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1. Introduction
Consider the linear complementarity problems, abbreviated as LCP(q, A), for find-
ing a pair of real vectors r and z ∈ Rn such that

r := Az + q ≥ 0, z ≥ 0 and zT (Az + q) = 0, (1.1)

where A=(aij)∈Rn×n is a given large, sparse and real matrix and q=(q1, q2, ..., qn)
T∈

Rn is a given real vector. Here, zT and ≥ denote the transpose of the vector z and
the componentwise partial ordering between two vectors, respectively.

Many problems in scientific computing and engineering applications may lead to
solutions of LCPs of the form (1.1). For example, the linear complementarity prob-
lems may arise from application problems such as the convex quadratic program-
ming, the Nash equilibrium point of the bimatrix game, the free boundary prob-
lems of fluid dynamics etc. (e.g. see [12, 18, 23] and the references therein). Some
solvers for LCP(q, A) with a special matrix A were proposed [2–8,13–15,17,20,31].
Recently, many people have focused the solvers of LCP(q, A) with an algebra equa-
tion [7,8,17,20,31,35]. Bai introduced modulus-based matrix splitting methods [7],
and Bai and Zhang proposed modulus-based matrix multisplitting methods for lin-
ear complementarity problems [1,8] . Zhang and Ren [35] extended the condition of
a compatible H−splitting to that of an H-splitting. Li [21] extended the modulus-
based matrix splitting iteration method to more general cases. Zhang et al. [37–39]
gave the weaker convergence results when the system matrix is an H+-matrix. Dai et
al. [16] provided a comparison theorem between preconditioned two-step modulus-
based Gauss-Seidel (PTMGS) iteration method and two-step modulus-based Gauss-
Seidel (TMGS) iteration method, which shows that PTMGS method improves the
convergence rate of original TMGS method for linear complementarity problem.
Mezzadri et al. [22] analyzed the solution of horizontal linear complementarity prob-
lems arising from finite-difference discretizations of differential problems. Ren et
al. [26, 27] considered the preconditioned general two-step modulus-based matrix
splitting iteration method and the general two-sweep modulus-based matrix split-
ting iteration method for linear complementarity problems of H+-matrices. Wen
et al. [30] studied the relaxation modulus-based matrix splitting iteration method
for solving linear complementarity problems of positive definite matrices. Wu et
al. [32] provided the preconditioned general modulus-based matrix splitting itera-
tion method for linear complementarity problems of H-matrices. Zhang et al. [34]
studied the modified modulus-based multigrid method for linear complementarity
problems arising from free boundary problems.

The rest of this paper is organized as follows: In section 2, we give some no-
tations and lemmas. In section 3, we propose relaxed modulus-based synchronous
multisplitting multi-parameters TOR (two-parameters over-relaxation, abbreviated
as TOR) method for solving LCP(q, A). For more information about the TOR
method, readers can refer to the literature [21]. In section 4, we give the conver-
gence analysis for the proposed method.

2. Notations and Lemmas
A matrix A = (aij) is called an M -matrix if aij ≤ 0 for i ̸= j and A−1 ≥ 0. The
comparison matrix ⟨A⟩ = (αij) of matrix A = (aij) is defined by: αij = |aij |,
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if i = j;αij = −|aij |, if i ̸= j. A matrix A is called an H-matrix if ⟨A⟩ is an
M -matrix and is called an H+-matrix if it is an H-matrix with positive diago-
nal entries [2, 11, 30]. Let ρ(A) denote the spectral radius of A. A representa-
tion A = M − N is called a splitting of A when M is nonsingular. Let A and
B be M -matrices. If A ≤ B, then A−1 ≥ B−1. Let A be an H-matrix, and
A = D − B,D = diag(A), then ρ(|D|−1|B|) < 1. Moreover, D is nonsingular. Fi-
nally, we define by Rn

+ = {x|x ≥ 0, x ∈ Rn}.

Lemma 2.1.( [19]) Let A be an H-matrix. Then A is nonsingular, and |A−1| ≤
⟨A⟩−1.

