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EXPLICIT SOLUTIONS TO A HIERARCHY OF
DISCRETE COUPLING KORTEWEG-DE

VRIES EQUATIONS∗
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Abstract To get a hierarchy of discrete coupling Korteweg-de Vries equa-
tions, we consider from a discrete four-by-four matrix spectral problem. Then
we can get the Lax pair of the KdV equations. Finally we present the explicit
solutions of the KdV equations by constructing theirs Darboux transforma-
tions with the help of the corresponding Lax pairs.
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1. Introduction
Since the Korteweg and de Vries described a model for shallow water waves in
1895 [7], the Korteweg-de Vries (KdV) equation [3, 21, 25, 27] has attracted many
researchers attentions in recent years because of its nice mathematical and physical
features. The KdV equation is a universal nonlinear system which arises whenever
there is a balance of weak dispersion and quadratic nonlinearity, the discrete KdV
equation was studied in Ref. [5], the coupled KdV equation was studied in Ref. [24],
the super KdV equation was studied in Ref. [9]. Studying KdV equation is a
helpful work to understand the complex behaviours and many researchers continue
to explore this way [2,28]. Then in our paper, we will study the following equations
by constructing the Lax pair [23,31] based on Ref. [29]

un,t1 + hn,t1 = (un + hn)(1− E)(un + hn)(un−1 + hn−1),

vn,t1 = vn(1− E)(un + hn)(un−1 + hn−1)− (un + hn)(1− E)

× [(un−1 + hn−1)vn + (un + hn)vn−1 − (un−1 + hn−1)(un + hn)].

(1.1)

We can choose different suitable values of hn in Eq. (1.1), then we can get different
equations from Eq. (1.1). For example, if we choose hn = 0, and taking vn = − 1

2un,
then we can get the famous discrete KdV equation [5]

un,t = u2n(un−1 − un+1).

In Ref. [29], Xu studied a four-by-four matrix spectral problem, then he got
a hierarchy of integrable lattice equations. Finally, he found the lattice equations

†The corresponding author. Email: qlzhao@sdust.edu.cn(Q. L. Zhao)
1College of Mathematics and Systems Science, Shandong University of Science
and Technology, Qingdao 266590, Shandong, China

∗The authors were supported by the National Nature Science Foundation of
China (No. 11701334) and the “Jingying” Project of Shandong University of
Science and Technology.

http://www.jaac-online.com
http://dx.doi.org/10.11948/20210081


1354 Q. Zhao, Y. Zhong & X. Li

were all integrable in Liouville sense. But he didn’t find the explicit solutions of the
lattice equations. So the main idea of our paper is to find the explicit solutions of
the KdV equations based on a similar matrix spectral problem.

There are many methods have been developed to obtain explicit solutions, where
include the inverse scattering transform method [1], the Bäcklund transformation
[4], the Darboux transformation [6, 10–12, 16, 20, 26], the Hirota bilinear method
[14,15,17–19], the Jacobi elliptic function expansion method [8], the Lie symmetry
method [22]. In this paper, we will choose the Darboux transformation to discuss
the KdV equations. The Darboux transformation is a powerful tool to get the
explicit solutions from seed solutions. Then the solutions are analyzed in Figs. 1, 2
and 3.

In this paper, starting from the using of Lax pair, we have obtained the KdV
equations, then we choose different values in the KdV equations and we can get some
different equations. Finally, the Darboux transformations of the KdV equations are
given and explicit solutions are obtained.

This paper is organized as follows. In section 2, a discrete matrix spectral is
introduced and its Lax pair will be derived. In section 3, the Darboux transforma-
tions of the KdV equations are constructed with the help of Lax pair and explicit
solutions are shown in section 4. The last section contains some discussions.

2. The discrete coupling Korteweg-de Vries equa-
tions

In this section, starting from the following discrete 4 × 4 spectral problem

Eφn = Unφn, Un =


0 un + hn 0 vn

un + hn λ vn λ

0 0 0 un + hn

0 0 un + hn λ

 , φn =


φ1,n

φ2,n

φ3,n

φ4,n

 , (2.1)

where λt = 0, E is the shift operator defined by Ef(n, t) = f(n + 1, t) and
E−1f(n, t) = f(n− 1, t).

