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EXISTENCE OF AT LEAST TWO SOLUTIONS
FOR DOUBLE PHASE PROBLEM

Bin Ge1,† and Wen-Shuo Yuan1

Abstract This paper concerns with a class of double phase Dirichlet problem
depending of one real parameter. Under some appropriate assumptions, we
obtain the existence of at least two solutions for this problem using a direct
consequence of the celebrated Pucci and Serrin theorem. Our results generalize
some existing results.
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1. Introduction and main results
It is well-known that a great attention in the last years has been focused by many
authors on the study of double phase problems on bounded domains. In this di-
rection, we can refer to [3, 5, 6, 9–14, 20, 23, 24, 26–28] and references therein. For
more physical background, for instance, Lavrentiev’s phenomenonwe [25], quantum
physics [2], transonic flows [4] and so on. For other existence results on elliptic
equations with double phase operators we refer to the papers of Papageorgiou-
Radulescu-Repovs [18,19], Mingione-Radulescu [16]. We refer the interested reader
to [1, 7, 17,22] and references therein for recent regularity results.

Motivated by this large interest in the current literature, we are interested in
the existence of solutions of the following double phase problem{

− div(|∇u|p−2∇u+ µ(x)|∇u|q−2∇u) = λf(x, u), in Ω,

u = 0, on ∂Ω,
(P )

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, N ≥ 2, λ is
a positive real parameter, div(|∇u|p−2∇u + µ(x)|∇u|q−2∇u) denotes the double
phase operator, 1 < p < q < N and

q

p
< 1 +

1

N
, µ : Ω → [0,+∞) is Lipschitz continuous. (1.1)

Moreover, f : Ω× R 7→ R is a Carathéodory function such that
(h1) there exist 1 < r < p∗ and some positive constant C such that

|f(x, t)| ≤ C(1 + |t|r−1),

where p∗ = Np
N−p is the critical exponent;
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(h2) there exist θ > q, M > 0 such that for any x ∈ Ω, |t| ≥ M

0 < θF (x, t) ≤ tf(x, t),

where F (x, t) =
∫ t

0
f(x, s)ds.

The aim of this paper is to present the existence of at least two weak solutions
for our problem when nonlinear term f satisfies (h1)-(h2) but does not satisfy the
usual additional assumption at zero, that is,

lim
t→0

f(x, t)

|t|p−1
= 0 uniformly in x,

which comes from [12]. This is a more natural and general case, but needs different
tricks and estimate. To overcome this difficulty, we shall use the Ricceri’s variational
principle due to Ricceri [21, Theorem 6] .

We are now in the position to state our main results.

Theorem 1.1. Suppose that (h1) and (h2) hold. Then, for every σ > 0 and each

λ ∈
(
0,

σ

Cs1qσ + Csrrq
r
σ

)
, (1.2)

where qσ = max{(qσ)
1
p , (qσ)

1
q } and s1, sr > 0 are the best constants for the embed-

dings of W 1,H
0 (Ω) ↪→ L1(Ω) and W 1,H

0 (Ω) ↪→ Lr(Ω), respectively, the problem (P )
has at least two weak solutions one of which lies in

Bσ := {u ∈ W 1,H
0 (Ω) : ‖u‖ < min{(qσ)

1
p , (qσ)

1
q }.

The rest of this paper is organized as follows. In Sect. 2, we state some prelim-
inary knowledge on space W 1,H

0 (Ω) and the main lemmas. In Sect. 3, we prove the
main results.

2. Abstract framework
In this section, firstly we summarize some relevant results on the Musielak-Orlicz-
Sobolev space W 1,H

0 (Ω). For more details, we can see Refs. [5, 8, 15].
The Musielak-Orlicz space LH(Ω) associated with the function

H : Ω× [0,+∞) → [0,+∞), (x, t) 7→ tp + µ(x)tq.

Thus, the Musielak-Orlicz space LH(Ω) is defined

LH(Ω) =
{
u : Ω → R measurable :

∫
Ω

H(x, |u|)dx < +∞
}
.

On LH(Ω) we consider the Luxemburg norm

|u|H = inf
{
λ > 0 :

∫
Ω

H(x, |u
λ
|)dx ≤ 1

}
.

Then the space LH(Ω) is a separable, uniformly convex Banach space. We define
the generalized Musielak-Orlicz-Sobolev space W 1,H(Ω) is defined by putting

W 1,H(Ω) = {u ∈ LH(Ω) : |∇u| ∈ LH(Ω)}
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and it is endowed with the following norm

‖u‖ = |u|H + |∇u|H .

