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THE ASYMPTOTIC BEHAVIOR OF STRONG
SOLUTIONS TO THE CHEMOTAXIS MODEL

IN THE CRITICAL FRAMEWORK∗

Weixuan Shi1,†

Abstract The Keller-Segel model is an effective mathematical model (de-
rived by Keller and Segel), which is used to describe the phenomenon of
chemotaxis in biological sciences. The purpose of this paper is to investi-
gate the asymptotic behavior of solutions in the Lp framework by developing
the pure energy approach (independent of spectral analysis). Precisely, a new
low-frequency regularity of initial data is posted, which enables us to establish
the Lyapunov-type inequality in time for energy norms. As a result, the large-
time behavior of strong solutions near constant equilibrium can be obtained.
The proof crucially depends on non standard product estimates and interpo-
lations. It’s worth noting that the smallness requirement of low frequencies is
no longer needed.

Keywords Chemotaxis model, critical Besov spaces, decay estimates, pure
energy approach.
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1. Introduction and main results
The chemotaxis model with logarithmic sensitivity reads as∂tu = div (D∇u− χu∇ ln v) ,

∂tv = −µuv − σv
(1.1)

for (t, x) ∈ R+ × Rd(d ≥ 2), which derived from the classical Keller-Segel model
(see [10–12]) and is one of the models describing the chemotaxis phenomenon in
biology. Here u(t, x) and v(t, x) are the density of a cellular population and the
concentration of a chemical signal, respectively. The constant D > 0 stands for the
diffusion coefficient of cellular population. The constant χ 6= 0 is the coefficient of
chemotactic sensitivity, where |χ| measures the strength of chemical signals. The
constant µ 6= 0 is the density-dependent production/degradation rate of chemical
signal, and σ ≥ 0 is the natural degradation rate of chemical signal.

This paper is devoted to the hyperbolic-parabolic case χµ > 0 (see [25, 26] for
details). We note that the case includes two scenarios: χ > 0 and µ > 0, or χ < 0
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and µ < 0. The former case indicates that cells are attracted and to consume the
chemical and the later case describes the movement of a chemotactic population
that deposits a chemical signal to modify the local environment for succeeding
passages (see [19]). In order to eliminate the singularity caused by ln v, a couple
of new variables in terms of the Hopf-Cole type transformation was introduced
(see [9, 14, 16, 27]): % = u, w = −∇ln v. Under the rescaled and dimensionless
variables: t̃ = χµ

D t, x̃ =
√
χµ

D x and w̃ = sign(χ)
√

χ
µw, system (1.1) becomes∂t%−∆% = div(%w),

∂tw −∇% = 0,
(1.2)

after dropping the tilde accent.
To go directly to the theme of this paper, let us now review some previous results

closely related which motivated us to start this study. For other related results, the
readers may refer to [8,13,15–17,21,28]and references therein. In fact, observe that
(1.2) is obviously invariant for all λ > 0 by the following transformation

%(t, x)⇝ λ2%(λ2t, λx) and w(t, x)⇝ λw(λ2t, λx). (1.3)

Hence, one takes advantage of functional spaces to investigate (1.2), which are
endowed with norms enjoying the scaling invariance (1.3). This trick is now classic
and has been used by different authors. For example, Hao [9] proved the global
existence and uniqueness of strong solutions to (1.2) in the L2 critical regularity
framework by using the compactness arguments. Xu, Li & Wang [24] developed
the approach of [6] to obtain the time-decay results of the constructed solutions
in [9] in the L2 critical framework. A natural question is what is to extend the
results of [9,24] to more general Lp critical Besov spaces. To this end, we introduce
an appropriate transformation, which was initiated by Deng & Li [7] and then
developed by [23]. That is, let q = Λ−1divw with Λsf ≜ F−1(|ξ|sFf) for s ∈ R,
we get from (1.3) that ∂t%−∆% = −div(%∇Λ−1q),

∂tq + Λ% = 0.
(1.4)

Indeed, it is mention that (1.4) is equivalent to (1.3) because of curlw = 0 and
w = −∇Λ−1q. System (1.4) is supplemented with the initial data

(%(0, x), q(0, x)) = (%0(x), q0(x)), x ∈ Rd, (1.5)

which are assumed to be close to some constant state (%̄, 0) with %̄ > 0, at infinity.
Recently, Xu & Li [23] considered %̄ = 1 for simplicity, and established global strong
solutions to (1.4)-(1.5) in more general Lp framework. For convenience, we state it
as follows.

Theorem 1.1. Let d ≥ 2 and p fulfill

2 ≤ p ≤ min(4, 2d/(d− 2)) and, additionally, p 6= 4 if d = 2.

There exists a small positive constant c = c(p, d) and a universal integer k0 ∈ Z
such that if ah0 ≜ (%0 − 1)h ∈ Ḃ

d/p−2
p,1 and qh0 ∈ Ḃ

d/p−1
p,1 with (a0, q0)

ℓ in Ḃ
d/2−2
2,1
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satisfy
Ep,0 ≜ ‖(a0, q0)‖ℓḂd/2−2

2,1

+ ‖a0‖hḂd/p−2
p,1

+ ‖q0‖hḂd/p−1
p,1

≤ c,

then Cauchy problem (1.4)-(1.5) admits a unique global-in-time solutions (%, q) with
% = 1 + a and (a, q) in the space Ep defined by:

(a, q)ℓ ∈ C̃b(R+; Ḃ
d/2−2
2,1 ) ∩ L1(R+; Ḃ

d/2
2,1 ), ah ∈ C̃b(R+; Ḃ

d/p−2
p,1 ) ∩ L1(R+; Ḃ

d/p
p,1 ),

qh ∈ C̃b(R+; Ḃ
d/p−1
p,1 ) ∩ L1(R+; Ḃ

d/p−1
p,1 ).

