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EXPLICIT SOLUTIONS TO A HIERARCHY OF
DISCRETE COUPLING KORTEWEG-DE
VRIES EQUATIONS*
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Abstract To get a hierarchy of discrete coupling Korteweg-de Vries equa-
tions, we consider from a discrete four-by-four matrix spectral problem. Then
we can get the Lax pair of the KdV equations. Finally we present the explicit
solutions of the KdV equations by constructing theirs Darboux transforma-
tions with the help of the corresponding Lax pairs.
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1. Introduction

Since the Korteweg and de Vries described a model for shallow water waves in
1895 [7], the Korteweg-de Vries (KdV) equation [3,21,25,27] has attracted many
researchers attentions in recent years because of its nice mathematical and physical
features. The KdV equation is a universal nonlinear system which arises whenever
there is a balance of weak dispersion and quadratic nonlinearity, the discrete KdV
equation was studied in Ref. [5], the coupled KdV equation was studied in Ref. [24],
the super KdV equation was studied in Ref. [9]. Studying KdV equation is a
helpful work to understand the complex behaviours and many researchers continue
to explore this way [2,28]. Then in our paper, we will study the following equations
by constructing the Lax pair [23,31] based on Ref. [29]

Un,ty + hn,tl = (un + hn)(l - E)(un + hn)(un—l + hn—l)a
Unty = Un(1 — E)(tUn + hn)(Un-1 + hpn—1) — (un, + hy)(1 — E) (1.1)
X [(Un,1 + hnfl)vn + (un + hn)vnfl - (unfl + hnfl)(un + hn)]

We can choose different suitable values of h,, in Eq. (1.1), then we can get different
equations from Eq. (1.1). For example, if we choose h,, = 0, and taking v,, = f%un,
then we can get the famous discrete KdV equation [5]

Unp = U2 (Up—1 — Upt1)-

In Ref. [29], Xu studied a four-by-four matrix spectral problem, then he got
a hierarchy of integrable lattice equations. Finally, he found the lattice equations
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were all integrable in Liouville sense. But he didn’t find the explicit solutions of the
lattice equations. So the main idea of our paper is to find the explicit solutions of
the KdV equations based on a similar matrix spectral problem.

There are many methods have been developed to obtain explicit solutions, where
include the inverse scattering transform method [1], the Bécklund transformation
[4], the Darboux transformation [6,10-12, 16,20, 26], the Hirota bilinear method
[14,15,17-19], the Jacobi elliptic function expansion method [8], the Lie symmetry
method [22]. In this paper, we will choose the Darboux transformation to discuss
the KdV equations. The Darboux transformation is a powerful tool to get the
explicit solutions from seed solutions. Then the solutions are analyzed in Figs. 1, 2
and 3.

In this paper, starting from the using of Lax pair, we have obtained the KdV
equations, then we choose different values in the KdV equations and we can get some
different equations. Finally, the Darboux transformations of the KdV equations are
given and explicit solutions are obtained.

This paper is organized as follows. In section 2, a discrete matrix spectral is
introduced and its Lax pair will be derived. In section 3, the Darboux transforma-
tions of the KAV equations are constructed with the help of Lax pair and explicit
solutions are shown in section 4. The last section contains some discussions.

2. The discrete coupling Korteweg-de Vries equa-
tions

In this section, starting from the following discrete 4 x 4 spectral problem

0 Unp, + hn 0 Un Qol,n
Uy, + Ry, A Un, A P2.n

E‘pn = Un®Pn, Un - sy Pn = 5 (21)
0 0 0 Up + by P30

where A\; = 0, E is the shift operator defined by Ef(n,t) = f(n + 1,t) and
Eilf(nvt) = f(TL - 1at)'
We solve the stationary zero-curvature equation

(ET,)U, — UpT'y, = 0, (2.2)

an by en fn
Cn —0Gp gn —€n

taking I',, = , then Eq. (2.2) becomes
0 0 a, b,

0 0 ¢, —an
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bn+1 — Cp = O,

(upn, + hp)(ant1 + an) + Aopy1 =0,

— (U + hpn)(anst1 + an) — A, =0,

(Un + hpn)eni1 — (Un + hp)bn + Aan — any1) =0,

Unbnt1 — UnCn + (Un + hp) fas1 + (U + hp)gn =0,

Up(an + any1) + (Un + hy)(€n + €nt1) + Aong1 + Afns1 =0,

— Vp(an + ant1) — (U + hy)(en + eny1) — Acn — Agn =0,

— Upbp +Vpcnyr — )‘(anJrl - an) - )‘(en+1 - en) + (un + hn)(9n+1 - fn) =0.
(2.3)

