EXISTENCE OF AT LEAST TWO SOLUTIONS FOR DOUBLE PHASE PROBLEM

Bin $\mathrm{Ge}^{1,\dagger}$ and Wen-Shuo Yuan¹

Abstract This paper concerns with a class of double phase Dirichlet problem depending of one real parameter. Under some appropriate assumptions, we obtain the existence of at least two solutions for this problem using a direct consequence of the celebrated Pucci and Serrin theorem. Our results generalize some existing results.

Keywords Double phase problem, variational method, existence results.

MSC(2010) 35D30, 35J20, 35J60, 35J70, 35J92.

1. Introduction and main results

It is well-known that a great attention in the last years has been focused by many authors on the study of double phase problems on bounded domains. In this direction, we can refer to [3, 5, 6, 9-14, 20, 23, 24, 26-28] and references therein. For more physical background, for instance, Lavrentiev's phenomenonwe [25], quantum physics [2], transonic flows [4] and so on. For other existence results on elliptic equations with double phase operators we refer to the papers of Papageorgiou-Radulescu-Repovs [18,19], Mingione-Radulescu [16]. We refer the interested reader to [1, 7, 17, 22] and references therein for recent regularity results.

Motivated by this large interest in the current literature, we are interested in the existence of solutions of the following double phase problem

$$\begin{cases} -\operatorname{div}(|\nabla u|^{p-2}\nabla u + \mu(x)|\nabla u|^{q-2}\nabla u) = \lambda f(x, u), & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$
(P)

where $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary $\partial\Omega$, $N \geq 2$, λ is a positive real parameter, $\operatorname{div}(|\nabla u|^{p-2}\nabla u + \mu(x)|\nabla u|^{q-2}\nabla u)$ denotes the double phase operator, 1 and

$$\frac{q}{p} < 1 + \frac{1}{N}, \ \mu : \overline{\Omega} \to [0, +\infty)$$
 is Lipschitz continuous. (1.1)

Moreover, $f: \Omega \times \mathbb{R} \mapsto \mathbb{R}$ is a Carathéodory function such that

 (h_1) there exist $1 < r < p^*$ and some positive constant C such that

$$|f(x,t)| \le C(1+|t|^{r-1}),$$

where $p^* = \frac{Np}{N-p}$ is the critical exponent;

[†]The corresponding author. Email: gebin791025@hrbeu.edu.cn(B. Ge)

 $^{^{1}\}mathrm{College}$ of Mathematical Sciences, Harbin Engineering University, Harbin, 150001, China

 (h_2) there exist $\theta > q$, M > 0 such that for any $x \in \Omega$, $|t| \ge M$

$$0 < \theta F(x,t) \le t f(x,t),$$

where $F(x,t) = \int_0^t f(x,s) ds$.

The aim of this paper is to present the existence of at least two weak solutions for our problem when nonlinear term f satisfies (h_1) - (h_2) but does not satisfy the usual additional assumption at zero, that is,

$$\lim_{t \to 0} \frac{f(x,t)}{|t|^{p-1}} = 0 \text{ uniformly in } x,$$

which comes from [12]. This is a more natural and general case, but needs different tricks and estimate. To overcome this difficulty, we shall use the Ricceri's variational principle due to Ricceri [21, Theorem 6].

We are now in the position to state our main results.

Theorem 1.1. Suppose that (h_1) and (h_2) hold. Then, for every $\sigma > 0$ and each

$$\lambda \in \left(0, \frac{\sigma}{Cs_1 q_\sigma + Cs_r^r q_\sigma^r}\right),\tag{1.2}$$

where $q_{\sigma} = \max\{(q\sigma)^{\frac{1}{p}}, (q\sigma)^{\frac{1}{q}}\}$ and $s_1, s_r > 0$ are the best constants for the embeddings of $W_0^{1,H}(\Omega) \hookrightarrow L^1(\Omega)$ and $W_0^{1,H}(\Omega) \hookrightarrow L^r(\Omega)$, respectively, the problem (P) has at least two weak solutions one of which lies in

$$B_{\sigma} := \{ u \in W_0^{1,H}(\Omega) : \|u\| < \min\{(q\sigma)^{\frac{1}{p}}, (q\sigma)^{\frac{1}{q}} \}.$$

The rest of this paper is organized as follows. In Sect. 2, we state some preliminary knowledge on space $W_0^{1,H}(\Omega)$ and the main lemmas. In Sect. 3, we prove the main results.