We solve the stationary zero-curvature equation

(EΓn)Un − UnΓn = 0, (2.2)

taking Γn =


an bn en fn

cn −an gn −en

0 0 an bn

0 0 cn −an

, then Eq. (2.2) becomes
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bn+1 − cn = 0,

(un + hn)(an+1 + an) + λbn+1 = 0,

− (un + hn)(an+1 + an)− λcn = 0,

(un + hn)cn+1 − (un + hn)bn + λ(an − an+1) = 0,

vnbn+1 − vncn + (un + hn)fn+1 + (un + hn)gn = 0,

vn(an + an+1) + (un + hn)(en + en+1) + λbn+1 + λfn+1 = 0,

− vn(an + an+1)− (un + hn)(en + en+1)− λcn − λgn = 0,

− vnbn + vncn+1 − λ(an+1 − an)− λ(en+1 − en) + (un + hn)(gn+1 − fn) = 0.
(2.3)

Substituting an = Σ∞
j=1a

(j)
n λ−2m, bn = Σ∞

j=1b
(j)
n λ−2m+1, cn = Σ∞

j=1c
(j)
n λ−2m+1,

en = Σ∞
j=1e

(j)
n λ−2m, fn = Σ∞

j=1f
(j)
n λ−2m+1 and gn = Σ∞

j=1g
(j)
n λ−2m+1 into Eq.

(2.3), we can obtain the following recursion relations



b
(m)
n+1 − c(m)

n = 0,

(un + hn)(a
(m)
n+1 + a(m)

n ) + b
(m+1)
n+1 = 0,

− (un + hn)(a
(m)
n+1 + a(m)

n )− c(m+1)
n = 0,

(un + hn)c
(m)
n+1 − (un + hn)b

(m)
n + (a(m)

n − a
(m)
n+1) = 0,

vnb
(m)
n+1 − vnc

(m)
n + (un + hn)f

(m)
n+1 + (un + hn)g

(m)
n = 0,

vn(a
(m)
n + a

(m)
n+1) + (un + hn)(e

(m)
n + e

(m)
n+1) + b

(m+1)
n+1 + f

(m+1)
n+1 = 0,

− vn(a
(m)
n + a

(m)
n+1)− (un + hn)(e

(m)
n + e

(m)
n+1)− c(m+1)

n − g(m+1)
n = 0,

− vnb
(m)
n +vnc

(m)
n+1−(a

(m)
n+1−a(m)

n )−(e
(m)
n+1−e(m)

n )+(un+hn)(g
(m)
n+1−f (m)

n )=0.
(2.4)

Especially, if we choose the suitable initial values a(0)n = − 1
2 , b(0)n = 0, c(0)n = 0,

e
(0)
n = − 1

2 , f (0)n = 0 and g(0)n = 0, the above recursion relations can determine other
functions such as a(m)

n , b(m)
n , c(m)

n , e(m)
n , f (m)

n and g
(m)
n , m ≥ 0 and the first few

quantities are given by

a(1)n = (un + hn)(un−1 + hn−1), b
(1)
n = un−1 + hn−1, c

(1)
n = un + hn,

e(1)n = (un−1 + hn−1)(vn − un − hn) + (un + hn)vn−1, f
(1)
n = vn−1, g

(1)
n = vn.

Then we define

(λmΓn)+ = Σm
j=0


a
(j)
n λm−j b

(j)
n λm−j e

(j)
n λm−j f

(j)
n λm−j

c
(j)
n λm−j −a(j)n λm−j g

(j)
n λm−j −e(j)n λm−j

0 0 a
(j)
n λm−j b

(j)
n λm−j

0 0 c
(j)
n λm−j −a(j)n λm−j

 , (2.5)
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and V
(m)
n = (λmΓn)+ +△(m)

n , where

△(m)
n =


−2a

(m)
n 0 −2e

(m)
n 0

0 0 0 0

0 0 −2a
(m)
n 0

0 0 0 0

 . (2.6)

Now we consider the following auxiliary spectral problem

φn,tm = V (m)
n φn,m ≥ 0. (2.7)

The compatibility conditions of Eq. (2.1) and Eq. (2.7) are

Un,tm = (EV (m)
n )U (m)

n − U (m)
n V (m)

n ,m ≥ 0, (2.8)

which lead to the following integrable lattice hierarchy{
un,tm + hn,tm = (un + hn)(a

(m)
n − a

(m)
n+1),

vn,tm = vn(a
(m)
n − a

(m)
n+1) + (un + hn)(e

(m)
n − e

(m)
n+1),

(2.9)

then when m = 1, we have
un,t1 + hn,t1 = (un + hn)(1− E)(un + hn)(un−1 + hn−1),

vn,t1 = vn(1− E)(un + hn)(un−1 + hn−1)− (un + hn)(1− E)

× [(un−1 + hn−1)vn + (un + hn)vn−1 − (un−1 + hn−1)(un + hn)].