Furthermore, we have for some constant C = C (p, d),

Ep(t) ≤ CEp,0

for any t > 0, where

Ep(t) ≜ ‖(a, q)‖ℓ
L̃∞

t (Ḃ
d/2−2
2,1 )

+ ‖(a, q)‖ℓ
L1

t (Ḃ
d/2
2,1 )

+ ‖(a,Λq)‖h
L̃∞

t (Ḃ
d/p−2
p,1 )

+‖(Λa, q)‖h
L1

t (Ḃ
d/p−1
p,1 )

. (1.6)

We would like to mention that above norm notations for tempered distributions
will be given in Appendix.

In the present paper, our aim is to develop the method of [22] so as to establish
the asymptotic behavior of the constructed solutions in Theorem 1.1. For that
purpose, let us rewrite (1.4) as the nonlinear perturbation form of (1, 0), looking at
the nonlinearities as source terms. Consequently, in terms of (a, q) with % = a+ 1,
system (1.4) becomes ∂ta−∆a− Λq = f,

∂tq + Λa = 0
(1.7)

with f = −div (a∇Λ−1q).
The main results in this paper are stated as follows.

Theorem 1.2. Let the real number σ1 fulfill

2− d/2 < σ1 ≤ σ0 with σ0 ≜ 2d/p− d/2 + 1. (1.8)

If in addition (a0, q0)
ℓ ∈ Ḃ−σ1

2,∞ such that ‖(a0, q0)‖ℓ
Ḃ

−σ1
2,∞

is bounded, then it holds
that

‖Λσ(a, q)‖Lp ≲ (1 + t)−
d
2 (

1
2−

1
p )−

σ1+σ
2 if − σ̃1 < σ ≤ d/p− 2,

for all t ≥ 0, where σ̃1 = σ1 + d(1/2− 1/p).

Furthermore, one has the following optimal time-decay estimates of Ḃ−σ1
2,∞ -Lr

type.

Corollary 1.1. Under the additional assumption (1.8), the global solution con-
structed in Theorem 1.1 fulfills

‖Λm(a, q)‖Lr ≲ (1 + t)−
d
2 (

1
2−

1
p )−

σ1+m
2

for p ≤ r ≤ ∞, m ∈ R and −σ̃1 < m+ d(1/p− 1/r) ≤ d/p− 2.
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Remark 1.1. Compared to [23,24], the innovative ingredient is that the smallness
of low frequencies of initial data is no longer needed in Theorem 1.2 and Corollary
1.1. In addition, the proof of Corollary 1.1 follows from the embedding, (2.34) and
(2.36) directly, and is omitted for brevity.

The rest of the paper unfolds as follows. Section 2 is devoted to the proof of
Theorem 1.2. In the last section (Appendix), we briefly recall Littlewood-Paley
decomposition, Besov spaces and related analysis tools for the reader’s convenience.

Notation: Throughout the paper, C > 0 stands for a generic “constant”. For
brevity, we write f ≲ g instead of f ≤ Cg. The notation f ≈ g means that f ≲ g
and g ≲ f . For any Banach space X and f, g ∈ X, we agree that ‖(f, g)‖X ≜
‖f‖X + ‖g‖X . For all T > 0 and θ ∈ [1,+∞], we denote by Lθ

T (X) ≜ Lθ([0, T ];X)
the set of measurable functions f : [0, T ] → X such that t 7→ ‖f(t)‖X are in
Lθ(0, T ).

2. The proof of Theorem 1.2
This section is devoted to the proof of Theorem 1.2 taking for granted the global
existence result in Theorem 1.1. Throughout the proof, our task is to establish a
Lyapunov-type inequality in time for energy norms by using a pure energy argument.
Based on which we further obtain the time-decay estimates of strong solutions. For
clarity, we divide into several steps.

2.1. Low-frequency and high-frequency analysis
In this section, we first give the low-frequency and high-frequency estimates, which
plays the key role in deriving the Lyapunov-type inequality for energy norms.