Substituting a, = E;‘;lagj))\_gm, b = X532 o BN o = Z;‘;lcgj))\_QWH,

en = B2 A2 f = 22 LA 2m41 and gn = z;;lg;j)xmﬂ into Eq.

(2.3), we can obtain the following recursion relations

-

(un + ) (al3s + a{™) + 037 =0,

— (tn + ho) (@ + al™) — D =,

(tn + )™ = (i + h)BT™ + (@™ — %)) = 0,

b, = 0™ 4 (i + h) ) + (s + B g™ = 0,

vn (@™ + aimh) + (un + b)) (™ + eT0) + 00T 4 £ =

— v (al™ + o™ ) = (tn + ) (™ + e(m) ) — emtD) 97(1m+1) —0,

cm =0,

n+1
= onb el s — (g —al™) = (e s — o) (unha) (9,71 — F) = 0.
(2.4)
Especially, if we choose the suitable initial values a%o) = —%, bgl =0, c(o) =0,
67('10) = —%, © = 0 and g(o) = O the above recursion relations can determine other

(m) b(m)

functions such as ay, Cn ), e%m), ,(lm) and g(m), m > 0 and the first few

quantities are given by

agll) = (un + hn)(un—l + hn—l)a b’Ell) =Up—1 + hn—h cgzl) = Up + hn’
657,1) = (Un,1 + hnfl)(’un — Unp — hn) + (Un + hn)vnfh fél) = Unflvgrgl) = Un-

Then we define

a;j)/\m—j bglj)/\m—j eg)/\m—j f’r(Lj) Am—J
. . Cg)Amfj 7a£lj))\mfj géj)/\mfj 7€£;)>\m7j

0 0 ay/ X3 by Ama
0 0 c%)/\m—j —a%j))\m_j
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and Vn(m) =(\"T,)+ + A%m)7 where

—2a{™ 0 —2¢™ 0

o 0O 0 0 o0 ve
" 0 0-2a"0¢| (20)
0O 0 0 o0

Now we consider the following auxiliary spectral problem
Ot = Vi, m> 0. (2.7)
The compatibility conditions of Eq. (2.1) and Eq. (2.7) are

Uy, = (EVmHum _gmym) m >, (2.8)

stm

which lead to the following integrable lattice hierarchy

{u F g, = (tn + ho)(al™ — al™), 29

Ont = Un(al™ = alPh) + (wn + ha) (€™ — ),
then when m = 1, we have

Un,ty + hn7t1 - (un + hn)(l - E)(un + hn)(’unfl + hn71)7
Unty = Un(1 — E)(tn + hn)(Un—1 + hn_1) — (tn + hp)(1 — E)
X [(Un—l + hn—l)vn + (un + hn)vn—l - (un—l + hn—l)(un + hn)]

(2.10)
Which is the Eq. (1.1), and the time part of the Lax pair of Eq. (1.1) is
I upy 1+ hao —iN—s )
2 n n n 2 n n
Up, + Py, INn—r, Vp, IN—s,
nty = Vapn = ? 2 Pn, (2.11)
0 0 —%)\—’I“n Up_1 + hn_1
0 0 Un +hy  EX—T,

where Tn = (un + hn)(un—l + hn—1)7 Sn = (un—l + hn—l)vn + (Un + hn)vn—l -
('I.Ln,1 + hnfl)(un + hn)

Now we consider some different values of h,, in Eq. (1.1).

First, if we choose h,, = 0, the Eq. (2.9) becomes

{u = un (o™ — 7). 2.12)
Ut = v (@l = @)+ wa(el) — 1)), |
when m = 1, we have
{Un,t1 = U2 (Up_1 — Uni1), (2.13)
Upty = ui(un_,_l — Up—1 + Vp1 — Upt1) + 2UnVn (Up—1 — Upt1).
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Then if we take v,, = f%un, we can get the famous discrete KdV equation.