Lemma 2.2.( [29]) Let H(1),H(2), ..., H(l)...be a sequence of nonnegative matri-
ces in Rn×n. If there exist a real number 0 ≤ θ < 1, and a vector ν > 0 in Rn, such
that

H(l)ν ≤ θν, l = 1, 2, ...

then ρ(Kl) ≤ θl < 1, where Kl = H(l)H(l−1)...H(1), and therefore lim
l→∞

Kl = 0.

Lemma 2.3. ( [34]) Let A = (aij) ∈ Zn×n which has all positive diagonal entries. A
is an M -matrix if and only if ρ(B) < 1, where B = D−1C, D = diag(A), A = D−C.

Lemma 2.4. ( [4, 6, 9]) A ∈ Rn×n be an H+-matrix. Then, the LCP(q, A) has
a unique solution for any q ∈ Rn.

Lemma 2.5. ( [7]) Let A = M − N be a splitting of the matrix A ∈ Rn×n,Ω
be a positive diagonal matrix, and γ a positive constant. Then, for the LCP(q, A)
the following statements hold true:

(i) if (z, r) is a solution of the LCP(q, A), then x = 1
2γ(z − Ω−1r) satisfies the

implicit fixed-point equation

(Ω +M)x = Nx+ (Ω−A)|x| − γq; (2.1)

(ii) if x satisfies the implicit fixed-point equation (2), then

z = γ−1(|x|+ x) and r = γ−1Ω(|x| − x) (2.2)

is a solution of the LCP(q, A).

3. RMSMMTOR methods
To suit computational requirements of the modern high-speed multiprocessor en-
vironments, in this paper, we further present synchronous parallel multisplitting
multi-parameters TOR for the modulus-based splitting iteration methods in [7] by
making use of multiple splittings of the system matrix A [10, 26]. This class of
modulus-based synchronous multisplitting (MSM) iteration methods is advanta-
geous over the synchronous multisplitting iteration methods discussed by Machida
et al. [25] and by Bai [2], as at each iteration step, it only needs to solve subsystems
of linear equations rather than linear complementarity subproblems (see also [6,9]).

At first, we introduce the concept of multisplitting method and the detailed
process of parallel iterative method.
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{Mk, Nk, Ek}lk=1 is a multisplitting of A if
1) A = Mk −Nk is a splitting for k = 1, 2, ..., l;
2) Ek ≥ 0 is a nonnegative diagonal matrix, called weighting matrix;

3)
l∑

k=1

Ek = I, where I is the identity matrix.

Given a positive diagonal matrix Ω and a positive constant γ, from Lemma 2.5,
we know that if x satisfies either of the implicit fixed-point equations

(Ω +Mk)x = Nkx+ (Ω−A)|x| − γq, k = 1, 2, ..., l, (3.1)

then
z = γ−1(|x|+ x) and r = γ−1Ω(|x| − x) (3.2)

is a solution of the LCP(q, A).
Let

A = D − Lk − Fk − Uk, k = 1, 2, ..., l,

where D = diag(A), Lk and Fk are strictly lower triangular, and Uk are such that
A = D − Lk − Fk − Uk, then (D − Lk − Fk, Uk, Ek) is a multisplitting of A. With
the equivalent reformulations (3.1), (3.2) and TOR method of the LCP(q, A), we
can establish the following relaxed modulus-based synchronous multisplitting multi-
parameters TOR method (RMSMMTOR), which is similar to Method 3.1 in [1].

Method 3.1. (The RMSMMTOR method for LCP(q, A))
Let (Mk, Nk, Ek)(k = 1, 2, ...l) be a multisplitting of the system matrix A ∈ Rn×n.
Given an initial vector x(0) ∈ Rn for m = 0, 1, ... until the iteration sequence
{z(m)}∞m=0 ⊂ Rn

+ is convergent, compute z(m+1) ∈ Rn
+ by

z(m+1) =
1

γ
(|x(m+1)|+ x(m+1))

and x(m+1) ∈ Rn according to

x(m+1) = ω

l∑
k=1

Ekx
(m,k) + (1− ω)x(m),

where x(m,k), k = 1, 2, ..., l, are obtained by solving the linear systems

[αkΩ+D − (βkLk + γkFk)]x
(m,k)

=[(1− αk)D + (αk − βk)Lk + (αk − γk)Fk + αkUk]x
(m) + αk[(Ω−A)|x(m)| − γq],

k = 1, 2, ..., l, (3.3)

respectively.

