ∂τ∗
1

∂ω∗ ) and (τ∗1 , τ
∗
2 )

moves along the direction q = (
∂τ∗

1

∂η ,
∂τ∗

2

∂η ). Also, as η increases from negative to
positive through 0, the direction of a pair of pure imaginary roots of characteris-
tic equation (3.3) across the imaginary axis to the right on the complex pane is
determined by the sign of the inner product of m and n, which is

δ(ω∗) := n · q =

(
∂τ∗2
∂ω∗ ,−

∂τ∗1
∂ω∗

)(
∂τ∗1
∂η

,
∂τ∗2
∂η

)
=

∂τ∗1
∂η

∂τ∗2
∂ω∗ − ∂τ∗1

∂ω∗
∂τ∗2
∂η

=

∣∣∣∣∣∣
∂τ∗

1

∂η
∂τ∗

1

∂ω∗

∂τ∗
2

∂η
∂τ∗

2

∂ω∗

∣∣∣∣∣∣ .
(3.34)

If δ(ω∗) > 0 (δ(ω∗) < 0), then the region on the right (left) has characteristic
roots with positive real parts when moving along the positive direction of stability
switching curves T .

Since D(s; τ∗1 , τ
∗
2 ) is an analytical function of s, τ∗1 and τ∗2 , if

det

R1 R2

I1 I2

 = R1I2 −R2I1 ̸= 0,
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then

∆(ω∗) =

∂τ∗
1

∂η
∂τ∗

1

∂ω∗

∂τ∗
2

∂η
∂τ∗

2

∂ω∗

∣∣∣∣∣
σ=0,ω∗∈Ω

=

R1 R2

I1 I2

−1R0 −I0

I0 R0

 , (3.35)

where

R0 =Re

{
∂D(s; τ∗1 , τ

∗
2 )

∂η

∣∣∣
s=iω∗

}
=(γ1 + γ2)ω

∗γ1+γ2 sin
(γ1 + γ2)π

2
− γ1a22ω

∗γ1−1 sin
γ1π

2

− γ2a11ω
∗γ2−1 sin

γ2π

2
− τ∗1 a22b11 cosω

∗τ∗1

− γ2b11ω
∗γ2−1 sin(

γ2π

2
− ω∗τ∗1 ) + τ∗1 b11ω

∗γ2 cos(
γ2π

2
− ω∗τ∗1 )

+ γ1a22ω
∗γ1−1 sin(

γ1π

2
− ω∗τ∗2 )− τ∗2 a22ω

∗γ1 cos(
γ1π

2
− ω∗τ∗2 )

+ τ∗2 (a11a22 + a12c21) cosω
∗τ∗2 + (τ∗1 + τ∗2 )a22b11 cosω

∗(τ∗1 + τ∗2 ),

I0 =Im

{
∂D(s; τ∗1 , τ

∗
2 )

∂η

∣∣∣
s=iω∗

}
=− (γ1 + γ2)ω

∗γ1+γ2 cos
(γ1 + γ2)π

2
+ γ1a22ω

∗γ1−1 cos
γ1π

2

+ γ2a11ω
∗γ2−1 cos

γ2π

2
+ τ∗1 a22b11 sinω

∗τ∗1

+ γ2b11ω
∗γ2−1 cos(

γ2π

2
− ω∗τ∗1 ) + τ∗1 b11ω

∗γ2 sin(
γ2π

2
− ω∗τ∗1 )

− γ1a22ω
∗γ1−1 cos(

γ1π

2
− ω∗τ∗2 )− τ∗2 a22ω

∗γ1 sin(
γ1π

2
− ω∗τ∗2 )