By W 1,H
0 (Ω), we denote the closure of C∞

0 (Ω) in W 1,H(Ω). We recall that, thanks to
(1.1), the Poincaré inequality also is true. Furthermore, from Colasuonno-Squassina
[5, Proposition 2.18], it is known that ‖u‖ and |∇u|H are equivalent norms on
W 1,H

0 (Ω). In what follows, we equip the space W 1,H
0 (Ω) with the equivalent norm

|∇u|H . Moreover, it is known that the embedding

W 1,H
0 (Ω) ↪→ Lγ(Ω) (2.1)

is compact whenever γ ∈ [1, p∗), see Colasuonno-Squassina [5, Proposition 2.15].
Furthermore, if we define the H-modular function

ρH(u) =

∫
Ω

(|u|p + µ(x)|u|q)dx, ∀u ∈ LH(Ω),

then from Liu-Dai [12, Proposition 2.1] we have the following facts:

min{|u|pH , |u|qH} ≤ ρH(u) ≤ max{|u|pH , |u|qH}. (2.2)

Finally, we present the following abstract theorem which will play a crucial role
in the proof of Theorem 1.1. First, let us recall that the definition of the Palais-
Smale condition is as follows:

Definition 2.1. Let X be a real Banach space and X∗ its topological dual. We say
that I ∈ C1(X,R) satisfies the Palais-Smale condition ((PS)-condition in short), if
any sequence un ⊂ X satisfying

I(un) is bounded, ‖I ′(un)‖X∗ → 0,

contains a convergent subsequence.

Lemma 2.1 ( [21, Theorem 6]). Let X be a reflexive real Banach space, and let
Φ,Ψ : X → R be two continuously Gâteaux differentiable functionals such that Φ
is sequentially weakly lower semicontinuous and coercive. Further, assume that Ψ
is sequentially weakly continuous. In addition, assume that, for each α > 0, the
functional Iα := αΦ − Ψ satisfies (PS)-condition. Then, for each σ > inf

u∈X
Φ(u)

and each

α > inf
u∈Φ−1(−∞,σ)

sup
v∈Φ−1(−∞,σ)

Ψ(v)−Ψ(u)

σ − Φ(u)

the following alternative holds: either the functional Iα has a strict global minimum
which lies in Φ−1(−∞, σ), or Iα has at least two critical points one of which lies in
Φ−1(−∞, σ).

3. Variational Setting and Proof of Theorem 1.1
Firstly, fix λ > 0, we define the functional Iλ : W 1,H

0 (Ω) → R as

Iλ(u) =
1

λ

∫
Ω

(
1

p
|∇u|p + µ(x)

q
|∇u|q)dx−

∫
Ω

F (x, u)dx

=
1

λ
Φ(u)−Ψ(u),

(3.1)
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where Φ(u) =
∫
Ω
( 1p |∇u|p + µ(x)

q |∇u|q)dx and Ψ(u) =
∫
Ω
F (x, u)dx. Under the

assumption (f1), we can easily check that Ψ is well-defined and of class C1 on
W 1,H

0 (Ω), and its Fréchet derivative is

〈Ψ′(u), v〉 =
∫
Ω

f(x, u)vdx, ∀u, v ∈ W 1,H
0 (Ω).

Furthermore, it follows that the functional Iλ ∈ C1(W 1,H
0 (Ω),R) and its Fréchet

derivative

〈I ′λ(u), v〉 =
1

λ

∫
Ω

(|∇u|p−2∇u+ µ(x)|∇u|q−2∇u) · ∇vdx+

∫
Ω

f(x, u)vdx

for any u, v ∈ W 1,H
0 (Ω).

Now, we say that u ∈ W 1,H
0 (Ω) is a weak solution of problem (P ) if it satisfies

〈Φ′(u), v〉 = λ〈Ψ′(u), v〉

for any v ∈ W 1,H
0 (Ω). Hence, if if u ∈ W 1,H

0 (Ω) is a critical point of the functional
Iλ, then u is a weak solution of (P ).

We are now turning to the proof of Theorem 1.1.

Proof of Theorem 1.1. Let X = W 1,H
0 (Ω), σ > 0 and set α := 1

λ . By the
definition of Φ and by virtue of (2.2), Φ is coercive. Moreover, since Φ is convex
and continuous, we can see that Φ is sequentially weakly lower semicontinuous. It
follows from Rellich-Kondrachov compactness theorem that Ψ is sequentially weakly
continuous. In view of Lemma 2.1, it suffices to show that if,

(A1) the functional Iλ satisfies the (PS) condition;
(A2) there exists u0 ∈ W 1,H

0 (Ω) such that Iλ(tu0) → −∞ as t → +∞;
(A3) we prove that

1

λ
> τ(σ) := inf

u∈Φ−1(−∞,σ)

sup
v∈Φ−1(−∞,σ)

Ψ(v)−Ψ(u)

σ − Φ(u)
.