Second, in the condition h,, = ev,, the Eq. (2.9) can be

Ut :unam)—a(m) —e(uy, + v, e(m)—e(m),
{ o =) = ol i b)Y ),

Untn = (@) — @) + (wn + v (e — ),
then when m = 1, we have

Un,t, =Un(1 — E)(uy + €vp)(Un—1 + €0p—1) — €(upn, + ev,)(1 — E)
X [(Uun—1 + €Vp—1)Un + (Un + €V )Un—1 — (Up—1 + €Vr—1)(Un + €vy)],
Unt; =Un(l — E)(un + €vp)(Un—1 + €p_1) — (un +€v,)(1 — E)

X [(un—l + 61}»”_1)’0” + (un + €Un)1)n_1 - (un—l + avn—l)(un + 5'Un)}-

(2.15)
To see Eq. (2.15) better, we can choose € = 1, so we get
Un,t, = (ui - U%)(Un-f—l = Un—1) + 2(upvy + ui)(un+1 — Up—1), (2.16)
Uty = (U =) (Un1 = tn—1) + 2(UnpVp + 03) (Vg1 = V1))
Third, let h,, = eu,v,, the Eq. (2.9) can become
Un m m m m
i = T (O = @) — eu (el — 1), o
Un e = Un(al™ — al)) + (n + cunvn) (™ — el

we can see the following equations when m = 1
Uy,
- 1+ev,
X [(Un—1 + EUp—1Vn—1)Upn + (Un, + EURVR)Vp—1
— (Up—1 + eUp_1Un—1)(Up + unvy)],
Unt; =Un(1 — E)(upn + €unvp)(Un-1 + Un_1Vn_1) — (Un, + cUpvy)(1 — E)
X [(Un—1 + EUp—1Vn—1)Vpn + (Un, + EURVY)Vp—1

— (Un—1 + €Up—1Vn—1)(Un + cunvy)].

Un,t, (1= E)(un + cttnvn)(tUp—1 + €Up_10p—1) — eui(l —FE)

(2.18)
3. The N-fold Darboux transformation
In this section, we first introduce a gauge transformation

where @, satisfies Eqs. (2.1) and (2.11) with U,, and V,, replaced by U,, and XN/n, as

~n = Z?n ~n7 ifn = Tn UnTrTlv
Pn+1 14 +1 (3.2)

L,)Bn,t = V’I’LS’E’VH ‘7n = (Tn,t + TTLVTL)TTL_I
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Then let T;, be of form

Thq Tho Thz Tha
To1 Tog Toz Ty

0 0 T5 The (33)

AN 4 Ef\i_olag)/\i Efi_olbg)/\i AN 4 ZN—Oleg)Ai EZZ_V:—Olﬂ(li))\i

1=

eV N AN 1 N N AN

_ n+1 n
0 0 AV +uNtaN sN N
0 0 —ENCBO N AN 41

where N is a natural number, T; ; are the functions with respect to n, ¢ and all

are independent of A\, which can be determined later. These blocks b%N_l), bgﬁ;l),

(N=1) (N-1)

» s Jap1 ~ satisfy the following constraint relationship,
1 _ 1 _
sn - rn = 0N Y FATY 4 Ebffil D p(N=1), (3.4)

Ai(Ni # A, i # 4,4 =1,2,...,2N) are roots of the (4N)th order polynomial detT,,,
ie., detT, = T2, (A — ;) and detT,(\;) = 0. Then assumed that ¢, = (¢1.n, P2.n,
B30, D1.0)T and ¥y, = (V1.0, V2.0, ¥30,Pan)T are two basic solutions of the Egs.
(2.1) and (2.11), where they are linearly independent. We define that

¢1,n wl,n
On = ¢2,n 1/)2,71 : (35)
¢3,n w3,n

¢4,n 1/14,11

where ¢, is a solution of the Egs. (2.1) and (2.11). Then we have

Ti1 The Thz Tia G1,n Vin
To1 Tog Tz Toa G2,n V2,n
0 0 T T2 @3,n V3,0
0 0 T5 T2 Ga,n Yan