2.1.1. Low-frequency estimates

Proposition 2.1. let k0 be some integer. Then it holds that for all t ≥ 0,

d

dt
‖(a, q)ℓ‖

Ḃ
d/2−2
2,1

+ ‖(a, q)ℓ‖
Ḃ

d/2
2,1
≲ ‖f ℓ‖

Ḃ
d/2−2
2,1

. (2.1)

Proof. Applying the operator ∆̇kṠk0
to (1.7) yields∂ta

ℓ
k −∆aℓk − Λqℓk = f ℓ

k,

∂tq
ℓ
k + Λaℓk = 0,

where zℓk ≜ ∆̇kṠk0z. Taking advantage of the standard energy approach, we have

1

2

d

dt

(
‖aℓk‖2L2 + ‖qℓk‖2L2

)
+ ‖Λaℓk‖2L2 = (f ℓ

k|aℓk), (2.2)

− d

dt
(aℓk|Λqℓk) + ‖Λqℓk‖2L2 = −(∆aℓk|Λqℓk) + ‖Λaℓk‖2L2 − (f ℓ

k|Λqℓk), (2.3)

1

2

d

dt
‖Λqℓk‖2L2 = (∆aℓk|Λqℓk). (2.4)
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It follows from (2.2)-(2.4) that

1

2

d

dt
L2
k + ‖(Λaℓk,Λqℓk)‖2L2 = 2(f ℓ

k|aℓk)− (f ℓ
k|qℓk)

with L2
k ≜ 2

(
‖aℓk‖2L2 + ‖qℓk‖2L2

)
+ ‖Λqℓk‖2L2 − 2(aℓk|Λqℓk). Due to the low-frequency

cut-off, we get from Hölder and Young inequalities that L2
k ≈ ‖(aℓk, qℓk,Λqℓk)‖2L2 ≈

‖(aℓk, qℓk)‖2L2 . Consequently, we get

1

2

d

dt
L2
k + 22kL2

k ≲ ‖f ℓ
k‖L2Lk,

which leads to
d

dt
‖(aℓk, qℓk)‖L2 + 22k‖(aℓk, qℓk)‖L2 ≲ ‖f ℓ

k‖L2 .

Then, multiplying both sides by 2k(d/2−2) and summing up on k ∈ Z give (2.1).
This completes the proof of Proposition 2.1.

2.1.2. High-frequency estimates

Let us utilize the Lp energy argument in terms of the useful auxiliary function:

b = a− Λ−1q. (2.5)

Indeed, if (1.7) is written in light of b and q, then, up to low order terms, b fulfills
a heat equation and q satisfies a damped transport equation. According to this
structure of the system, we can establish the high-frequency estimates.

Proposition 2.2. Let k0 be chosen suitably large. It holds that for all t ≥ 0

d

dt
‖(a,Λq)‖h

Ḃ
d/p−2
p,1

+
(
‖a‖h

Ḃ
d/p
p,1

+ ‖Λq‖h
Ḃ

d/p−2
p,1

)
≲ ‖f‖h

Ḃ
d/p−2
p,1

. (2.6)

Proof. From (1.7) and (2.5), we observe that (b, q) satisfies∂tb−∆b = f + b+ Λ−1q,

∂tΛq + Λq = −Λ2b.
(2.7)

Applying the operator ∆̇k to the first equation of (2.7) gives for all k ∈ Z,

∂tbk −∆bk = fk + bk + Λ−1 qk with bk ≜ ∆̇kb, qk ≜ ∆̇kq and fk ≜ ∆̇kf. (2.8)

Then, multiplying each component of (2.8) by |bk|p−2bk and integrating over Rd

yields

1

p

d

dt
‖bk‖pLp −

∫
Rd

∆bk|bk|p−2bkdx =

∫
Rd

(
fk + bk + Λ−1 qk

)
|bk|p−2bkdx.

The key observation is that the second term of the l.h.s., although not spectrally
localized, may be bounded from below as if it were (see Lemma 3.1). Consequently,
we conclude that there exists some constant cp depending only p so that

d

dt
‖bk‖Lp + cp2

2k‖bk‖Lp ≤ ‖fk‖Lp + ‖bk‖Lp + ‖Λ−1 qk‖Lp . (2.9)
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Applying the operator ∆̇k to the second equation of (2.7) gives for all k ∈ Z,

∂tΛqk + Λqk = −Λ2bk.

Multiplying by |Λqk|p−2Λqk and integrating on Rd, we arrive at

d

dt
‖Λqk‖Lp + ‖Λqk‖Lp ≤ C22k‖bk‖Lp . (2.10)

Furthermore, adding up (2.10) (multiplying by γcp for some γ > 0) to (2.9) yields

d

dt

(
‖bk‖Lp + γcp‖Λqk‖Lp

)
+ cp2

2k‖bk‖Lp + γcp‖Λqk‖Lp

≤ ‖(fk, bk,Λ−1 qk)‖Lp + Cγcp2
2k‖bk‖Lp .

Noticing that Λ−1 is a homogeneous Fourier multiplier of degree −1, we get

‖Λ−1 qk‖Lp ≲ 2−2k‖Λ qk‖Lp ≲ 2−2k0‖Λqk‖Lp for all k ≥ k0 − 1.

Choosing k0 suitably large and γ small enough, we conclude that there exists a
constant c0 > 0 such that for all k ≥ k0 − 1,

d

dt

(
‖bk‖Lp + ‖Λqk‖Lp

)
+ c0

(
22k‖bk‖Lp + ‖Λqk‖Lp

)
≲ ‖fk‖Lp .

Remembering that a = b− Λ−1 q, it follows that

d

dt
‖(ak,Λqk)‖Lp + c0‖(22kak,Λqk)‖Lp ≲ ‖fk‖Lp for all k ≥ k0 − 1.

Hence, multiplying both sides by 2k(d/p−2), and summing up over k ≥ k0 − 1, we
get (2.6). This completes the proof of Proposition 2.2.