Remark 3.1. In Method 3.1, when αk = α, βk = β, γk = γ, ω = 1, the RMSMM-
TOR method reduces to the MSMTOR method; when αk = α, βk = β, γk = γ, the
RMSMMTOR method reduces to the RMSMTOR method; When γk = 0, ω = 1,
the RMSMMTOR method reduces to the MSMMAOR method; When γk = 0, the
RMSMMTOR method reduces to the RMSMMAOR method; When αk = α, βk =
β, γk = 0, ω = 1, the RMSMMTOR method reduces to the MSMAOR method;
When αk = α, βk = β, γk = 0, the RMSMMTOR method reduces to the RMS-
MAOR method.
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4. Convergence analysis
Based relaxed modulus-based synchronous multisplitting multi-parameter TOR me-
thod, we will present a weaker convergence results of the multisplitting methods for
the linear complementarity problem for H+-matrix, which is as follows:

Theorem 4.1. Let A ∈ Rn×n be an H+-matrix, with D =diag(A) and B = D−A,
and let (Mk, Nk, Ek)(k = 1, 2, ..., l) and (D − Lk − Fk, Uk, Ek)(k = 1, 2, ..., l) be a
multisplitting and a triangular multisplitting of the matrix A, respectively. Assume
that γ > 0 and the positive diagonal matrix Ω satisfies Ω ≥ D. If A = D − Lk −
Fk − Uk(k = 1, 2, ..., l) satisfies ⟨A⟩ = D − |Lk| − |Fk| − |Uk|(k = 1, 2, ..., l), then
the iteration sequence {z(m)}∞m=0 generated by the RMSMMTOR iteration method
converges to the unique solution z∗ of LCP(q, A) for any initial vector z(0) ∈ Rn

+,
provided the relaxation parameters αk and βk, ω satisfy

0 < βk, γk ≤ αk ≤ 1, 0 < ω <
2

1 + ρ′

or 0 < βk, γk <
1

ρ(D−1|B|)
, 1 < αk <

1

ρ(D−1|B|)
, 0 < ω <

2

1 + ρ′ ,
(4.1)

where ρ = ρ(J), J = D−1|B|, ρ
′
= max

1≤k≤l
{1 − 2αk + 2αkρϵ, 2δkρϵ − 1, 2αkρϵ − 1},

δk = max{βk, γk}. Moreover, βk, γk should be greater than or less than αk at once.
Proof. From Lemma 2.3 and (3.3), for the RMSMMTOR method, it holds that

(αkΩ+D − (βkLk + γkFk))x∗

=[(1− αk)D + (αk − βk)Lk + (αk − γk)Fk + αkUk]x∗ + αk[(Ω−A)|x∗| − γq],

k = 1, 2, ..., l, (4.2)

By subtracting (4.2) from (3.3), we have

x(m,k) − x∗ =(αkΩ+D − (βkLk + γkFk))
−1

× [(1− αk)D + (αk − βk)Lk + (αk − γk)Fk + αkUk](x
(m) − x∗)

+ (αkΩ+D − (βkLk + γkFk))
−1αk(Ω−A)(|x(m)| − |x∗|),

k = 1, 2, ..., l,

which immediately results in the error about the RMSMMTOR method as follows:

x(m+1) − x∗ =ω

l∑
k=1

Ek(αkΩ+D − (βkLk + γkFk))
−1

× [(1− αk)D + (αk − βk)Lk + (αk − γk)Fk + αkUk](x
(m) − x∗)

+ ω

l∑
k=1

Ek(αkΩ+D − (βkLk + γkFk))
−1

× αk(Ω−A)(|x(m)| − |x∗|) + (1− ω)(x(m) − x∗).