SEn = InPn=

Tiidin+Ti202,n+ 113030+ 11404, T11YU1,n+T12V2,0 + 113030+ 1144
To101n+To0P2n+ 12303 n+ToaPam  To191 n+To202 n+T2303 0 +T24%04 n
Ti1¢3mn +Ti2¢an T3, + Th2%an
To103,n + To20an To13,n + To2an

(3.6)
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where the colum vectors of ¢,, are linearly independent. Thus we exists constants
k; so that

K1 + Koty = 0, (3.7)
ie.,

k(T + Ti2¢2.n + Ti303 n + T1adan)

+ k2 (T111 0 + Ti2¥2. 5 + Ti303.0 + T14%a0) = 0,
K1(To1¢1,n + Toop2.n + Tozds n + Toada )

+ ko (To191.0 + Toowo n + Tosths n + Toatha n) =0,
k1(Th103,m + Ti2¢a.0) + ko (T1103 0 + T12%4,n) = 0,
k1(To1¢93n + Toodan) + k2(To1903 5 + Tootha ) = 0.

Let

we can obtain

Ti + Thoa[n] + Tisf;[n] + Tiayj[n] = 0,
To1 + Tooajn] + To3f;[n] + Toayj[n] =0,
T1184[n] + Tizy;[n] = 0,
T2184[n] + Teey;[n] = 0.

(3.10)

Then with the help of Eq. (3.6), we have

S aDN + o [n]bDNE + B [n]elI N + ;[ £PNG) = —(1+ B;[n]) AN,
S (b AL = B[l AN = —(ag[n] AN + 1) + 5[] (N + 1)),
SN B [nalI N + ;)b N ) = =B, AN,

SN GH=B5 bl N = =[] (AN + 1),

(3.11)

Theorem 3.1. The matriz ﬁn = TnHUnTn_1 has the same form as matriz Uy, the
U,, can be written as

0 Uy, + Ry, 0 Up,

N Un+hn A B, A

U,=| " " " ], (3.12)
0 0 0 U+ hy
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which the transformation formulae between old and new potentials are given by

ot B =+ By T,
{U Uu ) n+1 (313)
Un = Un + fn+1 :
Proof. Let T, ! = de:’;’;n and
fii(An) fiz(An) fiz(An) fua(An)
A, A, A, A,

F(\) = Ty Un T = fer(Am) fa2(Am) fas(Am) faa(Am) | (3.14)

0 0 f11(>\,n) f12(>\,n)

0 0 fa(An) faa(An)

It is easy to obtain that fo2(A,n) and fos (A, n) are the (4N+1)th order polyno-
mials in A, fi1(A,n), fiz(A,n), fis(A,n), fis(An), far(A,n) and faz(A,n) are the
(4N)th order polynomials in A. In addition, by Eqgs. (2.1) and (3.6), we get

Up + hn + Ajo [n] + B [n]v, + Ajj [n]

L e TR e v R
Biln+1] = - [n](véinﬂnn; +h:3 — j=1,2,..2N,  (3.15)
il +1] = Biln] (un + hn) + Aj7;(n]

]
Qs [n](un + hn) + Y [n]vn
)

that \;(j = 1,2,...,2N) are also roots of fs (s =1,2,t =1,2,3,4), and Eq. (3.14)
can be written as

T UT = detTy, - P, (3.16)
with
P (n) P (n) P (n) P (n)
P (1) (0) ) 0)
p - (n)PZQ())‘+P22()P23(n)P ())“"P (n) (3.17)
0 0 PYm) PP
0 0 P (n) Py () + Py (n)

where Pl]m(n)(l =1,2,m =1,2,3,4,j = 0,1) are functions which are indepent of
A, here we get
TpsrUp = PoT. (3.18)

By comparing the coefficients of the same power of A in both sides of Eq. (3.18),
we have
Pfﬁ = v + fn+ V= vmpé? = tin + B+ BN = T o, (3.19)

1 0 0 1 0
P2(2) = 13P2(2)(n) = 07P2(3) = Un +fn+1 - va2(4) = 1’P2(4)(n) =0.
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Theorem 3.2. The matriz Vn = (Tt + TV)T, —1 has the same form as matric