− τ∗2 (a11a22 + a12c21) sinω
∗τ∗2 − (τ∗1 + τ∗2 )a22b11 sinω

∗(τ∗1 + τ∗2 ),

R1 =Re
{
−iω∗(U1(iω

∗)e−iω∗τ∗
1 + U3(iω

∗)e−iω∗(τ∗
1 +τ∗

2 ))
}

=a22b11ω
∗ sinω∗(τ∗1 + τ∗2 )− b11ω

∗γ2+1 sin(
γ2π

2
− ω∗τ∗1 )− a22b11ω

∗ sinω∗τ∗1 ,

I1 =Im
{
−iω∗(U1(iω

∗)e−iω∗τ∗
1 + U3(iω

∗)e−iω∗(τ∗
1 +τ∗

2 ))
}

=a22b11ω
∗ cosω∗(τ∗1 + τ∗2 ) + b11ω

∗γ2+1 cos(
γ2π

2
− ω∗τ∗1 )− a22b11ω

∗ cosω∗τ∗1 ,

R2 =Re
{
−iω∗(U2(iω

∗)e−iω∗τ∗
2 + U3(iω

∗)e−iω∗(τ∗
1 +τ∗

2 ))
}

=a22ω
∗γ1+1 sin(

γ1π

2
− ω∗τ∗2 ) + (a11a22 + a12c21)ω

∗ sinω∗τ∗2

+ a22b11ω
∗ sinω∗(τ∗1 + τ∗2 ),

I2 =Im
{
−iω∗(U2(iω

∗)e−iω∗τ∗
2 + U3(iω

∗)e−iω∗(τ∗
1 +τ∗

2 ))
}

=− a22ω
∗γ1+1 cos(

γ1π

2
− ω∗τ∗2 ) + (a11a22 + a12c21)ω

∗ cosω∗τ∗2

+ a22b11ω
∗ cosω∗(τ∗1 + τ∗2 ).
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Similarly, we find that

Re
{

∂D(s;τ∗
1 ,τ

∗
2 )

∂ω∗

∣∣∣
s=iω∗

}
= −I0,

Im
{

∂D(s;τ∗
1 ,τ

∗
2 )

∂ω∗

∣∣∣
s=iω∗

}
= R0.

(3.36)

We have

δ(ω∗) = det(∆(ω∗)) =

∣∣∣∣∣∣R1 R2

I1 I2

∣∣∣∣∣∣
−1 ∣∣∣∣∣∣R0 −I0

I0 R0

∣∣∣∣∣∣ .
Since ∣∣∣∣∣∣R0 −I0

I0 R0

∣∣∣∣∣∣ = R2
0 + I20 ≥ 0,

then δ(ω∗) and R1I2 −R2I1 have the same sign, which is

sign {δ(ω∗)} = sign {R1I2 −R2I1} . (3.37)

For (τ1
∗, τ2

∗) ∈ T , we have

U2(iω
∗)eiω

∗(τ∗
1 −τ∗

2 ) = −U0(iω
∗)eiω

∗τ∗
1 − U1(iω

∗)− U3(iω
∗)e−iω∗τ∗

2 . (3.38)

We can verify that

R1I2 −R2I1

=Im {(R1 − I1i)(R2 + I2i)}

=Im
{
(R1 + I1i)(R2 + I2i)

}
=Im

{
(−iω∗)(U1e−iω∗τ∗

1 + U3e−iω∗(τ∗
1 +τ∗

2 ))(−iω∗)(U2e
−iω∗τ∗

2 + U3e
−iω∗(τ∗

1 +τ∗
2 ))
}

=ω∗2Im
{
U1U2e

iω∗(τ∗
1 −τ∗

2 ) + U1U3e
−iω∗τ∗

2 + U2U3e
iω∗τ∗

1

}
=ω∗2Im

{
U1(−U0e

iω∗τ∗
1 − U1 − U3e

−iω∗τ∗
2 ) + U1U3e

−iω∗τ∗
2 + U2U3e

iω∗τ∗
1

}
=ω∗2Im

{
(U2U3 − U0U1)e

iω∗τ∗
1

}
=ω∗2Im

{
|U2U3 − U0U1|eiω

∗τ∗
1 eθ1

}
=± ω∗2|U2U3 − U0U1| sinϕ1.