2.1.3. Nonlinear estimates

From Propositions 2.1 and 2.2, we have

d

dt

(
‖(a, q)ℓ‖

Ḃ
d/2−2
2,1

+ ‖(a,Λq)‖h
Ḃ

d/p−2
p,1

)
+ ‖(a, q)ℓ‖

Ḃ
d/2
2,1

+ ‖(Λa, q)‖h
Ḃ

d/p−1
p,1

≲ ‖f‖ℓ
Ḃ

d/2−2
2,1

+ ‖f‖h
Ḃ

d/p−2
p,1

. (2.11)

According to Lemma 3.5 and (3.6), it follows that

‖f‖h
Ḃ

d/p−2
p,1

≲ ‖a∇Λ−1q‖h
Ḃ

d/p−1
p,1

≲ ‖∇Λ−1q‖
Ḃ

d/p−1
p,1

‖a‖
Ḃ

d/p
p,1

≲ ‖q‖
Ḃ

d/p−1
p,1

‖a‖
Ḃ

d/p
p,1
≲ Ep(t)

(
‖aℓ‖

Ḃ
d/2
2,1

+ ‖a‖h
Ḃ

d/p
p,1

)
. (2.12)

To estimate the norm ‖f‖ℓ
Ḃ

d/2−2
2,1

, we need the following so-called Bony decomposi-
tion for the product of two-tempered distributions f and g:

fg = Tfg +R(f, g) + Tgf (2.13)

with
Tfg ≜

∑
j

Ṡj−1f∆̇jg and R(f, g) ≜
∑
j

∑
|j′−j|≤1

∆̇jf∆̇j′g,
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where the operator T is called “paraproduct” whereas R is called “remainder”. The
decomposition (2.13) naturally leads to the following three inequalities (see [1, 5]):

‖Tfg‖Ḃs−1+d/2−d/p
2,1

≲ ‖f‖
Ḃ

d/p−1
p,1

‖g‖Ḃs
p,1

(2.14)

if d ≥ 2 and 1 ≤ p ≤ min(4, d∗),

‖Tfg‖Ḃs
p,1
≲ ‖f‖Lp1‖g‖Ḃs

p2,1
(2.15)

if s ∈ R and 1 ≤ p, p1, p2 ≤ ∞ with 1/p = 1/p1 + 1/p2,

‖R(f, g)‖
Ḃ

s−1+d/2−d/p
2,1

≲ ‖f‖
Ḃ

d/p−1
p,1

‖g‖Ḃs
p,1

(2.16)

if s > 1−min(d/p, d/p′) and 1 ≤ p ≤ 4, where d∗ = 2d/(d− 2) and 1/p+ 1/p′ = 1.
It follows from (2.14) that

‖Tfg‖ℓḂd/2−1
2,1

≲ ‖Tfg‖ℓḂd/2−1−m
2,1

≲ ‖Tfg‖Ḃd/2−1−m
2,1

≲ ‖f‖
Ḃ

d/p−1
p,1

‖g‖
Ḃ

d/p−m
p,1

(2.17)

with m ≥ 0 and 1 ≤ p ≤ min(4, d∗). Taking advantage of Bernstein inequality gives

‖f‖ℓ
Ḃ

d/2−2
2,1

= ‖div(a∇Λ−1q)‖ℓ
Ḃ

d/2−2
2,1

≲ ‖a∇Λ−1q‖ℓ
Ḃ

d/2−1
2,1

.

For the term with a∇Λ−1q, using Bony’s paraproduct decomposition, one has that

a∇Λ−1q = T∇Λ−1qa+R(∇Λ−1q, a) + Ta∇Λ−1qℓ + Ta∇Λ−1qh.

With the aid of (2.14) and (2.16) with s = d/p, we arrive at

‖T∇Λ−1qa‖Ḃd/2−1
2,1

+ ‖R(∇Λ−1q, a)‖
Ḃ

d/2−1
2,1

≲ ‖∇Λ−1q‖
Ḃ

d/p−1
p,1

‖a‖
Ḃ

d/p
p,1
≲ ‖q‖

Ḃ
d/p−1
p,1

‖a‖
Ḃ

d/p
p,1

≲ Ep(t)
(
‖aℓ‖

Ḃ
d/2
2,1

+ ‖a‖h
Ḃ

d/p
p,1

)
,

where Ep(t) has been defined in (1.6). To bound the term with Ta∇Λ−1qℓ, we note
that, owing to (2.15) and the embedding Ḃ

d/p
p,1 ↪→ L∞, we have

‖Ta∇Λ−1qℓ‖
Ḃ

d/2−1
2,1

≲ ‖a‖L∞‖∇Λ−1qℓ‖
Ḃ

d/2−1
2,1

≲ ‖a‖
Ḃ

d/p
p,1

‖qℓ‖
Ḃ

d/2−1
2,1

≲ Ep(t)
(
‖aℓ‖

Ḃ
d/2
2,1

+ ‖a‖h
Ḃ

d/p
p,1

)
. (2.18)

For the term with Ta∇Λ−1qh, we note that, owing to (2.17) with m = 1,

‖Ta∇Λ−1qh‖ℓ
Ḃ

d/2−1
2,1

≲ ‖Ta∇Λ−1qh‖ℓ
Ḃ

d/2−2
2,1

≲ ‖a‖
Ḃ

d/p−1
p,1

‖∇Λ−1qh‖
Ḃ

d/p−1
p,1

≲ ‖a‖
Ḃ

d/p−1
p,1

‖q‖h
Ḃ

d/p−1
p,1

≲ Ep(t)‖(Λa, q)‖hḂd/p−1
p,1

.