V., the Vn can be written as

_%)\_Fn ﬂnfl +Fﬁn71 _%A_gn 1771
_ Un+hn  IAN—T, o IN=3,
v, = 2 2 . (3.20)
0 0 — 32X =T U1 + Byt
0 0 Uy +hy  IA—Tn
Proof. Let
g11(A\,n) gi2(A,n) gi3(A,n) gia(A,n)
AN A A, A, n
G()\) _ (Tn,t +TnVn)T;f _ 921( ) 922( ) 923( ) 924( ) , (3.21)
0 0 g1i(An)gi2(A,n)
0 O glg()\,n) 914()\,n)

where g11 (A, n), g13(A,n), g2a(A\, n) and g24(A, n) are the (4N+1)th order polynomi-
alsin A, g12(A\, 1), g14(A,m), g21(A\, n) and ga3(\, n) are the (4N)th order polynomials
in A, and where \;(j = 1,2,...,2N) are also roots of g (s = 1,2,t = 1,2,3,4), so
the Eq. (3.21) can be written as

(Tn,t + Tnvn)T; = detT, - Qna (322)
with
H A+ QY (n) () 5 A+ QY (n) ()
_ o () WA+ () Q5 () 5 (WA + Q5 (m)
! 0 0 QYA+ Q9 (n) )
0 0 $ () 8 (n)A + Q%) (n)
(3.23)

where Q{m (n)(l=1,2,m =1,2,3,4,j = 0,1) are functions which are independent
of A\, thus we see

By comparing the coefficients of the same power of A in both sides of Eq. (3.24),
we have

g?) = (2%) = _(un + h + bgil 1))(Un 1+ hn 1+ b(Nil)) - _?na

© = Q%) = — (up—1 + By + 8D (0, + FIT)

= (b 00 ) (0 + £NTY) (3.25)
+ (unfl + hnfl + bszN_l))(un + hn + b;].\(_zl)) = _g'ru

QY =vn1+ SNV =51, QN =+ hy + 00T = Ui + P,

ng = vp + fnjill)—vm ng = Up_1 4 hp1 + 0V =7, 4 P,
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1) _ H@) (1) 1 _
24 = 22—27 11 = Wis

M\»—t

Thus we complete the proof. O

In conclusion, the transformations Egs. (3.1) and (3.13) are the N-fold Darboux
transformation we are looking for.

Now we considered some different values of h,, in the N-fold Darboux transfor-
mation to see how it changed.

If we choose h,, = 0, the transformation formulae (3.13) become

{ﬂn = U,n bglj_\(_l 1),

. (3.26)

fﬁn =Up + fn+1

In the case h, = ev,, we have the following transformation formulae between
old and new potentials

V- (3.27)

U = un + 0T —ef Y,
Up = Up, + f .

In the condition h,, = eu,v,, the transformation formulae between old and new
potentials become

~ Un(1+€'l1n)+bn+1
Toive(oa+ i) (3.28)

Up = Up + fn+1

Remark 3.1. In this paper, the Darboux transformation we have constructed is
a Darboux transformation with some constraint condition. The relationship (3.4)

among bglel), bgﬁ;lx f,(LNfl) and ffllif U is obtained by comparing the coefficients
twice in the process above.

4. Explicit solutions

In this section, we apply the explicit solutions of the KdV equations by the N-fold
Darboux transformation in Egs. (3.1) and (3.13). We select three proper values of
h, in Eq. (1.1) as h,, =0, hy, =V, and h,, = U, Vn.

In the condition of the h,, = 0, the Lax pair of the Eq. (2.13) are as follows

0 u, 0 v,

Uy A Up A

0 0 0 u,
0 0 u, A
Vo =
77)\ UnUp—1 Un—1 7%)\7un71vn7un“n71+unun71 Un
§A—unun_1 Un, %)\—un_lvn—unvn_l—&-unun_l
0 7%A7unun71 Un—1

1
0 Unp 5)\_unun—l
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(c) (@)
I 6
il \ !
il \ b
il \ !
1 } \ i
i \ i
Il!éi I — o =6 \ tflOsr — =
AN ! :FO . :l:ﬂ
\ /.; _“ I =6 \\ ;0\' =6
BN \
- 2
~ ri \\ fat
N i\ —— - _—
(e) (f)

Figure 1. Solutions (51) with parameters A1 = 0.5, A2 = 1, k1 = —1, k2 = 1. Figs. (a)-(c) and (e) the
component u,, Figs. (b), (d) and (f) the component v,,.