(2.10)

Which is the Eq. (1.1), and the time part of the Lax pair of Eq. (1.1) is

φn,t1 = Vnφn =


− 1

2λ− rn un−1 + hn−1 − 1
2λ− sn vn

un + hn
1
2λ− rn vn

1
2λ− sn

0 0 − 1
2λ− rn un−1 + hn−1

0 0 un + hn
1
2λ− rn

φn, (2.11)

where rn = (un + hn)(un−1 + hn−1), sn = (un−1 + hn−1)vn + (un + hn)vn−1 −
(un−1 + hn−1)(un + hn).

Now we consider some different values of hn in Eq. (1.1).
First, if we choose hn = 0, the Eq. (2.9) becomes{

un,tm = un(a
(m)
n − a

(m)
n+1),

vn,tm = vn(a
(m)
n − a

(m)
n+1) + un(e

(m)
n − e

(m)
n+1),

(2.12)

when m = 1, we have{
un,t1 = u2n(un−1 − un+1),

vn,t1 = u2n(un+1 − un−1 + vn−1 − vn+1) + 2unvn(un−1 − un+1).
(2.13)
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Then if we take vn = − 1
2un, we can get the famous discrete KdV equation.

Second, in the condition hn = εvn, the Eq. (2.9) can be{
un,tm = un(a

(m)
n − a

(m)
n+1)− ε(un + εvn)(e

(m)
n − e

(m)
n+1),

vn,tm = vn(a
(m)
n − a

(m)
n+1) + (un + εvn)(e

(m)
n − e

(m)
n+1),

(2.14)

then when m = 1, we have
un,t1 =un(1− E)(un + εvn)(un−1 + εvn−1)− ε(un + εvn)(1− E)

× [(un−1 + εvn−1)vn + (un + εvn)vn−1 − (un−1 + εvn−1)(un + εvn)],

vn,t1 =vn(1− E)(un + εvn)(un−1 + εvn−1)− (un + εvn)(1− E)

× [(un−1 + εvn−1)vn + (un + εvn)vn−1 − (un−1 + εvn−1)(un + εvn)].

(2.15)

To see Eq. (2.15) better, we can choose ε = 1, so we get{
un,t1 = (u2n − v2n)(vn+1 − vn−1) + 2(unvn + u2n)(un+1 − un−1),

vn,t1 = (v2n − u2n)(un+1 − un−1) + 2(unvn + v2n)(vn+1 − vn−1)).
(2.16)

Third, let hn = εunvn, the Eq. (2.9) can becomeun,tm =
un

1 + εvn
(a(m)

n − a
(m)
n+1)− εu2n(e

(m)
n − e

(m)
n+1),

vn,tm = vn(a
(m)
n − a

(m)
n+1) + (un + εunvn)(e

(m)
n − e

(m)
n+1),

(2.17)

we can see the following equations when m = 1

un,t1 =
un

1 + εvn
(1− E)(un + εunvn)(un−1 + εun−1vn−1)− εu2n(1− E)

× [(un−1 + εun−1vn−1)vn + (un + εunvn)vn−1

− (un−1 + εun−1vn−1)(un + εunvn)],

vn,t1 =vn(1− E)(un + εunvn)(un−1 + εun−1vn−1)− (un + εunvn)(1− E)

× [(un−1 + εun−1vn−1)vn + (un + εunvn)vn−1

− (un−1 + εun−1vn−1)(un + εunvn)].

(2.18)

3. The N-fold Darboux transformation
In this section, we first introduce a gauge transformation

φ̃n = Tnφn, (3.1)

where φ̃n satisfies Eqs. (2.1) and (2.11) with Un and Vn replaced by Ũn and Ṽn, as φ̃n+1 = Ũnφ̃n, Ũn = Tn+1UnT
−1
n ,

φ̃n,t = Ṽnφ̃n, Ṽn = (Tn,t + TnVn)T
−1
n .

(3.2)
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Then let Tn be of form

Tn =


T11 T12 T13 T14

T21 T22 T23 T24

0 0 T11 T12

0 0 T21 T22



=


λN +ΣN−1

i=0 a
(i)
n λi ΣN−1

i=0 b
(i)
n λi λN +ΣN−1

i=0 e
(i)
n λi ΣN−1

i=0 f
(i)
n λi

−ΣN−1
i=0 b

(i)
n+1λ

i λN + 1 −ΣN−1
i=0 f

(i)
n+1λ

i λN + 1

0 0 λN +ΣN−1
i=0 a

(i)
n λi ΣN−1

i=0 b
(i)
n λi

0 0 −ΣN−1
i=0 b

(i)
n+1λ

i λN + 1

 ,

(3.3)

where N is a natural number, Ti,j are the functions with respect to n, t and all
are independent of λ, which can be determined later. These blocks b(N−1)

n , b(N−1)
n+1 ,

f
(N−1)
n , f (N−1)

n+1 satisfy the following constraint relationship,

sn + rn =
1

4
b(N−1)
n f

(N−1)
n+1 +

1

4
b
(N−1)
n+1 f (N−1)

n . (3.4)