2. Abstract framework

In this section, firstly we summarize some relevant results on the Musielak-Orlicz-Sobolev space $W_0^{1,H}(\Omega)$. For more details, we can see Refs. [5,8,15].

The Musielak-Orlicz space $L^H(\Omega)$ associated with the function

$$H: \Omega \times [0, +\infty) \to [0, +\infty), \ (x, t) \mapsto t^p + \mu(x)t^q.$$

Thus, the Musielak-Orlicz space $L^H(\Omega)$ is defined

$$L^{H}(\Omega) = \Big\{ u : \Omega \to \mathbb{R} \text{ measurable } : \int_{\Omega} H(x, |u|) dx < +\infty \Big\}.$$

On $L^{H}(\Omega)$ we consider the Luxemburg norm

$$|u|_{H} = \inf\left\{\lambda > 0 : \int_{\Omega} H(x, |\frac{u}{\lambda}|) dx \le 1\right\}.$$

Then the space $L^{H}(\Omega)$ is a separable, uniformly convex Banach space. We define the generalized Musielak-Orlicz-Sobolev space $W^{1,H}(\Omega)$ is defined by putting

$$W^{1,H}(\Omega) = \{ u \in L^H(\Omega) : |\nabla u| \in L^H(\Omega) \}$$

and it is endowed with the following norm

$$\|u\| = |u|_H + |\nabla u|_H.$$

By $W_0^{1,H}(\Omega)$, we denote the closure of $C_0^{\infty}(\Omega)$ in $W^{1,H}(\Omega)$. We recall that, thanks to (1.1), the Poincaré inequality also is true. Furthermore, from Colasuonno-Squassina [5, Proposition 2.18], it is known that ||u|| and $|\nabla u|_H$ are equivalent norms on $W_0^{1,H}(\Omega)$. In what follows, we equip the space $W_0^{1,H}(\Omega)$ with the equivalent norm $|\nabla u|_H$. Moreover, it is known that the embedding

$$W_0^{1,H}(\Omega) \hookrightarrow L^{\gamma}(\Omega)$$
 (2.1)

is compact whenever $\gamma \in [1, p^*)$, see Colasuonno-Squassina [5, Proposition 2.15]. Furthermore, if we define the *H*-modular function

$$\rho_H(u) = \int_{\Omega} (|u|^p + \mu(x)|u|^q) dx, \ \forall u \in L^H(\Omega),$$

then from Liu-Dai [12, Proposition 2.1] we have the following facts:

$$\min\{|u|_{H}^{p}, |u|_{H}^{q}\} \le \rho_{H}(u) \le \max\{|u|_{H}^{p}, |u|_{H}^{q}\}.$$
(2.2)

Finally, we present the following abstract theorem which will play a crucial role in the proof of Theorem 1.1. First, let us recall that the definition of the Palais-Smale condition is as follows:

Definition 2.1. Let X be a real Banach space and X^* its topological dual. We say that $I \in C^1(X, \mathbb{R})$ satisfies the Palais-Smale condition ((*PS*)-condition in short), if any sequence $u_n \subset X$ satisfying

$$I(u_n)$$
 is bounded, $||I'(u_n)||_{X^*} \to 0$,

contains a convergent subsequence.

Lemma 2.1 ([21, Theorem 6]). Let X be a reflexive real Banach space, and let $\Phi, \Psi : X \to \mathbb{R}$ be two continuously Gâteaux differentiable functionals such that Φ is sequentially weakly lower semicontinuous and coercive. Further, assume that Ψ is sequentially weakly continuous. In addition, assume that, for each $\alpha > 0$, the functional $I_{\alpha} := \alpha \Phi - \Psi$ satisfies (PS)-condition. Then, for each $\sigma > \inf_{u \in X} \Phi(u)$ and each

$$\alpha > \inf_{u \in \Phi^{-1}(-\infty,\sigma)} \frac{\sup_{v \in \Phi^{-1}(-\infty,\sigma)} \Psi(v) - \Psi(u)}{\sigma - \Phi(u)}$$

the following alternative holds: either the functional I_{α} has a strict global minimum which lies in $\Phi^{-1}(-\infty, \sigma)$, or I_{α} has at least two critical points one of which lies in $\Phi^{-1}(-\infty, \sigma)$.