The above error relationship is the base for proving the convergence of RMSMM-
TOR method. By taking absolute values on both sides of the above equality, making
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use of Lemma 2.1 and estimate ||x(m)|−|x∗|| ≤ |x(m)−x∗|, defining ϵ(m) = x(m)−x∗
and arranging similar terms together, we can obtain

|ϵ(m)| = |x(m+1) − x∗| ≤ TRMSMMTOR|x(m) − x∗|, (4.3)

where

TRMSMMTOR =ω

l∑
k=1

EkHRMSMMTOR + |1− ω|I

=ω

l∑
k=1

Ek(αkΩ+D − (βk|Lk|+ γk|Fk|))−1

× [|1− αk|D + |αk − βk||Lk|+ |αk − γk||Fk|
+ αk|Uk|+ αk|Ω−A|] + |1− ω|I.

(4.4)

Case 1: Let 0 < βk, γk ≤ αk ≤ 1, 0 < ω < 2
1+ρ′ . For this subcase, the matrix

Mk, Nk read as

Mk = αkΩ+D − (βk|Lk|+ γk|Fk|),

Nk = (1− αk)D + (αk − βk)|Lk|+ (αk − γk)|Fk|+ αk|Uk|+ αk|Ω−A|.
(4.5)

By (4.5) and |Ω − A| = (Ω − D) + |B|, |B| = |Lk| + |Fk| + |Uk|, k = 1, 2, ..., l, we
have Nk = Mk − 2αkD + 2αk|B|. So

HRMSMMTOR = M−1
k Nk = M−1

k (Mk − 2αkD+2αk|B|) = Ik − 2αkM
−1
k (D− |B|).

So
|HRMSMMTOR| ≤ M−1

k [Mk − 2αk(D − |B|)]

≤ I − 2αkM
−1
k D(I −D−1|B|).

Let e denote the vector e = (1, 1, ..., 1)T ∈ Rn. Since J is nonnegative, the matrix
J + ϵeeT has only positive entries and irreducible for any ϵ > 0. By the Perron-
Frobenius theorem for any ϵ > 0, there is a vector xϵ > 0 such that

(J + ϵeeT )xϵ = ρϵxϵ,

where ρϵ = ρ(J + ϵeeT ) = ρ(Jϵ). Moreover, if ϵ > 0 is small enough, we have
ρϵ < 1 by continuity of the spectral radius. Because of 0 < αk ≤ 1, we also have
1− 2αk + 2αkρ < 1, and 1− 2αk + 2αkρϵ < 1. So

|HRMSMMTOR| ≤ I − 2αkM
−1
k D[I − (D−1|B|+ ϵeeT )]

= I − 2αkM
−1
k D[I − Jϵ].

Multiplying xϵ in two sides of the above inequality, and M−1
k ≥ D−1, we can obtain

|HRMSMMTOR|xϵ ≤ xϵ − 2αkM
−1
k D[1− ρ(Jϵ)]xϵ

≤ xϵ − 2αkD
−1D[1− ρ(Jϵ)]xϵ

= (1− 2αk + 2αkρ(Jϵ))xϵ.
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By (4.1), we have

|TRMSMMTOR|xϵ ≤ ωΣl
k=1Ek(1− 2αk + 2αkρ(Jϵ))xϵ + |1− ω|xϵ

≤ ω(1− 2αk + 2αkρϵ)xϵ + |1− ω|xϵ

= (ωρ1 + |1− ω|)xϵ

= θ1xϵ(ϵ → 0),

where θ1 = ωρ1 + |1− ω| < 1.
So, the iteration sequence {z(m)}∞m=0 generated by the RMSMMTOR iteration

method converges to the unique solution z∗ of LCP(q, A) for any initial vector
z(0) ∈ Rn

+, provided the relaxation parameters αk and βk, ω satisfy 0 < βk, γk ≤
αk ≤ 1, 0 < ω < 2

1+ρ′ .