Hence, combing the above estimates gives

‖f‖ℓ
Ḃ

d/2−2
2,1

≲ Ep(t)
(
‖aℓ‖

Ḃ
d/2
2,1

+ ‖(Λa, q)‖h
Ḃ

d/p−1
p,1

)
. (2.19)

Inserting both (2.12) and (2.19) into (2.11) and performing the fact that Ep(t) ≲
Ep,0 � 1 for all t ≥ 0 guaranteed by Theorem 1.1, we end up with

d

dt

(
‖(a, q)ℓ‖

Ḃ
d/2−2
2,1

+ ‖(a,Λq)‖h
Ḃ

d/p−2
p,1

)
+ ‖(a, q)ℓ‖

Ḃ
d/2
2,1

+ ‖(Λa, q)‖h
Ḃ

d/p−1
p,1

≤ 0. (2.20)
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2.2. The evolution of negative Besov norm
In this section, we give the evolution of Besov norms at low frequencies, which is
the main ingredient in the proof of Theorem 1.2.

Proposition 2.3. If 2− d
2 < σ1 ≤ σ0, then it holds that for all t ≥ 0,

‖(a, q)(t)‖ℓ
Ḃ

−σ1
2,∞

≤ C0, (2.21)

where C0 > 0 depends on the norm ‖(a0, q0)‖ℓ
Ḃ

−σ1
2,∞

.

Proof. We apply the operator ∆̇k to (1.7). Following the procedure leading to
(2.2), we get

1

2

d

dt

(
‖ak‖2L2 + ‖qk‖2L2

)
+ ‖Λak‖2L2 ≤ ‖fk‖L2‖ak‖L2 .

By performing a routine procedure, we deduce that

‖(a, q)(t)‖ℓ
Ḃ

−σ1
2,∞
≲ ‖(a0, q0)‖ℓḂ−σ1

2,∞
+

∫ t

0

‖f‖ℓ
Ḃ

−σ1
2,∞

dτ with 2− d

2
< σ1 ≤ σ0. (2.22)

In what follows, let us bound the norm ‖f‖ℓ
Ḃ

−σ1
2,∞

. To this end, we write that

f = −div (a∇Λ−1q) = −div (a∇Λ−1qℓ)− div (a∇Λ−1qh).

To bound the term with div (a∇Λ−1qℓ), we shall take advantage of the following
inequality whose proof has been shown by [22].

‖FG‖
Ḃ

−s1
2,∞
≲ ‖F‖

Ḃ
d/p
p,1

‖G‖
Ḃ

−s1
2,∞

for all 1− d/2 < s1 ≤ s0 ≜ 2d/p− d/2. (2.23)

Thanks to 2−d/2 < σ1 ≤ σ0 = 2d/p−d/2+1, we have 1−d/2 < σ1−1 ≤ σ0−1 = s0.
Then it follows from Bernstein inequality and (2.23) that

‖div (a∇Λ−1qℓ)‖ℓ
Ḃ

−σ1
2,∞
≲ ‖a∇Λ−1qℓ‖ℓ

Ḃ
−σ1+1
2,∞

≲ ‖a‖
Ḃ

d/p
p,1

‖qℓ‖
Ḃ

−σ1+1
2,∞

≲ ‖a‖
Ḃ

d/p
p,1

‖q‖ℓ
Ḃ

−σ1
2,∞

, (2.24)

where ∇Λ−1 is an homogeneous Fourier multiplier of degree 0. For the term with
div (a∇Λ−1qh), we shall use the following two inequalities (see [20,22]):

‖FGh‖ℓ
Ḃ

−s1
2,∞
≲ ‖FGh‖ℓ

Ḃ
−s0
2,∞
≲ ‖F‖

Ḃ
d/p−1
p,1

‖Gh‖
Ḃ

d/p−1
p,1

if 2 ≤ p ≤ d, (2.25)

‖FGh‖ℓ
Ḃ

−s1
2,∞
≲ ‖FGh‖ℓ

Ḃ
−s0
2,∞
≲

(
‖F ℓ‖

Ḃ
d/2−1
2,1

+ ‖Fh‖
Ḃ

d/p
p,1

)
‖Gh‖

Ḃ
d/p−1
p,1

if p > d, (2.26)

where 1−d/2 < s1 ≤ s0. Noticing that 1−d/2 < σ1−1 ≤ σ0−1 = s0, we conclude
that, due to (2.25) and embedding Ḃ

d/2−1
2,1 ↪→ Ḃ

d/p−1
p,1 ,

‖div (a∇Λ−1qh)‖ℓ
Ḃ

−σ1
2,∞
≲ ‖a∇Λ−1qh‖ℓ

Ḃ
−σ1+1
2,∞

≲
(
‖a‖ℓ

Ḃ
d/2−2
2,1

+ ‖a‖h
Ḃ

d/p
p,1

)
‖q‖h

Ḃ
d/p−1
p,1

, (2.27)
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for all 2 ≤ p ≤ d, and also that, owing to (2.26) and Bernstein inequality,