3. Variational Setting and Proof of Theorem 1.1

Firstly, fix $\lambda > 0$, we define the functional $I_{\lambda} : W_0^{1,H}(\Omega) \to \mathbb{R}$ as

$$I_{\lambda}(u) = \frac{1}{\lambda} \int_{\Omega} \left(\frac{1}{p} |\nabla u|^{p} + \frac{\mu(x)}{q} |\nabla u|^{q}\right) dx - \int_{\Omega} F(x, u) dx$$

$$= \frac{1}{\lambda} \Phi(u) - \Psi(u),$$
(3.1)

where $\Phi(u) = \int_{\Omega} (\frac{1}{p} |\nabla u|^p + \frac{\mu(x)}{q} |\nabla u|^q) dx$ and $\Psi(u) = \int_{\Omega} F(x, u) dx$. Under the assumption (f_1) , we can easily check that Ψ is well-defined and of class C^1 on $W_0^{1,H}(\Omega)$, and its Fréchet derivative is

$$\langle \Psi'(u), v \rangle = \int_{\Omega} f(x, u) v dx, \ \forall u, v \in W_0^{1, H}(\Omega).$$

Furthermore, it follows that the functional $I_{\lambda} \in C^1(W_0^{1,H}(\Omega),\mathbb{R})$ and its Fréchet derivative

$$\langle I'_{\lambda}(u), v \rangle = \frac{1}{\lambda} \int_{\Omega} (|\nabla u|^{p-2} \nabla u + \mu(x)| \nabla u|^{q-2} \nabla u) \cdot \nabla v dx + \int_{\Omega} f(x, u) v dx$$

for any $u, v \in W_0^{1,H}(\Omega)$.

Now, we say that $u \in W_0^{1,H}(\Omega)$ is a weak solution of problem (P) if it satisfies

$$\langle \Phi'(u), v \rangle = \lambda \langle \Psi'(u), v \rangle$$

for any $v \in W_0^{1,H}(\Omega)$. Hence, if if $u \in W_0^{1,H}(\Omega)$ is a critical point of the functional I_{λ} , then u is a weak solution of (P).

We are now turning to the proof of Theorem 1.1.

Proof of Theorem 1.1. Let $X = W_0^{1,H}(\Omega)$, $\sigma > 0$ and set $\alpha := \frac{1}{\lambda}$. By the definition of Φ and by virtue of (2.2), Φ is coercive. Moreover, since Φ is convex and continuous, we can see that Φ is sequentially weakly lower semicontinuous. It follows from Rellich-Kondrachov compactness theorem that Ψ is sequentially weakly continuous. In view of Lemma 2.1, it suffices to show that if,

 (A_1) the functional I_{λ} satisfies the (PS) condition;

 (A_2) there exists $u_0 \in W_0^{1,H}(\Omega)$ such that $I_{\lambda}(tu_0) \to -\infty$ as $t \to +\infty$; (A_3) we prove that

$$\frac{1}{\lambda} > \tau(\sigma) := \inf_{u \in \Phi^{-1}(-\infty,\sigma)} \frac{\sup_{v \in \Phi^{-1}(-\infty,\sigma)} \Psi(v) - \Psi(u)}{\sigma - \Phi(u)}.$$