λi(λi ̸= λk, i ̸= j, i = 1, 2, ..., 2N) are roots of the (4N)th order polynomial detTn,
i.e., detTn =

∏4N
i=1(λ−λi) and detTn(λi) = 0. Then assumed that ϕn = (ϕ1,n, ϕ2,n,

ϕ3,n, ϕ4,n)
T and ψn = (ψ1,n, ψ2,n, ψ3,n, ψ4,n)

T are two basic solutions of the Eqs.
(2.1) and (2.11), where they are linearly independent. We define that

φn =


ϕ1,n ψ1,n

ϕ2,n ψ2,n

ϕ3,n ψ3,n

ϕ4,n ψ4,n

 , (3.5)

where φn is a solution of the Eqs. (2.1) and (2.11). Then we have

φ̃n = Tnφn=



T11 T12 T13 T14

T21 T22 T23 T24

0 0 T11 T12

0 0 T21 T22





ϕ1,n ψ1,n

ϕ2,n ψ2,n

ϕ3,n ψ3,n

ϕ4,n ψ4,n



=



T11ϕ1,n+T12ϕ2,n+T13ϕ3,n+T14ϕ4,n T11ψ1,n+T12ψ2,n+T13ψ3,n+T14ψ4,n

T21ϕ1,n+T22ϕ2,n+T23ϕ3,n+T24ϕ4,n T21ψ1,n+T22ψ2,n+T23ψ3,n+T24ψ4,n

T11ϕ3,n + T12ϕ4,n T11ψ3,n + T12ψ4,n

T21ϕ3,n + T22ϕ4,n T21ψ3,n + T22ψ4,n


,

(3.6)
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where the colum vectors of φn are linearly independent. Thus we exists constants
κj so that

κ1ϕ̃n + κ2ψ̃n = 0, (3.7)

i.e., 

κ1(T11ϕ1,n + T12ϕ2,n + T13ϕ3,n + T14ϕ4,n)

+ κ2(T11ψ1,n + T12ψ2,n + T13ψ3,n + T14ψ4,n) = 0,

κ1(T21ϕ1,n + T22ϕ2,n + T23ϕ3,n + T24ϕ4,n)

+ κ2(T21ψ1,n + T22ψ2,n + T23ψ3,n + T24ψ4,n) = 0,

κ1(T11ϕ3,n + T12ϕ4,n) + κ2(T11ψ3,n + T12ψ4,n) = 0,

κ1(T21ϕ3,n + T22ϕ4,n) + κ2(T21ψ3,n + T22ψ4,n) = 0.

(3.8)

Let 

αj [n] =
ϕ2,n(t, λj)− κjψ2,n(t, λj)

ϕ1,n(t, λj)− κjψ1,n(t, λj)
,

βj [n] =
ϕ3,n(t, λj)− κjψ3,n(t, λj)

ϕ1,n(t, λj)− κjψ1,n(t, λj)
,

γj [n] =
ϕ4,n(t, λj)− κjψ4,n(t, λj)

ϕ1,n(t, λj)− κjψ1,n(t, λj)
,

(3.9)

we can obtain 
T11 + T12αj [n] + T13βj [n] + T14γj [n] = 0,

T21 + T22αj [n] + T23βj [n] + T24γj [n] = 0,

T11βj [n] + T12γj [n] = 0,

T21βj [n] + T22γj [n] = 0.

(3.10)

Then with the help of Eq. (3.6), we have

ΣN−1
i=0 (a(i)n λij + αj [n]b

(i)
n λij + βj [n]e

(i)
n λij + γj [n]f

(i)
n λij) = −(1 + βj [n])λ

N ,

ΣN−1
i=0 (−b(i)n+1λ

i
j − βj [n]f

(i)
n+1λ

i
j) = −(αj [n](λ

N + 1) + γj [n](λ
N + 1)),

ΣN−1
i=0 (βj [n]a

(i)
n λj + γj [n]b

(i)
n λj) = −βj [n]λN ,

ΣN−1
i=0 (−βj [n]b(i)n+1λ

i
j) = −γj [n](λN + 1).