Hence,
δ(ω∗ ∈ Ω) = ±sign

{
ω∗2|U2U3 − U0U1| sinϕ1

}
= ±1. (3.39)

Theorem 3.4. For ∂D
∂s (iω

∗; τ∗1 , τ
∗
2 ) ̸= 0 and (τ∗1 , τ

∗
2 ) ∈ T , the direction of character-

istic roots s crossing the imaginary axis from left to right, as (τ∗1 , τ
∗
2 ) passes through

the stability switching curves to the region on the right (left) if sign {δ(ω∗)} > 0
(sign {δ(ω∗)} < 0).
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3.4.3. Hopf bifurcation

Taking the derivstive of τ1 of Eq.(3.3), we can get that

[U
′

0(s) + U
′

1(s)e
−sτ1 − τ1U1(s)e

−sτ1 + U
′

2(s)e
−sτ2 − τ2U2(s)e

−sτ2

+ U
′

3(s)e
−s(τ1+τ2) − (τ1 + τ2)U3(s)e

−s(τ1+τ2)]
ds

dτ1
− [sU2(s)e

−sτ2

+ sU3(s)e
−s(τ1+τ2)]

dτ2
dτ1

− sU1(s)e
−sτ1 − sU3(s)e

−s(τ1+τ2) = 0,

(3.40)

where U
′

i (s) is the derivaties of Ui(s) (i = 0, 1, 2, 3).
Eq.(3.22) can be written equivalently as follows:

τ2 =
ln(−U2e

sτ1+U3

U0esτ1+U1
)

s
. (3.41)

By Eq.(3.40) and Eq.(3.41), it can get that

[
ds

dτ1
]−1 =

V

D
+

U
′

1

sU1
− τ1

s
, (3.42)

where

V =U
′

0U1U3 + U
′

0U
2
3 e

−sτ2 + (U
′

0U1U2 + U
′

0U0U3)e
sτ1 + U

′

0U0U2e
2sτ1

+ U
′

0U2e
s(2τ1−τ2) + 2U

′

0U2U3e
s(τ1−τ2),

D =sU2
1U3e

−sτ1 + 2sU1U2U3e
−sτ2 + sU1U

2
3 e

−s(τ1+τ2)

+ sU0U1U2e
sτ1 + sU1U

2
2 e

s(τ1−τ2) + sU2
1U2 + sU0U1U3.

Let U
′r
i and U

′i
i be the real and imaginary parts of the derivative of U

′

i (i =
0, 1, 2, 3), respectively, and the real and imaginary parts of Ui(s) (i = 0, 1, 2, 3) are
denoted by Ai and Bi, respectively. If s = ω0(cos

π
2 + i sin π

2 ) is a root of Eq.(3.3),
and τ1 = τ1 is a bifurcation point, then the following equation can be deduced by
calculation:

Re[
ds

dτ1
]−1
∣∣∣
ω=ω0,τ1=τ1

=
V1D1 + V2D2

D2
1 +D2

2

+
−ω0B1U

′r
1 + ω0A1U

′i
1

ω2
0A

2
1 + ω2

0B
2
1

, (3.43)

where

V1 =U
′r
0 A1A3 − U

′i
0 B1A3 + U

′r
0 A2

3 cosω0τ2 + U
′i
0 A

2
3 sinω0τ2

+ (U
′r
0 A1A2−U

′i
0 A2B1−U

′r
0 B1B2−U

′i
0 A1B2+U

′r
0 A1A3−U

′i
0 B1A3) cosω0τ1

− (U
′r
0 A1B2−U

′i
0 B1B2+U

′r
0 A2B1+U

′i
0 A1A2+U

′r
0 B1A3+U

′i
0 A1A3) sinω0τ1

+ (U
′r
0 A0A2 − U

′i
0 B0A2 − U

′r
0 B0B2 − U

′i
0 A0B2) cos 2ω0τ1

− (U
′r
0 A0B2 − U

′i
0 B0B2 + U

′r
0 B0A2 + U

′i
0 A0A2) sin 2ω0τ1

+ (U
′r
0 A2 − U

′i
0 B2) cos(2ω0τ1 − ω0τ2)− (U

′i
0 A2 + U

′r
0 B2) sin(2ω0τ1 − ω0τ2)