We shall firstly show that the relation (A_1) is valid. For fixed $\lambda > 0$, suppose that $\{u_n\} \subset X$, $\{I_{\lambda}(u_n)\}$ is bounded and $I'_{\lambda}(u_n) \to 0$ as $n \to +\infty$. Then by virtue of conditions (h_1) and (h_2) , there exist constants $C_1, c_1 > 0$ such that

$$C_{1} \geq I_{\lambda}(u_{n}) = \int_{\Omega} \left(\frac{1}{\lambda p} |\nabla u_{n}|^{p} + \frac{\mu(x)}{q} |\nabla u_{n}|^{q}\right) dx - \lambda \int_{\Omega} F(x, u_{n}) dx$$

$$\geq \frac{1}{q} \int_{\Omega} (|\nabla u_{n}|^{p} + \mu(x)|\nabla u_{n}|^{q}) dx - \frac{1}{\theta} \int_{\Omega} u_{n} f(x, u_{n}) dx - c$$

$$= \frac{1}{\lambda} \left[\frac{1}{q} - \frac{1}{\theta}\right] \int_{\Omega} (|\nabla u_{n}|^{p} + \mu(x)|\nabla u_{n}|^{q}) dx + \frac{1}{\theta} \langle I_{\lambda}'(u_{n}), u_{n} \rangle - c_{1}$$

$$\geq \frac{1}{\lambda} \left[\frac{1}{q} - \frac{1}{\theta}\right] \min\{||u_{n}||^{p}, ||u_{n}||^{q}\} - \frac{1}{\theta} ||I_{\lambda}'(u_{n})|||u_{n}|| - c.$$

(3.2)

Since $1 , (3.2) implies that the sequence <math>\{u_n\}$ is bounded. As X is reflexive, $\{u_n\}$ has a weakly convergent subsequence, without loss of generality, we

may assume that there exists $u \in X$ such that $u_n \rightharpoonup u$ in X. Hence, owing to (2.1), we conclude that

$$u_n \to u \text{ in } L^{\gamma}(\Omega) \text{ for } \gamma \in [1, p^*).$$
 (3.3)

Furthermore, it follows from (h_1) , (3.3) and Hölder inequality that

$$\left| \int_{\Omega} f(x, u_n)(u_n - u) dx \right| \leq C \int_{\Omega} (1 + |u_n|^{r-1} |u_n - u|) dx$$

$$\leq C |u_n - u|_1 + C ||u_n|^{r-1} |\frac{r}{r-1} |u_n - u|_r$$

$$= C |u_n - u|_1 + C ||u_n|^{r-1} |u_n - u|_r \to 0.$$

(3.4)

Since $u_n \rightharpoonup u$ it follows that

$$\lim_{n \to +\infty} \langle I'_{\lambda}(u_n), u_n - u \rangle = 0.$$
(3.5)

Taking into account (3.4) and (3.5) one has

$$\lim_{n \to +\infty} \langle \Phi'(u_n), u_n - u \rangle = \lambda \lim_{n \to +\infty} \langle \Psi'(u_n), u_n - u \rangle$$

= $\lambda \lim_{n \to +\infty} \int_{\Omega} f(x, u_n)(u_n - u) dx = 0.$ (3.6)

Since Φ' is of type (S_+) (see [12, Proposition 3.1]), $u_n \to u$ in X, we conclude that $u_n \to u$ in X. Therefore, the relation (A_1) follows.

Let us second examine the relation (A_2) . Indeed, we observe that by assumption (h_2) , there exists a constant $C_2 > 0$ such that

$$F(x,t) \ge C_2 |t|^{\theta}, \ \forall (x,t) \in \Omega \times (-\infty, M] \cup [M, +\infty).$$
(3.7)

Let $u_0 \in X \setminus \{0\}$ and t > 1, then we have

$$I_{\lambda}(tu_{0}) = \frac{1}{\lambda} \int_{\Omega} (\frac{1}{p} |\nabla tu_{0}|^{p} + \frac{\mu(x)}{q} |\nabla tu_{0}|^{q}) dx - \int_{\Omega} F(x, tu_{0}) dx$$

$$\leq \frac{t^{q}}{\lambda p} \int_{\Omega} (|\nabla u_{0}|^{p} + \frac{\mu(x)}{q} |\nabla u_{0}|^{q}) dx - C_{2} t^{\theta} \int_{\Omega} |u_{0}|^{\theta} dx - C_{3},$$
(3.8)

for some constant $C_3 > 0$. In view of $1 < q < \theta$, it follows from (3.8) that $I_{\lambda}(tu_0) \to -\infty$ as $t \to +\infty$. As a consequence, we deduce that (A_2) holds.