(3.11)

Theorem 3.1. The matrix Ũn = Tn+1UnT
−1
n has the same form as matrix Un, the

Ũn can be written as

Ũn =


0 ũn + h̃n 0 ṽn

ũn + h̃n λ ṽn λ

0 0 0 ũn + h̃n

0 0 ũn + h̃n λ

 , (3.12)
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which the transformation formulae between old and new potentials are given by{
ũn + h̃n = un + hn + b

(N−1)
n+1 ,

ṽn = vn + f
(N−1)
n+1 .

(3.13)

Proof. Let T−1
n =

T∗
n

detTn
and

F (λ) = Tn+1UnT
∗
n =


f11(λ, n) f12(λ, n) f13(λ, n) f14(λ, n)

f21(λ, n) f22(λ, n) f23(λ, n) f24(λ, n)

0 0 f11(λ, n) f12(λ, n)

0 0 f21(λ, n) f22(λ, n)

 . (3.14)

It is easy to obtain that f22(λ, n) and f24(λ, n) are the (4N+1)th order polyno-
mials in λ, f11(λ, n), f12(λ, n), f13(λ, n), f14(λ, n), f21(λ, n) and f23(λ, n) are the
(4N)th order polynomials in λ. In addition, by Eqs. (2.1) and (3.6), we get

αj [n+ 1] =
un + hn + λjαj [n] + βj [n]vn + λjγj [n]

αj [n](un + hn) + γj [n]vn
,

βj [n+ 1] =
γj [n](un + hn)

αj [n](un + hn) + γj [n]vn
,

γj [n+ 1] =
βj [n](un + hn) + λjγj [n]

αj [n](un + hn) + γj [n]vn
,

j = 1, 2, ...2N, (3.15)

that λj(j = 1, 2, ..., 2N) are also roots of fst(s = 1, 2, t = 1, 2, 3, 4), and Eq. (3.14)
can be written as

Tn+1UnT
∗
n = detTn · Pn, (3.16)

with

Pn =


P

(0)
11 (n) P

(0)
12 (n) P

(0)
13 (n) P

(0)
14 (n)

P
(0)
21 (n) P

(1)
22 (n)λ+ P

(0)
22 (n) P

(0)
23 (n) P

(1)
24 (n)λ+ P

(0)
24 (n)

0 0 P
(0)
11 (n) P

(0)
12 (n)

0 0 P
(0)
21 (n) P

(1)
22 (n)λ+ P

(0)
22 (n)

 , (3.17)

where P j
lm(n)(l = 1, 2,m = 1, 2, 3, 4, j = 0, 1) are functions which are indepent of

λ, here we get
Tn+1Un = PnTn. (3.18)

By comparing the coefficients of the same power of λ in both sides of Eq. (3.18),
we have

P
(0)
11 = 0, P

(0)
12 = un + hn + b

(N−1)
n+1 = ũn + h̃n, P

(0)
13 = 0,

P
(0)
14 = vn + f

(N−1)
n+1 = ṽn, P

(0)
21 = un + hn + b

(N−1)
n+1 = ũn + h̃n,

P
(1)
22 = 1, P

(0)
22 (n) = 0, P

(0)
23 = vn + f

(N−1)
n+1 = ṽn, P

(1)
24 = 1, P

(0)
24 (n) = 0.

(3.19)
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Theorem 3.2. The matrix Ṽn = (Tn,t + TnVn)T
−1
n has the same form as matrix

Vn, the Ṽn can be written as

Ṽn =


− 1

2λ− r̃n ũn−1 + h̃n−1 − 1
2λ− s̃n ṽn

ũn + h̃n
1
2λ− r̃n ṽn

1
2λ− s̃n

0 0 − 1
2λ− r̃n ũn−1 + h̃n−1

0 0 ũn + h̃n
1
2λ− r̃n

 . (3.20)

Proof. Let

G(λ) = (Tn,t + TnVn)T
∗
n =


g11(λ, n) g12(λ, n) g13(λ, n) g14(λ, n)

g21(λ, n) g22(λ, n) g23(λ, n) g24(λ, n)

0 0 g11(λ, n) g12(λ, n)

0 0 g13(λ, n) g14(λ, n)

 , (3.21)

where g11(λ, n), g13(λ, n), g22(λ, n) and g24(λ, n) are the (4N+1)th order polynomi-
als in λ, g12(λ, n), g14(λ, n), g21(λ, n) and g23(λ, n) are the (4N)th order polynomials
in λ, and where λj(j = 1, 2, ..., 2N) are also roots of gst(s = 1, 2, t = 1, 2, 3, 4), so
the Eq. (3.21) can be written as

(Tn,t + TnVn)T
∗
n = detTn ·Qn, (3.22)

with

Qn =


Q

(1)
11 (n)λ+Q

(0)
11 (n) Q

(0)
12 (n) Q

(1)
13 (n)λ+Q

(0)
13 (n) Q

(0)
14 (n)