‖div (a∇Λ−1qh)‖ℓ
Ḃ

−σ1
2,∞
≲

∥∥a∇Λ−1qh
∥∥ℓ
Ḃ

−σ1+1
2,∞

≲
(
‖a‖ℓ

Ḃ
d
2
−2

2,1

+ ‖a‖h
Ḃ

d/p
p,1

)
‖q‖h

Ḃ
d/p−1
p,1

for all p > d. (2.28)

By inserting (2.24), (2.27) and (2.28) into (2.22) gives

‖(a, q)‖ℓ
Ḃ

−σ1
2,∞
≲ ‖(a0, q0)‖ℓḂ−σ1

2,∞
+

∫ t

0

‖a‖
Ḃ

d/p
p,1

‖(a, q)‖ℓ
Ḃ

−σ1
2,∞

dτ

+

∫ t

0

(
‖a‖ℓ

Ḃ
d/2−2
2,1

+ ‖a‖h
Ḃ

d/p
p,1

)
‖q‖h

Ḃ
d/p−1
p,1

dτ.

The global existence result (see Theorem 1.1) ensures that Ep(t) ≲ Ep,0 � 1, we
have∫ t

0

‖a‖
Ḃ

d/p
p,1

dτ ≤ CEp,0 and
∫ t

0

(
‖a‖ℓ

Ḃ
d/2−2
2,1

+‖a‖h
Ḃ

d/p
p,1

)
‖q‖h

Ḃ
d/p−1
p,1

dτ ≤ CEp,0. (2.29)

Finally, combining (2.29), one can make use of nonlinear generalisations of the
Gronwall’s inequality (see for example, Page 360 of [18]) and get (2.21). This
completes the proof of Proposition 2.3.

2.3. Lyapunov-type inequality for energy norms and decay es-
timates

In this section, we establish the Lyapunov-type inequality in time for energy norms,
which leads to the time-decay estimates. Thanks to −σ1 < d/2 − 2 < d/2, we get
from Lemma 3.3 that

‖(a, q)ℓ‖
Ḃ

d/2−2
2,1

≲
(
‖(a, q)‖ℓ

Ḃ
−σ1
2,∞

)θ0(‖(a, q)‖ℓ
Ḃ

d/2
2,∞

)1−θ0 with θ0 =
2

d/2 + σ1
∈ (0, 1).

According to (2.21), we infer that

‖(a, q)‖ℓ
Ḃ

d/2
2,1

≥ c0
(
‖(a, q)ℓ‖

Ḃ
d/2−2
2,1

) 1
1−θ0 with c0 = C− 1

1−θ0 C
− θ0

1−θ0
0 . (2.30)

In addition, it follows from the fact ‖(a,Λq)‖h
Ḃ

d/p−2
p,1

≲ Ep,0 � 1 for all t ≥ 0 that

‖(Λa, q)‖h
Ḃ

d/p−1
p,1

≳
(
‖(a,Λq)‖h

Ḃ
d/p−2
p,1

) 1
1−θ0 . (2.31)

Putting both (2.30) and (2.31) into (2.20), we conclude that there exists a constant
c̃0 > 0 such that the following Lyapunov-type inequality in time holds.

d

dt

(
‖(a, q)ℓ‖

Ḃ
d/2−2
2,1

+ ‖(a,Λq)‖h
Ḃ

d/p−2
p,1

)
+ c̃0

(
‖(a, q)ℓ‖

Ḃ
d/2−2
2,1

+ ‖(a,Λq)‖h
Ḃ

d/p−2
p,1

)1+ 2
d/2−2+σ1 ≤ 0. (2.32)
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Solving (2.32) directly yields

‖(a, q)ℓ‖
Ḃ

d/2−2
2,1

+ ‖(a,Λq)‖h
Ḃ

d/p−2
p,1

≤
(
E
− 2

d/2−2+σ1
p,0 +

2c̃0t

d/2− 2 + σ1

)− d/2−2+σ1
2

≲ (1 + t)−
d/2−2+σ1

2 for all t ≥ 0. (2.33)

It follows from Lemma 3.4 and (2.33) that

‖(a, q)‖
Ḃ

d/p−2
p,1

≲ ‖(a, q)ℓ‖
Ḃ

d/2−2
2,1

+ ‖(a,Λq)‖h
Ḃ

d/p−2
p,1

≲ (1 + t)−
d
4−

σ1−2
2 . (2.34)

In addition, if σ ∈ (−σ̃1, d/p− 2) with σ̃1 ≜ σ1 + d(1/2− 1/p), then employing the
interpolation once again implies that

‖(a, q)ℓ‖Ḃσ
p,1
≲ ‖(a, q)ℓ‖

Ḃ
σ+d(1/2−1/p)
2,1

≲
(
‖(a, q)‖ℓ

Ḃ
−σ1
2,∞

)θ1(‖(a, q)ℓ‖
Ḃ

d/2−2
2,∞

)1−θ1
,

(2.35)
where θ1 = d/p−2−σ

d/2−2+σ1
∈ (0, 1). With the aid of (2.21), (2.33) and (2.35), one can

conclude that

‖(a, q)ℓ(t)‖Ḃσ
p,1
≲

(
(1 + t)−

d/2−2+σ1
2

)1−θ1
= (1 + t)−

d
2 (

1
2−

1
p )−

σ1+σ
2 for all t ≥ 0,

which lead to

‖(a, q)(t)‖Ḃσ
p,1
≲ ‖(a, q)ℓ(t)‖Ḃσ

p,1
+ ‖(a, q)(t)‖h

Ḃσ
p,1
≲ (1 + t)−

d
2 (

1
2−

1
p )−

σ1+σ
2 (2.36)

for σ ∈ (−σ̃1, d/p− 2). Owing to the embedding Ḃ0
p,1 ↪→ Lp, combining with (2.34)

and (2.36) yields Theorem 1.2. This completes the proof of Theorem 1.2.