It remains to prove (A_3) . Let us fix $\sigma > 0$. Obviously, $0 \in \Phi^{-1}(-\infty, \sigma)$. Then, we conclude that

$$\tau(\sigma) \le \frac{\sup_{v \in \Phi^{-1}(-\infty,\sigma)} \Psi(v)}{\sigma}.$$

Using (h_1) and (2.1), we deduce

$$\Psi(u) = \int_{\Omega} F(x, u) dx \le C \int_{\Omega} (|u| + |u|^{r}) dx = C(|u|_{1} + |u|^{r})$$

$$\le Cs_{1} ||u|| + Cs_{r}^{r} ||u||^{r},$$
(3.9)

where s_1, s_r are the best constants for the continuous embeddings $X \hookrightarrow L^1(\Omega)$ and $X \hookrightarrow L^r(\Omega)$, respectively. Now, for each $u \in \Phi^{-1}(-\infty, \sigma)$, it follows from (2.2) that

$$q\sigma \ge q\Phi(u) = q \int_{\Omega} \left(\frac{1}{p} |\nabla u|^p + \frac{\mu(x)}{q} |\nabla u|^q\right) dx$$
$$\ge \int_{\Omega} (|\nabla u|^p + a(x) |\nabla u|^q) dx$$
$$\ge \begin{cases} \|u\|^p, & \text{if } \|u\| \ge 1, \\ \|u\|^q, & \text{if } \|u\| \le 1, \end{cases}$$

and consequently

$$\| \leq q_{\sigma}, \tag{3.10}$$

where q_{σ} is defined in Theorem 1.1.

Therefore, combining (3.9), (3.10) together with (1.2), we have

$$\frac{1}{\sigma} \sup_{u \in \Phi^{-1}(-\infty,\sigma)} \Psi(u) \le \frac{Cs_1 q_\sigma + Cs_r q_\sigma^r}{\sigma} < \frac{1}{\lambda}$$
(3.11)

and the relation (A_3) follows.

Therefore, all the assumptions of Lemma 2.1 are satisfied, so that, the problem (P) has at least two weak solutions one of which lies in $\Phi^{-1}(-\infty, \sigma)$. The proof of Theorem 1.1 is now complete.

Remark 3.1. If we assume that $k(\sigma) := \frac{\sigma}{Cs_1q_{\sigma}+Cs_rq_{\sigma}^r}$ with $\sigma > 0$, then one has $\max_{\sigma>0} k(\sigma) < +\infty$ since r > q > p. Therefore, in this case, for each $\lambda \in (0, \max_{\sigma>0} k(\sigma))$. Theorem 1.1 ensures the existence of at least two weak solutions. Among other things, compared with the results obtained by [9,12], our results are new and very different because of the following facts:

 (C_1) assumption (h_1) is somewhat weaker than (f_2) in [12, Theorem 1.3] or (h_2) in [9, Theorem 1.3];

 (C_2) in our results, there is no need to assume

(h₃)
$$\lim_{t \to 0} \frac{f(x,t)}{|t|^{p-1}} = 0 \text{ uniformly in } x;$$

 (C_3) Theorem 1.1 (and its consequences) represents a more precise version of Theorem 1.3 in [12].

Remark 3.2. It is easy to check that the following the nonlinearities f satisfy assumptions (h_1) and (h_2) :

$$f(x,t) = \begin{cases} 1 + rt^{r-1}, & \text{if } t \ge 0, \\ 1 - r(-t)^{r-1}, & \text{if } t < 0, \end{cases}$$

where $r \in (1, p^*)$. But it does not satisfy the assumption (h_3) .

Conflict of interest

The authors declare that they have no conflict of interest.