Q
(0)
21 (n) Q

(1)
22 (n)λ+Q

(0)
22 (n) Q

(0)
23 (n) Q

(1)
24 (n)λ+Q

(0)
24 (n)

0 0 Q
(1)
11 (n)λ+Q

(0)
11 (n) Q

(0)
12 (n)

0 0 Q
(0)
21 (n) Q

(1)
22 (n)λ+Q

(0)
22 (n)

 ,

(3.23)
where Qj

lm(n)(l = 1, 2,m = 1, 2, 3, 4, j = 0, 1) are functions which are independent
of λ, thus we see

Tn,t + TnVn = Qn · Tn. (3.24)

By comparing the coefficients of the same power of λ in both sides of Eq. (3.24),
we have

Q
(0)
11 = Q

(0)
22 = −(un + hn + b

(N−1)
n+1 )(un−1 + hn−1 + b(N−1)

n ) = −r̃n,

Q
(0)
13 = Q

(0)
24 =− (un−1 + hn−1 + b(N−1)

n )(vn + f
(N−1)
n+1 )

− (un + hn + b
(N−1)
n+1 )(vn−1 + f (N−1)

n )

+ (un−1 + hn−1 + b(N−1)
n )(un + hn + b

(N−1)
n+1 ) = −s̃n,

(3.25)

Q
(0)
14 = vn−1 + f (N−1)

n = ṽn−1, Q
(0)
21 = un + hn + b

(N−1)
n+1 = ũn + h̃n,

Q
(0)
23 = vn + f

(N−1)
n+1 = ṽn, Q

(0)
12 = un−1 + hn−1 + b(N−1)

n = ũn−1 + h̃n−1,
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Q
(1)
24 = Q

(1)
22 =

1

2
, Q

(1)
11 = Q

(1)
13 = −1

2
.

Thus we complete the proof.
In conclusion, the transformations Eqs. (3.1) and (3.13) are the N-fold Darboux

transformation we are looking for.
Now we considered some different values of hn in the N-fold Darboux transfor-

mation to see how it changed.
If we choose hn = 0, the transformation formulae (3.13) become{

ũn = un + b
(N−1)
n+1 ,

ṽn = vn + f
(N−1)
n+1 .

(3.26)

In the case hn = εvn, we have the following transformation formulae between
old and new potentials {

ũn = un + b
(N−1)
n+1 − εf

(N−1)
n+1 ,

ṽn = vn + f
(N−1)
n+1 .

(3.27)

In the condition hn = εunvn, the transformation formulae between old and new
potentials become 

ũn =
un(1 + εvn) + b

(N−1)
n+1

1 + ε(vn + f
(N−1)
n+1 )

,

ṽn = vn + f
(N−1)
n+1 .

(3.28)

Remark 3.1. In this paper, the Darboux transformation we have constructed is
a Darboux transformation with some constraint condition. The relationship (3.4)
among b(N−1)

n , b
(N−1)
n+1 , f

(N−1)
n and f (N−1)

n+1 is obtained by comparing the coefficients
twice in the process above.

4. Explicit solutions
In this section, we apply the explicit solutions of the KdV equations by the N-fold
Darboux transformation in Eqs. (3.1) and (3.13). We select three proper values of
hn in Eq. (1.1) as hn = 0 , hn = Vn and hn = UnV n.

In the condition of the hn = 0, the Lax pair of the Eq. (2.13) are as follows

Un =


0 un 0 vn

un λ vn λ

0 0 0 un

0 0 un λ

 , (4.1)

Vn =
− 1

2λ−unun−1 un−1 − 1
2λ−un−1vn−unvn−1+unun−1 vn

un
1
2λ−unun−1 vn

1
2λ−un−1vn−unvn−1+unun−1

0 0 − 1
2λ−unun−1 un−1

0 0 un
1
2λ−unun−1

 .
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Solutions (51) with parameters λ1 = 0.5, λ2 = 1, κ1 = −1, κ2 = 1. Figs. (a)-(c) and (e) the
component ũn, Figs. (b), (d) and (f) the component ṽn.

Then taking trivial solution un = 0 and vn = 1 of the Eq. (2.13) and solving
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the Lax pair, we get

ϕn =


ϕ1,n

ϕ2,n

ϕ3,n

ϕ4,n

 =


λn−1e

1
2λt

( 12λ
n+1t+ (n− 1)λn+1)e

1
2λt

0

λne
1
2λt

 ,

ψn =


ψ1,n

ψ2,n

ψ3,n

ψ4,n

 =


(− 1

2λ
n+1t+ (n− 1)λn+1)e−

1
2λt

λn−1e−
1
2λt

λne−
1
2λt

0

 .