+ 2(U
′r
0 A2A3 − U

′i
0 B2A3) cos(ω0τ1 − ω0τ2)

− 2(U
′r
0 B2A3 + U

′i
0 A2A3) sin(ω0τ1 − ω0τ2),
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V2 =U
′r
0 B1A3 + U

′i
0 A1A3 − U

′r
0 A2

3 sinω0τ2 + U
′i
0 A

2
3 cosω0τ2

+ (U
′r
0 A1A2−U

′i
0 A2B1−U

′r
0 B1B2−U

′i
0 A1B2+U

′r
0 A1A3−U

′i
0 B1A3) sinω0τ1

+ (U
′r
0 A1B2−U

′i
0 B1B2+U

′r
0 A2B1+U

′i
0 A1A2+U

′r
0 B1A3+U

′i
0 A1A3) cosω0τ1

+ (U
′r
0 A0A2 − U

′i
0 B0A2 − U

′r
0 B0B2 − U

′i
0 A0B2) sin 2ω0τ1

+ (U
′r
0 A0B2 − U

′i
0 B0B2 + U

′r
0 B0A2 + U

′i
0 A0A2) cos 2ω0τ1

+ (U
′r
0 A2 − U

′i
0 B2) sin(2ω0τ1 − ω0τ2) + (U

′i
0 A2 + U

′r
0 B2) cos(2ω0τ1 − ω0τ2)

+ 2(U
′r
0 A2A3 − U

′i
0 B2A3) sin(ω0τ1 − ω0τ2)

+ 2(U
′r
0 B2A3 + U

′i
0 A2A3) cos(ω0τ1 − ω0τ2),

D1 =− ω0(2A1A2B1 +A2
1B2 −B2

1B2 +A0A3B1 +A1A3B0)

+ ω0(−A0A1B2 +B0B1B2 −A0A2B1 −A1A2B0 + 2A1A3B1) cosω0τ1

− ω0(A0A1A2 −B0B1A2 −A0B1B2 −A1B0B2 −A2
1A3 +A3B

2
1) sinω0τ1

− 2ω0(A2A3B1 +A1A3B2) cosω0τ2 + 2ω0(A1A2A3 −A3B1B2) sinω0τ2

+ ω0(−2A1A2B2 −A2
2B1 +B1B

2
2) cosω0(τ1 − τ2)

− ω0(−2A2B1B2 +A1A
2
2 −A1B

2
2) sinω0(τ1 − τ2)

− ω0B1A
2
3 cosω0(τ1 + τ2) + ω0A1A

2
3 sinω0(τ1 + τ2),

D2 =ω0(−2A1B1B2 +A2
1A2 −B2

1A2 +A0A1A3 −A3B0B1)

+ ω0(−A0A1B2 +B0B1B2 −A0A2B1 −A1A2B0 − 2A1A3B1) sinω0τ1

+ ω0(A0A1A2 −B0B1A2 −A0B1B2 −A1B0B2 +A2
1A3 −A3B

2
1) cosω0τ1

+ 2ω0(A2A3B1 +A1A3B2) sinω0τ2 + 2ω0(A1A2A3 −A3B1B2) cosω0τ2

+ ω0(−2A1A2B2 −A2
2B1 +B1B

2
2) sinω0(τ1 − τ2)

+ ω0(−2A2B1B2 +A1A
2
2 −A1B

2
2) cosω0(τ1 − τ2)

+ ω0B1A
2
3 sinω0(τ1 + τ2) + ω0A1A

2
3 cosω0(τ1 + τ2),

A0 =ωγ1+γ2

0 cos
(γ1 + γ2)π

2
− a22ω

γ1

0 cos
γ1π

2
− a11ω

γ2

0 cos
γ2π

2
+ a11a22,

B0 =ωγ1+γ2

0 sin
(γ1 + γ2)π

2
− a22ω

γ1

0 sin
γ1π

2
− a11ω

γ2

0 sin
γ2π

2
,

A1 =− b11ω
γ2

0 cos
γ2π

2
+ a22b11,

B1 =− b11ω
γ2

0 sin
γ2π

2
,

A2 =a22ω
γ1

0 cos
γ1π

2
− a11a22 − a12c21,

B2 =a22ω
γ1

0 sin
γ1π

2
,

A3 =− a22b11,

B3 =0.