Case 2: 0 < βk, γk < 1
ρ(D−1|B|) , 1 < αk < 1

ρ(D−1|B|) , 0 < ω < 2
1+ρ′ .

Subcase 1: αk ≥ βk and αk ≥ γk. For this subcase, the matrix Mk, Nk read as
Mk = αkΩ+D − (βk|Lk|+ γk|Fk|),
Nk = (αk − 1)D + (αk − βk)|Lk|+ (αk − γk)|Fk|+ αk|Uk|+ αk|Ω−A|

= Mk − 2D + 2αk|B|.
(4.6)

So
|HRMSMMTOR| ≤ M−1

k [Mk − 2(D − αk|B|)]

≤ I − 2M−1
k D(I − αkD

−1|B|).

Similar to the Case 1, let e denote the vector e = (1, 1, ..., 1)T ∈ Rn, and xϵ > 0
such that Jϵxϵ = (J + ϵeeT )xϵ = ρ(Jϵ)xϵ. Moreover, if ϵ > 0 is small enough, we
have ρϵ < 1 by continuity of the spectral radius. Because of 1 < αk < 1

ρ(D−1|B|) ,
we also have

2αkρ− 1 < 1 and 2αkρϵ − 1 < 1.

So
|HRMSMMTOR| ≤ I − 2M−1

k D[I − αk(D
−1|B|+ ϵeeT )]

= I − 2M−1
k D[I − αkJϵ].

Multiplying xϵ in two sides of the above inequality, and M−1
k ≥ D−1, we can obtain

|HRMSMMAOR|xϵ ≤ xϵ − 2M−1
k D[1− αkρ(Jϵ)]xϵ

≤ xϵ − 2(1− αkρ(Jϵ))]xϵ

= (2αkρ(Jϵ)− 1)xϵ.

By (4.1), we have

|TRMSMMTOR|xϵ ≤ ωΣl
k=1Ek(2αkρ(Jϵ)− 1)xϵ + |1− ω|xϵ

≤ ω(2αkρϵ − 1)xϵ + |1− ω|xϵ

= (ωρ2 + |1− ω|)xϵ

= θ2xϵ(ϵ → 0),
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where θ2 = ωρ2 + |1− ω| < 1.
So, the iteration sequence {z(m)}∞m=0 generated by the RMSMMTOR iteration

method converges to the unique solution z∗ of LCP(q, A) for any initial vector
z(0) ∈ Rn

+, provided the relaxation parameters αk ≥ βk and αk ≥ γk.
Subcase 2: αk ≤ βk and αk ≤ γk. For this subcase, the matrix Mk, Nk read as

Mk = αkΩ+D − (βk|Lk|+ γk|Fk|),

Nk = (αk − 1)D + (βk − αk)|Lk|+ (γk − αk)|Fk|+ αk|Uk|+ αk|Ω−A|

= Mk − 2D + 2βk|Lk|+ 2γk|Fk|+ 2αk|Uk|

≤ Mk − 2D + 2δk|B|.

(4.7)

where δk = max{βk, γk}. So

|HRMSMMTOR| ≤ M−1
k [Mk − 2(D − δk|B|)]

≤ I − 2M−1
k D(I − δkD

−1|B|).

Similar to the Case 1, let e denote the vector e = (1, 1, ..., 1)T ∈ Rn, and xϵ > 0
such that Jϵxϵ = (J + ϵeeT )xϵ = ρ(Jϵ)xϵ. Moreover, if ϵ > 0 is small enough, we
have ρϵ < 1 by continuity of the spectral radius. Because of 0 < βk, γk < 1

ρ(D−1|B|) ,
we also have

2δkρ− 1 < 1 and 2δkρϵ − 1 < 1.

So
|HRMSMMTOR| ≤ I − 2M−1

k D[I − δk(D
−1|B|+ ϵeeT )]

= I − 2M−1
k D[I − δkJϵ].