(4.2)

By Eqs. (3.9) and (3.15), we can get αj [n], βj [n], γj [n], αj [n + 1], βj [n + 1] and
γj [n+ 1], and from Eq. (3.11), when N = 1, we have

b(0)n =
(λ2 − λ1)β1[n]β2[n]

λ1λ2(β1[n]γ2[n]− β2[n]γ1[n])
,

f
(0)
n = (λ2β2[n]γ1[n]−λ2β1[n]

2γ2[n]+λ2β1[n]β2[n]γ1[n]−λ1β2[n]γ1[n]−α1[n]β1[n]β2[n](λ2−λ1))λ2β2[n]
(λ1λ2(β1[n]γ2[n]−β2[n]γ1[n]))2

− (λ1β2[n]
2γ1[n]−λ1β2[n]γ2[n]−λ1β1[n]β2[n]γ2[n]+λ2β1[n]γ2[n]−α2[n]β1[n]β2[n](λ2−λ1))λ1β1[n]

(λ1λ2(β1[n]γ2[n]−β2[n]γ1[n]))2
.

(4.3)

Then the solutions of the Eq. (2.13) areũn =b
(0)
n+1 =

(λ2 − λ1)β1[n+ 1]β2[n+ 1]

λ1λ2(β1[n+ 1]γ2[n+ 1]− β2[n+ 1]γ1[n+ 1])
,

ṽn =1 + f
(0)
n+1.

(4.4)

The solutions (4.4) with parameters λ1 = 0.5, λ2 = 1, κ1 = −1, κ2 = 1 are showing
in Fig. 1.

When hn = vn, we have the Lax pair of the Eq. (2.16)

Un =


0 un + vn 0 vn

un + vn λ vn λ

0 0 0 un + vn

0 0 un + vn λ

 ,

Vn =


− 1

2λ− rn un−1 + vn−1 − 1
2λ− sn vn

un + vn
1
2λ− rn vn

1
2λ− sn

0 0 − 1
2λ− rn un−1 + vn−1

0 0 un + vn
1
2λ− rn

 , (4.5)
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here rn = (un + vn)(un−1 + vn−1), sn = (un + vn)vn−1 − (un−1 + vn−1)un, then
taking trivial solution un = 0 and vn = 0 and solving the Lax pair, we get

ϕn =


ϕ1,n

ϕ2,n

ϕ3,n

ϕ4,n

 =


0

( 12λ
n+1t+ (n− 1)λn+1)e

1
2λt

0

λne
1
2λt

 ,

ψn =


ψ1,n

ψ2,n

ψ3,n

ψ4,n

 =


(− 1

2λ
n+1t+ (n− 1)λn+1)e−

1
2λt

0

λne−
1
2λt

0

 .

(4.6)

By Eqs. (3.9) and (3.15), we can get αj [n], βj [n], γj [n], αj [n+1], βj [n+1] and
γj [n+ 1], and from Eq. (3.11), when N = 1, we have

b(0)n =
(λ2 − λ1)β1[n]β2[n]

λ1λ2(β1[n]γ2[n]− β2[n]γ1[n])
,

f
(0)
n = (λ2β2[n]γ1[n]−λ2β1[n]

2γ2[n]+λ2β1[n]β2[n]γ1[n]−λ1β2[n]γ1[n]−α1[n]β1[n]β2[n](λ2−λ1))λ2β2[n]
(λ1λ2(β1[n]γ2[n]−β2[n]γ1[n]))2

− (λ1β2[n]
2γ1[n]−λ1β2[n]γ2[n]−λ1β1[n]β2[n]γ2[n]+λ2β1[n]γ2[n]−α2[n]β1[n]β2[n](λ2−λ1))λ1β1[n]

(λ1λ2(β1[n]γ2[n]−β2[n]γ1[n]))2
.

(4.7)

Then the solutions of the Eq. (2.16) are{
ũn =b

(0)
n+1 − f

(0)
n+1,

ṽn =f
(0)
n+1.

(4.8)

The solutions (4.8) with parameters λ1 = 1, λ2 = 2, κ1 = −1, κ2 = 1 are showing
in Fig. 2.