If the following condition holds:

(H10) : Re[
ds

dτ1
]−1
∣∣∣
(ω=ω0,τ1=τ1)

=
V1D1 + V2D2

D2
1 +D2

2

+
−ω0B1U

′r
1 + ω0A1U

′i
1

ω2
0A

2
1 + ω2

0B
2
1

̸= 0,

then the transversal condition is true.
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Clearly, we can obtain the following theorem.

Theorem 3.5. When τ1 > 0, τ2 > 0, and τ1 ̸= τ2, the system (1.2) appears Hopf
bifurcation if (τ1, τ2) ∈ T , and (H1)− (H3) and (H10) are true.

4. Numerical simulations
In this section, we consider the following system:Dγ1x(t) = 2.5x(1− x(t−τ1)

300 )− 0.03(1−0.72)x2y
1+0.03×0.056(1−0.72)x2 ,

Dγ2y(t) = 0.12×0.03(1−0.72)x2(t−τ2)y(t−τ2)
1+0.03×0.056(1−0.72)x2(t−τ2)

− 1.2y − 0.1× 0.5y,
(4.1)

where γ1 = 0.9, γ2 = 0.95.
For system (4.1), β − (d + qE0)h = 0.05 > 0 and 1 − x∗

K = 0.8182 > 0, then
(H1) and (H2) are true. There is a unique positive equilibrium J∗ = (54.55, 10.71)
in system (4.1).

We can calculate a11 + b11 = 0.3409− 0.4546 = −0.1137 < 0, then (H3) is true.
From Theorem 3.1, the positive equilibrium J∗ is locally asymptotically stable with
τ1 = τ2 = 0 (see Fig.1).
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Figure 1. The positive equilibrium J∗ of system (4.1) is locally asymptotically stable when τ1 = 0 and
τ2 = 0 with γ1 = 0.9 and γ2 = 0.95.

When τ1 > 0 and τ2 = 0, we can calculate that ω10 = 1.7953, τ10 = 0.8993
and Re[ ds

dτ1
]−1|ω=ω10,τ1=τ10 = 1.8197 ̸= 0. When τ1 = 0.8 < 0.8993, the positive

equilibrium is locally asymptocically stable (see Fig.2). When τ1 = 1 > 0.8993, the
system (4.1) occurs Hopf bifurcation (see Fig.3).

When τ1 = 0 and τ2 > 0, we can easily get that ω20 = 1.2696, τ20 = 0.2752
and Re[ ds

dτ2
]−1|ω=ω20,τ2=τ20 = 2.3826 ̸= 0. When τ2 = 0.2 < 0.2752, the positive

equilibrium J∗ of system (4.1) is locally asymptotically stable (see Fig.4). When
τ2 = 0.35 > 0.2752, system (4.1) occurs periodic solution (see Fig.5).

When τ1 > 0, τ2 > 0 and τ1 ̸= τ2, we can get the graph of F (ω) (see Fig.6). It
has two different positive real roots 1.1965 and 1.8217. Then the feasible region is
Ω = (1.1965, 1.8217). When ω ∈ Ω, we can calculate the stability switching curves
and the directions of change in stability of system (4.1) (see Fig.7). Fig.8 is an
enlargement of the lower left corner of Fig.7. The range of stability region of system
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Figure 2. The positive equilibrium J∗ of system (4.1) is locally asymptotically stable when τ1 = 0.8 <
τ10 and τ2 = 0 with γ1 = 0.9 and γ2 = 0.95.
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Figure 3. The system (4.1) appears Hopf bifurcation when τ1 = 1 > τ10 and τ2 = 0 with γ1 = 0.9 and
γ2 = 0.95.
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Figure 4. The positive equilibrium J∗ of system (4.1) is locally asymptotically stable when τ1 = 0 with
τ2 = 0.2 < τ20 with γ1 = 0.9 and γ2 = 0.95.
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Figure 5. The system (4.1) appears Hopf bifurcation when τ1 = 0 and τ2 = 0.35 > τ20 with γ1 = 0.9
and γ2 = 0.95.
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Figure 6. Graph of F(ω) when γ1 = 0.9 and γ2 = 0.95.