Then taking trivial solution u,, = 0 and v, = 1 of the Eq. (2.13) and solving
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the Lax pair, we get

¢1 n )\n—leé)\t
5 b2.n (AN 4 (n — 1Az
¢)3,n 0
¢4,n )\ne%/\t
(4.2)
wl,n (7%)\n+1t+ (ni 1))\n+1)67%)\t
,(/}2’71 )\n—le—%/\t
’l/}n = = L
,(/)3,71 /\ne—§>\t
w4,n 0

By Egs. (3.9) and (3.15), we can get a;[n], 8;[n], vj[nl, a;[n + 1], B;[n + 1] and
v;[n + 1], and from Eq. (3.11), when N = 1, we have

p(0) — (A2 = A1)Bi[n]Ba[n]
" Xxe(Bin]ye[n] — Baln]mi(n])’
£ = OuaBalnln [nf-Aaa (112 [0k 1 [0l Bs [nl s [\ Sz (] [k [n] 61 [n] B [n] a1 ) A B )
" e EAMEAD=ADEADNE
(A B2[n)Pyi[n]A B2 [n]ya [n}-ha B1 [n] Ba [n]ye [nHAe B1 [n)ye [nfaa [n] 81 [n] B2 [n] (A2—A1)) A1 B1 [n]
(A2 (Bin]yz[nB2[n]vi[n]))? .

(4.3)
Then the solutions of the Eq. (2.13) are
GO _ (A2 = A)fi[n +1]fo[n + 1]
T X A (Buln A+ Uyaln + 1] = Baln + nn+ 1)) (4.4)
o =1+ 1%,
The solutions (4.4) with parameters A\ = 0.5, Ao = 1, k1 = —1, ko = 1 are showing
in Fig. 1.
When h,, = v, we have the Lax pair of the Eq. (2.16)
0 un + Un O Un
Unp, + Un )\ Un )\
Un - )
0 0 0 Uy, + Up,
0 0 Up + Up A
—%)\—rn Up—1 + Up—1 —%/\—sn Un,
1 1
V. — Up, + Up 5A =Ty Up, 5A — 8n 7 (4.5)
0 0 _%)\_rn Up—1 + Un—1

0 0 Uy, + Vpy %)\—rn
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here 7, = (up, + vp)(Un—1 + Vn-1), $Sn = (Up + Vn)Vp—1 — (Up—1 + Vp—1)Up, then
taking trivial solution w,, = 0 and v,, = 0 and solving the Lax pair, we get

¢1,n 0
P (FA 4 (n = AT e2
¢3,n 0
¢4,n )\ne%)\t
(4.6)
'(/Jl,n (_%)\n-&-lﬁ_,’_ (TL— 1))\n+1>6—%)\t
o, 0
wn = " = .
¢3,n )\nefi/\t
’(/}4,71 0

By Egs. (3.9) and (3.15), we can get a;[n], 8;[n], v;[n], a;j[n+1], 5;[n+1] and
v;[n + 1], and from Eq. (3.11), when N = 1, we have

o) (A2 — A1)Bi[n]B2[n]

— Me(Bilnlv2[n] = B2[n]n(n])’
f(O) _ (A2Ban]yi[n]—=Aa B[] s [n]+X2B1[n] B2 [n]y1 [n] =M1 B2 [n]yi [n]—ai [n]B1 [n] Ba [n] (Ae —A1)) A2 B2 [n]
no= (A1 A2(B1[n]yz[n]—Bz2[n]v1[n]))?
_ (uBa[n]*yi[n]=Xi Ba[n]ya[n] =i B [n]Ba[n]ya [n]+X2 Bi [n]y2 [n] =z [n] 81 [n] B2 [n] (A2 = A1) A1 Ba [n]
(M A2(B1[n]y2[n]—B2[n]y1[n]))? ’