Finally, if we take hn = unvn, the Lax pair becomes

Un =


0 un + unvn 0 vn

un + unvn λ vn λ

0 0 0 un + unvn

0 0 un + unvn λ

 ,

Vn =


− 1

2λ− rn un−1 + un−1vn−1 − 1
2λ− sn vn

un + unvn
1
2λ− rn vn

1
2λ− sn

0 0 − 1
2λ− rn un−1 + un−1vn−1

0 0 un + unvn
1
2λ− rn

 ,

(4.9)
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Solutions (55) with parameters λ1 = 1, λ2 = 2, κ1 = −1, κ2 = 1. Figs. (a), (c) and (e) the
component ũn, Figs. (b), (d) and (f) the component ṽn.

here rn = (un + unvn)(un−1 + un−1vn−1), sn = (un−1 + un−1vn−1)vn + (un +
unvn)vn−1 − (un−1 + un−1vn−1)(un + unvn).
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Then taking trivial solution un = 0 and vn = 0 and solving the Lax pair, we get

ϕn =


ϕ1,n

ϕ2,n

ϕ3,n

ϕ4,n

 =


0

( 12λ
n+1t+ (n− 1)λn+1)e

1
2λt

0

λne
1
2λt

 ,

ψn =


ψ1,n

ψ2,n

ψ3,n

ψ4,n

 =


(− 1

2λ
n+1t+ (n− 1)λn+1)e−

1
2λt

0

λne−
1
2λt

0

 .

(4.10)

By Eqs. (3.9) and (3.15), we can get αj [n], βj [n], γj [n], αj [n + 1], βj [n + 1] and
γj [n+ 1], and from Eq. (3.11), when N = 1, we have

b(0)n =
(λ2 − λ1)β1[n]β2[n]

λ1λ2(β1[n]γ2[n]− β2[n]γ1[n])
,

f
(0)
n = (λ2β2[n]γ1[n]−λ2β1[n]

2γ2[n]+λ2β1[n]β2[n]γ1[n]−λ1β2[n]γ1[n]−α1[n]β1[n]β2[n](λ2−λ1))λ2β2[n]
(λ1λ2(β1[n]γ2[n]−β2[n]γ1[n]))2

− (λ1β2[n]
2γ1[n]−λ1β2[n]γ2[n]−λ1β1[n]β2[n]γ2[n]+λ2β1[n]γ2[n]−α2[n]β1[n]β2[n](λ2−λ1))λ1β1[n]

(λ1λ2(β1[n]γ2[n]−β2[n]γ1[n]))2
.

(4.11)

Then the solutions of the Eq. (2.18) are
ũn =

b
(0)
n+1

1 + f
(0)
n+1

,

ṽn =f
(0)
n+1.

(4.12)

The solutions (4.12) with parameters λ1 = 1, λ2 = 2, κ1 = −1, κ2 = 1 are showing
in Fig. 3.

In order to understand explicit solutions well, we analyze the solutions (4.4) in
Fig. 1, the solutions (4.8) in Fig. 2 and illustrate solutions (4.12) in Fig. 3.

When the parameters are suitably chosen, these solutions can be graphically
illustrated. So we present the three-dimension graphs and density profiles of the
solutions ũn and ṽn. Fig. 1 shows the solutions (4.4) with the parameters λ1 = 0.5,
λ2 = 1, γ1 = −1, γ2 = 1. Fig. 2 shows the solutions (4.8) with the parameters
λ1 = 1, λ2 = 2, γ1 = −1, γ2 = 1. Fig. 3 shows the solutions (4.12) with the
parameters λ1 = 1, λ2 = 2, γ1 = −1, γ2 = 1. In Figs. 1, 2 and 3 where the first line
displays the space-time distributions, the second line displays the density profiles
and the third line displays the wave propagations at different time for components
ũn and ṽn. From Fig. 1, it can be observed that the solitary waves move from right
to left. In Fig. 2, the solitary waves of ũn and ṽn are very similar. Fig. 2 shows
that the solitary wave of ṽn is similar to the solitary wave of ṽn in Fig. 2, but the
solitary wave of ũn is different from the solitary wave of ũn in Fig. 2.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Solutions (59) with parameters λ1 = 1, λ2 = 2, κ1 = −1, κ2 = 1. Figs. (a), (c) and (e) the
component ũn, Figs. (b), (d) and (f) the component ṽn.

5. Conclusions
In this paper, starting from a 4 × 4 discrete matrix spectral problem (2.1) with
three potential functions, we have successfully constructed a new integrable lattice
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hierarchy (2.9) and a special N-fold Darboux transformation for the typical Eqs.
(2.14), (2.16), (2.18). Explicit solutions have been represented in Figs. 1–3 with
proper parameters. According to the integrable hierarchy, a set of integrable discrete
equations can be found. In Ref. [30], a general scheme of conservation law based
on Lax pair for discrete integrable equations is proposed. By this method, the
symmetries and conserved quantities of some equations can be derived.
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