Multiplying xϵ in two sides of the above inequality, and M−1
k ≥ D−1, we can obtain

|HRMSMMTOR|xϵ ≤ xϵ − 2(1− δkρ(Jϵ))]xϵ = (2δkρ(Jϵ)− 1)xϵ

By (4.1), we have

|TRMSMMTOR|xϵ ≤ ωΣl
k=1Ek(2δkρ(Jϵ)− 1)xϵ + |1− ω|xϵ

≤ ω(2δkρϵ − 1)xϵ + |1− ω|xϵ

= (ωρ3 + |1− ω|)xϵ

= θ3xϵ(ϵ → 0),

where θ3 = ωρ3 + |1− ω| < 1.
So, the iteration sequence {z(m)}∞m=0 generated by the RMSMMTOR iteration

method converges to the unique solution z∗ of LCP(q, A) for any initial vector
z(0) ∈ Rn

+, provided the relaxation parameters αk ≤ βk and αk ≤ γk.

Remark 4.1. Obviously, we can find that the conditions of Theorem 4.4 in this
paper are weaker than those of Theorem 2.3 in [41]. Moreover, the parameters can be
adjusted suitably so that the convergence property of method can be substantially



Relaxed modulus-based synchronous. . . 1411

improved. That is to say, we have more choices for the splitting A = B − C which
makes the multisplitting iteration methods converge. Therefore, our convergence
theories extend the scope of multisplitting iteration methods in applications.
Remark 4.2. In this paper, RMSMMTOR method is also the generalization of
MSMAOR method in [1] and MSMMAOR method in [38]. The readers can refer
to the following three theorems.
Theorem 4.2. ( [1]) Let A ∈ Rn×n be an H+-matrix, with D =diag(A) and
B = D−A, and let (Mk, Nk, Ek)(k = 1, 2, ..., l) and (D−Lk, Uk, Ek)(k = 1, 2, ..., l)
be a multisplitting and a triangular multisplitting of the matrix A, respectively.
Assume that γ > 0 and the positive diagonal matrix Ω satisfies Ω ≥ D. If A =
D − Lk − Uk(k = 1, 2, ..., l) satisfies ⟨A⟩ = D − |Lk| − |Uk|(k = 1, 2, ..., l), then the
iteration sequence {z(m)}∞m=0 generated by the MSMAOR iteration method converges
to the unique solution z∗ of LCP(q, A) for any initial vector z(0) ∈ Rn

+, provided the
relaxation parameters α and β satisfy

0 < β ≤ α <
1

ρ(D−1|B|)
.

Theorem 4.3. ( [38]) Let A ∈ Rn×n be an H+-matrix, with D =diag(A) and
B = D−A, and let (Mk, Nk, Ek)(k = 1, 2, ..., l) and (D−Lk, Uk, Ek)(k = 1, 2, ..., l)
be a multisplitting and a triangular multisplitting of the matrix A, respectively.
Assume that γ > 0 and the positive diagonal matrix Ω satisfies Ω ≥ D. If A =
D − Lk − Uk(k = 1, 2, ..., l) satisfies ⟨A⟩ = D − |Lk| − |Uk|(k = 1, 2, ..., l), then
the iteration sequence {z(m)}∞m=0 generated by the MSMMAOR iteration method
converges to the unique solution z∗ of LCP(q, A) for any initial vector z(0) ∈ Rn

+,
provided the relaxation parameters αk and βk satisfy

0 < βk ≤ αk ≤ 1 or 0 < βk <
1

ρ(D−1|B|)
, 1 < αk <

1

ρ(D−1|B|)
.

Theorem 4.4. ( [38]) Let A be an H-matrix, and for k = 1, 2, ..., l, Lk and Fk

be strictly lower triangular matrices. Define the matrix Uk, k = 1, 2, ..., l, such that
A = D−Lk−Fk−Uk. Assume that we have ⟨A⟩ = |D|−|Lk|−|Fk|−|Uk| = |D|−|B|.
If

0 ≤ βk ≤ γk, 0 ≤ αk ≤ γk, 0 < γk <
2

1 + ρ
, 0 < ω <

2

1 + ργk

,

then GRNMMTOR method converges for any initial vector x(0), where ρ = ρ(J), J =
|D|−1|B|, ργk

= max
1≤k≤α

{|1− γk|+ γkρϵ}, q(m, k) ≥ 1,m = 0, 1, ..., k = 1, 2, ..., l.