(4.7)
Then the solutions of the Eq. (2.16) are
~ 0 0
Un, :bgz—i)-l - f7(z—‘21’
N ©) (4.8)
Un =fnir-
The solutions (4.8) with parameters \; = 1, Ao = 2, k1 = —1, k3 = 1 are showing
in Fig. 2.
Finally, if we take h,, = unv,, the Lax pair becomes
0 Up + UpUnp 0 Un,
Up, + UpUnp A U, A
U, = )
0 0 0 Up, + UnUp
0 0 Up, + Up Uy, A
(4.9)
_%)\_TTL Up—1 + Up—1Vn—1 _%A_Sn Un
v Uy + UpUn %/\ — T Up, %)\ — Sn
0 0 _%)\_Tn Un—1 +un71’un71

0 0 Up, + UpUn, %)\ — T
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Then taking trivial solution u,, = 0 and v,, = 0 and solving the Lax pair, we get

¢1,n 0
é P2.n (%)\”“t +(n— 1))\”“)@%”
¢3,n 0
¢4,n )\ne%)\t
(4.10)
Vin (=LA 4 (0 — D)APF)em 2N
¢2,n 0
'(/}3,71 )\ne—gkt
¢4,n 0

By Egs. (3.9) and (3.15), we can get a;[n], 8;[n], vj[nl, a;[n + 1], B;[n + 1] and
7v;[n + 1], and from Eq. (3.11), when N = 1, we have

5O _ (A2 — A1)B1[n]Bz2[n]
" MAe(Binlrz[n] = Ba[nin(n])’

f(O) _ (Q2B2[n]yi[n]—AaBi[n]y2 [n]+A2 81 [n] B2 [n]y1 [n] — A1 B2[n]y1 [n] —ai [n] B1 [n] Ba[n] (A2 —A1)) A2 B2[n]
n (A1 A2(B1[n]y2[n]—B2([n]y1[n]))?

(B [n]?1[n] =1 Bz2[n]y2[n] — A1 B1[n]Ba[n]y2 [n]+ X281 [n] vz [n] — o [n] B1 [n] B2 [n] (A2 — A1) A1 B [n]
(A1 Az(Bi[n]y2[n]—B2[n]v1[n]))? '

(4.11)
Then the solutions of the Eq. (2.18) are
0
e
b=
1+ 1, (1.12)
~ 0
Up, :fT(Lle.
The solutions (4.12) with parameters \; = 1, Ao = 2, K1 = —1, kg = 1 are showing

in Fig. 3.

In order to understand explicit solutions well, we analyze the solutions (4.4) in
Fig. 1, the solutions (4.8) in Fig. 2 and illustrate solutions (4.12) in Fig. 3.

When the parameters are suitably chosen, these solutions can be graphically
illustrated. So we present the three-dimension graphs and density profiles of the
solutions u,, and v,,. Fig. 1 shows the solutions (4.4) with the parameters A\; = 0.5,
A2 =171 = —1, 72 = 1. Fig. 2 shows the solutions (4.8) with the parameters
A =1, Ao =2, 717 = =1, 72 = 1. Fig. 3 shows the solutions (4.12) with the
parameters \; = 1, Ay = 2, 73 = —1, 7o = 1. In Figs. 1, 2 and 3 where the first line
displays the space-time distributions, the second line displays the density profiles
and the third line displays the wave propagations at different time for components
uy, and v,. From Fig. 1, it can be observed that the solitary waves move from right
to left. In Fig. 2, the solitary waves of w, and v, are very similar. Fig. 2 shows
that the solitary wave of v,, is similar to the solitary wave of v,, in Fig. 2, but the
solitary wave of u,, is different from the solitary wave of @, in Fig. 2.
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Figure 3. Solutions (59) with parameters A\ = 1, A2 = 2, k1 = —1, k2 = 1. Figs. (a), (c) and (e) the
component u,, Figs. (b), (d) and (f) the component v,,.

5. Conclusions

In this paper, starting from a 4 x 4 discrete matrix spectral problem (2.1) with
three potential functions, we have successfully constructed a new integrable lattice
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hierarchy (2.9) and a special N-fold Darboux transformation for the typical Eqgs.
(2.14), (2.16), (2.18). Explicit solutions have been represented in Figs. 1-3 with
proper parameters. According to the integrable hierarchy, a set of integrable discrete
equations can be found. In Ref. [30], a general scheme of conservation law based
on Lax pair for discrete integrable equations is proposed. By this method, the
symmetries and conserved quantities of some equations can be derived.
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