3. Appendix
For convenience of reader, we here give some technical results that have been used
repeatedly in Section 2. In the first paragraph, we show Littlewood-Paley decom-
position and Besov spaces. Next, we state some related analysis tools in Besov
spaces.

3.1. Littlewood-Paley decomposition and Besov spaces
Let us briefly recall Littlewood-Paley decomposition and Besov spaces. The reader
is referred to Chap. 2 and Chap. 3 of [1] for more details. We fix a smooth radial
non increasing function χ with Suppχ ⊂ B(0, 4/3) and χ ≡ 1 on B(0, 3/4), then
set ϕ(ξ) = χ(ξ/2)− χ(ξ) so that∑

k∈Z

ϕ(2−k·) = 1 in Rd \ {0} and Suppϕ ⊂
{
ξ ∈ Rd : 3/4 ≤ |ξ| ≤ 8/3

}
.

The homogeneous dyadic blocks ∆̇k (k ∈ Z) are defined by

∆̇kf ≜ ϕ(2−kD)f = F−1(ϕ(2−k·)Ff) = 2kdh(2k·) ∗ f with h ≜ F−1ϕ.
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Formally, we have the unit decomposition for any tempered distribution f ∈ S ′(Rd),

f =
∑
k∈Z

∆̇kf. (3.1)

As it holds only modulo polynomials, it is convenient to consider the subspace of
those tempered distributions f such that

lim
k→−∞

‖Ṡkf‖L∞ = 0, (3.2)

where Ṡkf stands for the low frequency cut-off defined by Ṡkf ≜ χ(2−kD)f . Indeed,
if (3.2) is fulfilled, then (3.1) holds in S ′(Rd). For convenience, we denote by S ′

0(Rd)
the subspace of tempered distributions satisfying (3.2).

With the aid of Littlewood-Paley decomposition, Besov spaces are defined as
follows.

Definition 3.1. For σ ∈ R and 1 ≤ p, r ≤ ∞, the homogeneous Besov spaces Ḃσ
p,r

is defined by
Ḃσ

p,r ≜
{
f ∈ S ′

0 : ‖f‖Ḃσ
p,r

< +∞
}
,

where
‖f‖Ḃσ

p,r
≜ ‖(2kσ‖∆̇kf‖Lp)‖ℓr(Z). (3.3)

On the other hand, a class of mixed space-time Besov spaces are also used, which
was initiated by J.-Y. Chemin and N. Lerner [3] (see also [2] for the particular case
of Sobolev spaces).

Definition 3.2. For T > 0, σ ∈ R, 1 ≤ r, θ ≤ ∞, the homogeneous Chemin-Lerner
space L̃θ

T (Ḃ
σ
p,r) is defined by

L̃θ
T (Ḃ

σ
p,r) ≜

{
f ∈ Lθ(0, T ;S ′

0) : ‖f‖L̃θ
T (Ḃσ

p,r)
< +∞

}
,

where
‖f‖L̃θ

T (Ḃσ
p,r)
≜ ‖(2kσ‖∆̇jf‖Lθ

T (Lp))‖ℓr(Z). (3.4)

For notational simplicity, index T is omitted if T = +∞. We agree with the
notation

C̃b(R+; Ḃ
σ
p,r) ≜

{
f ∈ C(R+; Ḃ

σ
p,r) s.t ‖f‖L̃∞(Ḃσ

p,r)
< +∞

}
.

The Chemin-Lerner space L̃θ
T (Ḃ

σ
p,r) may be linked with the standard spaces Lθ

T (Ḃ
σ
p,r)

by means of Minkowski’s inequality.

Remark 3.1. It holds that

‖f‖L̃θ
T (Ḃσ

p,r)
≤ ‖f‖Lθ

T (Ḃσ
p,r)

if r ≥ θ; ‖f‖L̃θ
T (Ḃσ

p,r)
≥ ‖f‖Lθ

T (Ḃσ
p,r)

if r ≤ θ.

Restricting the above norms (3.3) and (3.4) to the low or high frequencies parts
of distributions will be fundamental in our method. For instance, let us fix some
integer k0 (the value of which will follow from the proof of the high-frequency
estimates) and put∗

‖f‖ℓ
Ḃσ

p,1
≜

∑
k≤k0

2kσ‖∆̇kf‖Lp and ‖f‖h
Ḃσ

p,1
≜

∑
k≥k0−1

2jσ‖∆̇kf‖Lp ,

∗Note that for technical reasons, we need a small overlap between low and high frequencies.
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‖f‖ℓ
L̃∞

T (Ḃσ
p,1)
≜

∑
k≤k0

2kσ‖∆̇kf‖L∞
T (Lp) and ‖f‖h

L̃∞
T (Ḃσ

p,1)
≜

∑
k≥k0−1

2jσ‖∆̇kf‖L∞
T (Lp).