Remark 4.3. From Table 1, we obviously see that the MSMMAOR method in
[1] uses the same parameters α, β in different processors, but the RMSMMTOR
method in this paper uses different parameters αk, βk, γk(k = 1, 2, ..., l) in different
processors. In RMSMMTOR method, we may choose proper Ek to balance the load
of each processor and avoid synchronization.

5. Numerical experiments
In this section, numerical examples are used to illustrate the feasibility and effec-
tiveness of the relaxed modulus-based synchronous multisplitting multi-parameter
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Table 1. The relaxed modulus-based synchronous multisplitting multi-parameter method and corre-
sponding convergence results.

Method αk, βk, ω Description Ref
MSMJ αk = 1, βk = 0, ω = 1 Modulus-based synchronous [1]

multisplitting Jacobi method
MSMGS αk = βk = 1, ω = 1 Modulus-based synchronous [1]

multisplitting Gauss-Seidel method
MSMSOR 0 < α(αk) = β(βk) <

1
ρ(D−1|B|) , ω = 1 Modulus-based synchronous [1]

multisplitting SOR method
MSMAOR 0 < β(βk) ≤ α(αk) <

1
ρ(D−1|B|) , ω = 1 Modulus-based synchronous [1]

multisplitting AOR method
MSMAOR 0 < β(βk) ≤ α(αk) <

1
ρ(D−1|B|) Modulus-based synchronous [1]

multisplitting AOR method
MSMMAOR ω = 1, 0 < βk ≤ αk ≤ 1 or Modulus-based synchronous [34]

0 < βk < 1
ρ(D−1|B|) , 1 < αk < 1

ρ(D−1|B|) multisplitting multi-parameters
AOR method

RMSMMTOR 0 < βk, γk ≤ αk ≤ 1, 0 < ω < 2
1+ρ′ or Relaxed modulus-based this paper

0 < βk, γk < 1
ρ(D−1|B|) , 1 < αk < 1

ρ(D−1|B|) synchronous multisplitting
0 < ω < 2

1+ρ′ multi-parameter TOR method
where ρ

′
= max

1≤k≤l
{1− 2αk + 2αkρϵ,

2δkρϵ − 1, 2αkρϵ − 1}, δk = max{βk, γk}

AOR methods (RMSMMAOR) (F = U) in terms of iteration count (denoted by
‘IT’) and computing time (denoted by ‘CPU’), and norm of absolute residual vectors
(denoted by ‘RES’). Here, ‘RES’ is defined as

RES(z(k)) := ∥min(Az(k) + q, z(k))∥2

where z(k) is the kth approximate solution to the LCP(q, A) and the minimum is
taken componentwise in [10].

All initial vectors are chosen to be

x(0) = (1, 0, 1, 0, · · · , 1, 0, · · · )T ∈ Rn.

In the table, α, β denote the iteration parameters in the relaxed modulus-based
synchronous multisplitting multi-parameter AOR methods (RMSMMAOR) and the
modulus-based synchronous multisplitting multi-parameter methods (MSMAOR).
In addition, we take Ω = 1

2αD in [11] for RMSMMAOR and MSMAOR methods.
Let m be a prescribed positive integer and n = m2. Consider the LCP(q, A), in

which A ∈ Rn×n is given by A = Â+ µI and q ∈ Rn is given by q = −Mz∗ where

Â = tridiag(−rI, S,−tI) =



S −tI 0 · · · 0 0

−rI S −tI · · · 0 0

0 −rI S · · · 0 0

...
... . . . ...

...

0 0 · · · · · · S −tI

0 0 · · · · · · −rI S


∈ Rn×n (5.1)
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is a block-tridiagonal matrix,

S = tridiag(−1, 4,−1) =



4 −1 0 · · · 0 0

−1 4 −1 · · · 0 0

0 −1 4 · · · 0 0

...
... . . . ...

...