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

- P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. & PDE., 2018, 57(2), 62.
- [2] V. Benci, P. D'Avenia, D. Fortunato and L. Pisani, Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Ration. Mech. Anal., 2000, 154(4), 297–324.
- [3] S. Biagi, F. Esposito and E. Vecchi, Symmetry and monotonicity of singular solutions of double phase problems, J. Diff. Eqs., 2021, 280, 435–463.
- [4] A. Bahrouni, V. D. Radulescu and D. D. Repovs, Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves, Nonlinearity, 2019, 32(7), 2481–2495.
- [5] F. Colasuonno and M. Squassina, *Eigenvalues for double phase variational integrals*, Ann. Mat. Pura Appl., 2016, 195(6), 1917–1959.
- [6] N. Cui and H. Sun, Existence and multiplicity results for double phase problem with nonlinear boundary condition, Nonlinear Anal. Real World Appl., 2021, 60, 103307.
- [7] C. De Filippis and G. Mingione, *Manifold constrained non-uniformly elliptic problems*, J. Geom. Anal., 2020, 30, 1661–1723.
- [8] X. Fan, An imbedding theorem for Musielak-Sobolev spaces, Nonlinear Anal., 2012, 75(4), 1959–1971.
- B. Ge, D. Lv and J. Lu, Multiple solutions for a class of double phase problem without the Ambrosetti-Rabinowitz conditions, Nonlinear Anal., 2019, 188, 294– 315.
- [10] L. Gasinski and P. Winkert, Existence and uniqueness results for double phase problems with convection term, J. Diff. Equs., 2020, 268(5), 4183–4193.
- [11] L. Gasinski and P. Winkert, Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold, J. Diff. Equs., 2021, 274(15), 1037–1066.
- W. Liu and G. Dai, Existence and multiplicity results for double phase problem, J. Diff. Equs., 2018, 265(9), 4311–4334.
- [13] W. Liu and G. Dai, Three ground state solutions for double phase problem, J. Math. Phys., 2018, 59(12), 121503.
- [14] W. Liu and G. Dai, Multiplicity results for double phase problems in \mathbb{R}^N , J. Math. Phys., 2020, 61(9), 091508.
- [15] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., Springer, Berlin, 1983, 1034.
- [16] G. Mingione and V. D. Radulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 2021, 501(1), 125197.

- [17] J. Ok, Regularity for double phase problems under additional integrability assumptions, Nonlinear Anal., 2020, 194, 111408.
- [18] N. S. Papageorgiou, V. D. Radulescu and D. D. Repovs, *Double-phase problems with reaction of arbitrary growth*, Z. Angew. Math. Phys., 2018, 69(4), 108.
- [19] N. S. Papageorgiou, V. D. Radulescu and D. D. Repovs, *Double-phase problems and a discontinuity property of the spectrum*, Proc. Amer. Math. Soc., 2019, 147, 2899–2910.
- [20] K. Perera and M. Squassina, Existence results for double-phase problems via Morse theory, Commun. Contemp. Math., 2018, 20(2), 1750023.
- [21] B. Ricceri, On a classical existence theorem for nonlinear elliptic equations, in: M. Théra (Ed.), Experimental, Constructive and Nonlinear Analysis, in: CMS Conf. Proc., Canad. Math. Soc., 2000, 27, 275–278.
- [22] M. A. Ragusa and A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal., 2020, 9(1), 710– 728.
- [23] B. Wang, G. Hou and B. Ge, Existence of solutions for double-phase problems by topological degree, J. Fixed Point Theory Appl., 2021, 23(1), 1–11.
- [24] J. Yang, H. Chen and S. Liu, Existence of solutions for the double phase variational problems without AR-condition, Manuscripta Math., 2021, 165, 505–519.
- [25] V. V. Zhikov, On Lavrentiev's Phenomenon, Russian J. Math. Phys., 1995, 3(2), 249–269.
- [26] S. Zeng, Y. Bai, L. Gasinski and P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued operators, Calc. Var. Partial Differential Equations, 2020, 59(5), 1–18.
- [27] S. Zeng, Y. Bai, L. Gasinski and P. Winkert, Convergence analysis for double phase obstacle problems with multivalued convection term, Adv. Nonlinear Anal., 2021, 10(1), 659–672.
- [28] S. Zeng, L. Gasinski, P. Winkert and Y. Bai, Existence of solutions for double phase obstacle problems with multivalued convection term, J. Math. Anal. Appl., 2021, 501(1), 123997.