3.2. Analysis tools in Besov spaces
Let us here recall the classical Bernstein inequality:

‖Dkf‖Lb ≤ C1+kλk+d( 1
a− 1

b )‖f‖La (3.5)

that holds for all function f such that SuppFf ⊂
{
ξ ∈ Rd : |ξ| ≤ Rλ

}
for some

R > 0 and λ > 0, if k ∈ N and 1 ≤ a ≤ b ≤ ∞.
More generally, if we assume f to satisfy SuppFf ⊂

{
ξ ∈ Rd : R1λ ≤ |ξ| ≤ R2λ

}
for some 0 < R1 < R2 and λ > 0, then for any smooth homogeneous of degree m
function A on Rd \ {0} and 1 ≤ a ≤ ∞, we have (see e.g. Lemma 2.2 in [1]):

‖A(D)f‖La ≲ λm‖f‖La . (3.6)

An obvious consequence of (3.5) and (3.6) is that ‖Dkf‖Ḃs
p,r

≈ ‖f‖Ḃs+k
p,r

for all
k ∈ N.

The following nonlinear generalization of (3.6) will be also used (see Lemma 8
in [4]).

Lemma 3.1. If SuppFf ⊂
{
ξ ∈ Rd : R1λ ≤ |ξ| ≤ R2λ

}
, then there exists c de-

pending only on d, R1 and R2 so that for all 1 < p < ∞,

cλ2

(
p− 1

p

)∫
Rd

|f |pdx ≤ (p− 1)

∫
Rd

|∇f |2|f |p−2dx = −
∫
Rd

∆f |f |p−2fdx.

Next, let us give the classical properties (see [1]):

Lemma 3.2.

• Scaling invariance: For any σ ∈ R and (p, r) ∈ [1,∞]2, there exists a constant
C = C(σ, p, r, d) such that for all λ > 0 and f ∈ Ḃσ

p,r, we have

C−1λσ−d/p‖f‖Ḃσ
p,r

≤
∥∥f(λ·)∥∥

Ḃσ
p,r

≤ Cλσ−d/p‖f‖Ḃσ
p,r

.

• Completeness: Ḃσ
p,r is a Banach space whenever σ < d/p or σ ≤ d/p and

r = 1.
• Action of Fourier multipliers: If F is a smooth homogeneous of degree m

function on Rd\{0} then

F (D) : Ḃσ
p,r → Ḃσ−m

p,r .

Lemma 3.3. Let 1 ≤ p, r1, r2, r ≤ ∞.

• Complex interpolation: If f ∈ Ḃσ1
p,r1∩Ḃ

σ2
p,r2 and σ1 6= σ2, then f ∈ Ḃ

θσ1+(1−θ)σ2
p,r

for all θ ∈ (0, 1) and

‖f‖
Ḃ

θσ1+(1−θ)σ2
p,r

≲ ‖f‖θ
Ḃ

σ1
p,r1

‖f‖1−θ

Ḃ
σ2
p,r2

with 1/r = θ/r1 + (1− θ)/r2.
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• Real interpolation: If f ∈ Ḃσ1
p,∞ ∩ Ḃσ2

p,∞ and σ1 < σ2, then f ∈ Ḃ
θσ1+(1−θ)σ2

p,1

for all θ ∈ (0, 1) and

‖f‖
Ḃ

θσ1+(1−θ)σ2
p,1

≲ C

θ(1− θ)(σ2 − σ1)
‖f‖θ

Ḃ
σ1
p,∞

‖f‖1−θ

Ḃ
σ2
p,∞

.

The following embedding properties will be used frequently throughout this
paper.

Lemma 3.4 (Embedding for Besov spaces on Rd).

• For any p ∈ [1,∞] we have the continuous embedding Ḃ0
p,1 ↪→ Lp ↪→ Ḃ0

p,∞.

• If σ ∈ R, 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞, then Ḃσ
p1,r1 ↪→

Ḃ
σ−d (1/p1−1/p2)
p2,r2 .

• The space Ḃ
d/p
p,1 is continuously embedded in the set of bounded continuous

functions (going to zero at infinity if, additionally, p < ∞).

The product estimate in Besov spaces plays a fundamental role in bounding
bilinear terms of (1.7) (see for example [1, 6, 20,22]).

Lemma 3.5. Let σ > 0 and 1 ≤ p, r ≤ ∞. Then Ḃσ
p,r ∩ L∞ is an algebra and

‖fg‖Ḃσ
p,r
≲ ‖f‖L∞‖g‖Ḃσ

p,r
+ ‖g‖L∞‖f‖Ḃσ

p,r
.

Let the real numbers σ1, σ2, p1 and p2 fulfill

σ1 + σ2 > 0, σ1 ≤ d/p1, σ2 ≤ d/p2, σ1 ≥ σ2, 1/p1 + 1/p2 ≤ 1.

Then we have

‖fg‖Ḃσ2
q,1
≲ ‖f‖Ḃσ1

p1,1
‖g‖Ḃσ2

p2,1
with 1/q = 1/p1 + 1/p2 − σ1/d.
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