0 0 · · · · · · 4 −1

0 0 · · · · · · −1 4


∈ Rn×n (5.2)

is a tridianonal matrix, and

z∗ = (1, 2, 1, 2, · · · , 1, 2, · · · )T ∈ Rn

is the unique solution of the LCP(q, A), one can see [11] for more details.
For symmetric case, we take r = t = 1, which is considered in [11]. In this case,

the system matrix A ∈ Rn×n is symmetric positive definite for µ ≥ 0. Obviously,
the LCP(q, A) has a unique solution.

In Table 2, the iteration steps, the CPU times, and the residual norms of
RMSMMAOR and MSMAOR methods for the symmetric case are listed for dif-
ferent parameters and different problem sizes of m. When both RMSMMAOR and
MSMAOR methods are applied to solve the LCP(q, A), the iteration parameters
α, β about MSMAOR method satisfy Theorem 4.1 in [33] and Theorem 4.2 in this
paper, but the iteration parameters α, β about RMSMMAOR method only satisfy
Theorem 4.2 in this paper and don’t satisfy Theorem 4.1 in [33].

Table 2. IT, CPU and Error for RMSMMAOR and MSMAOR with different parameters in symmetric
case.

m 20 30 40 50 60

µ = 0.5 RMSMMAOR IT 22 22 22 22 22

α = 1 CPU 0.1560 0.7800 2.4336 5.9280 12.4957

β = 1.2 Error 7.2225× 10−6 7.2598× 10−6 7.2970× 10−6 7.3390× 10−6 7.3707× 10−6

µ = 0.5 MSMAOR IT 30 30 30 31 31

α = 1 CPU 0.2184 1.0764 3.2916 8.3773 17.6905

β = 0.7 Error 9.7188× 10−6 9.8399× 10−6 9.9531× 10−6 7.3792× 10−6 7.4496× 10−6

µ = 1.5 RMSMMAOR IT 19 19 19 19 19

α = 1 CPU 0.1716 0.6552 2.0748 5.0856 10.7797

β = 1.2 Error 6.6884× 10−6 6.8943× 10−6 7.0943× 10−6 7.2888× 10−6 7.4782× 10−6

µ = 1.5 MSMAOR IT 23 24 24 24 24

α = 1 CPU 0.1716 0.8424 2.6520 6.4584 13.6657

β = 0.7 Error 9.5945× 10−6 6.6969× 10−6 7.0677× 10−6 7.4200× 10−6 7.7563× 10−6

µ = 2.5 RMSMMAOR IT 17 17 17 17 17

α = 1 CPU 0.1404 0.6084 1.8720 4.5552 9.6565

β = 1.2 Error 7.6793× 10−6 8.2513× 10−6 8.7861× 10−6 9.2902× 10−6 9.7683× 10−6

µ = 2.5 MSMAOR IT 20 20 20 21 21

α = 1 CPU 0.1404 0.7020 2.2932 5.6472 11.9341

β = 0.7 Error 8.3861× 10−6 9.4078× 10−6 6.1592× 10−6 6.6458× 10−6 7.0992× 10−6

From Table 2, for RMSMMAOR and MSMAOR methods with α = 1, β = 1.2
and α = 1, β = 0.7, fixing the value of µ, it is easy to see that the iteration steps
unchange as the increasing of the problem size m, however, CPU times increase as
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the increasing of the problem size m. Moreover, for RMSMMAOR and MSMAOR
methods, fixing the value of m, it is also easy to see that the iteration steps and CPU
times decrease as the increasing of the problem size µ. In our numerical experiments,
we find that the iteration steps and CPU times of RMSMMAOR are less than that
of MSMAOR under certain conditions.

6. Conclusions
In this paper, we establish relaxed modulus-based synchronous multisplitting multi-
parameters TOR methods and analyze its convergence properties in detail when
the system matrix is either a positive-definite matrix or an H+-matrix. Numer-
ical experiments show that the RMSMMTOR methods are feasible under certain
conditions. In future work, we can consider extending RMSMMTOR method for
nonlinear complementarity problems and horizontal linear complementarity prob-
lems.
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