(4.1) is the green part of Fig.8. We finding any one point O = (0.315, 0.2433) on the
stability switching curve in Fig.8. When τ1 = 0.315, and τ2 = 0.24 < 0.2433, the
positive equilibrium J∗ of system (4.1) is locally asymptotically stable (see Fig.9).
When τ1 = 0.315, and τ2 = 0.25 > 0.2433, system (4.1) occurs Hopf bifurcation
(see Fig.10).

In order to better compare the range of stability region of system (4.1) in two
different cases: (i) γ1 = 0.9 and γ2 = 0.95 and (ii) γ1 = γ2 = 1, then when
γ1 = γ2 = 1, the stability switching curves of system (4.1) (see Fig.11) and an
enlargement of the lower left corner of Fig.11 (see Fig.12) are shown. The green
part of Fig.12 is the range of stability region of system (4.1) with γ1 = γ2 = 1.
Comparing Fig.8 and Fig.12, we can find that the system (4.1) with fractional
order has widely stable region than the system (4.1) with integer order.

5. Conclusion
In this paper,we have investigated a fractional predator-prey system with two de-
lays and incommensurate orders. Taking time delay as bifurcation parameter, the
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Figure 7. Plot of the stability switching curves when γ1 = 0.9 and γ2 = 0.95.
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Figure 8. The stable region of system (4.1) with γ1 = 0.9 and γ2 = 0.95.

0 50 100 150 200 250

t

40

50

60

70

80

x
(t

)

0 50 100 150 200 250

t

8

10

12

14

y
(t

)

(a)

40 45 50 55 60 65 70 75 80

x(t)

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

y
(t

)

(b)

Figure 9. The positive equilibrium J∗ of system (4.1) is locally asymptotically stable when τ1 = 0.315
and τ2 = 0.24 < 0.2433 with γ1 = 0.9 and γ2 = 0.95.

stability and the existence conditions of Hopf bifurcation of system (1.2) have been
discussed in four cases:
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Figure 10. The system (4.1) appears Hopf bifurcation when τ1 = 0.315 and τ2 = 0.25 > 0.2433 with
γ1 = 0.9 and γ2 = 0.95.
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Figure 11. Plot of the stability switching curves when γ1 = γ2 = 1.
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Figure 12. The stable region of system (4.1) with γ1 = γ2 = 1.

(i) When τ1 = τ2 = 0, the local stability of the positive equilibrium of the system
(1.2) is analyzed by Routh-Hurwitz criterion.
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(ii) When τ1 > 0, τ2 = 0 or τ1 = 0, τ2 > 0, the critical value of Hopf bifurcation
at the positive equilibrium of the system (1.2) is calculated by taking τ1 and
τ2 as bifurcation parameter, respectively.

(iii) When τ1 > 0, τ2 > 0, and τ1 ̸= τ2, applying the method of [10, 16], we
can calculate the stability switching curves and the directions of crossing, and
obtain the change in the stability of the positive equilibrium of the system (1.2)
and the existence of Hopf bifurcation as two delays change simultaneously.

From the discussion of the above cases, we can get the following results:

(i) Delay has an important effect on the stability of system. When the delay
crosses a critical value, Hopf bifurcation occurs in the system (1.2).

(ii) Contrasted the system (1.2) with integer order and fractional order, the latter
has widely stability region. The order has an effect on the stability of the
system.
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