We shall firstly show that the relation (A1) is valid. For fixed λ > 0, suppose
that {un} ⊂ X, {Iλ(un)} is bounded and I ′λ(un) → 0 as n → +∞. Then by virtue
of conditions (h1) and (h2), there exist constants C1, c1 > 0 such that

C1 ≥Iλ(un) =

∫
Ω

(
1

λp
|∇un|p +

µ(x)

q
|∇un|q)dx− λ

∫
Ω

F (x, un)dx

≥1

q

∫
Ω

(|∇un|p + µ(x)|∇un|q)dx− 1

θ

∫
Ω

unf(x, un)dx− c

=
1

λ

[1
q
− 1

θ

] ∫
Ω

(|∇un|p + µ(x)|∇un|q)dx+
1

θ
〈I ′λ(un), un〉 − c1

≥ 1

λ

[1
q
− 1

θ

]
min{‖un‖p, ‖un‖q} −

1

θ
‖I ′λ(un)‖‖un‖ − c.

(3.2)

Since 1 < p < q < θ, (3.2) implies that the sequence {un} is bounded. As X is
reflexive, {un} has a weakly convergent subsequence, without loss of generality, we
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may assume that there exists u ∈ X such that un ⇀ u in X. Hence, owing to (2.1),
we conclude that

un → u in Lγ(Ω) for γ ∈ [1, p∗). (3.3)

Furthermore, it follows from (h1), (3.3) and Hölder inequality that∣∣∣ ∫
Ω

f(x, un)(un − u)dx
∣∣∣ ≤C

∫
Ω

(1 + |un|r−1|un − u|)dx

≤C|un − u|1 + C||un|r−1| r
r−1

|un − u|r
=C|un − u|1 + C|un|r−1

r |un − u|r → 0.

(3.4)

Since un ⇀ u it follows that

lim
n→+∞

〈I ′λ(un), un − u〉 = 0. (3.5)

Taking into account (3.4) and (3.5) one has

lim
n→+∞

〈Φ′(un), un − u〉 = λ lim
n→+∞

〈Ψ′(un), un − u〉

= λ lim
n→+∞

∫
Ω

f(x, un)(un − u)dx = 0.
(3.6)

Since Φ′ is of type (S+) (see [12, Proposition 3.1]), un ⇀ u in X, we conclude that
un → u in X. Therefore, the relation (A1) follows.

Let us second examine the relation (A2). Indeed, we observe that by assumption
(h2), there exists a constant C2 > 0 such that

F (x, t) ≥ C2|t|θ, ∀(x, t) ∈ Ω× (−∞,M ] ∪ [M,+∞). (3.7)

Let u0 ∈ X \ {0} and t > 1, then we have

Iλ(tu0) =
1

λ

∫
Ω

(
1

p
|∇tu0|p +

µ(x)

q
|∇tu0|q)dx−

∫
Ω

F (x, tu0)dx

≤ tq

λp

∫
Ω

(|∇u0|p +
µ(x)

q
|∇u0|q)dx− C2t

θ

∫
Ω

|u0|θdx− C3,

(3.8)

for some constant C3 > 0. In view of 1 < q < θ, it follows from (3.8) that
Iλ(tu0) → −∞ as t → +∞. As a consequence, we deduce that (A2) holds.

It remains to prove (A3). Let us fix σ > 0. Obviously, 0 ∈ Φ−1(−∞, σ). Then,
we conclude that

τ(σ) ≤
sup

v∈Φ−1(−∞,σ)

Ψ(v)

σ
.

Using (h1) and (2.1), we deduce

Ψ(u) =

∫
Ω

F (x, u)dx ≤ C

∫
Ω

(|u|+ |u|r)dx = C(|u|1 + |u|rr)

≤Cs1‖u‖+ Csrr‖u‖r,
(3.9)
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where s1, sr are the best constants for the continuous embeddings X ↪→ L1(Ω) and
X ↪→ Lr(Ω), respectively. Now, for each u ∈ Φ−1(−∞, σ), it follows from (2.2) that

qσ ≥ qΦ(u) =q

∫
Ω

(
1

p
|∇u|p + µ(x)

q
|∇u|q)dx

≥
∫
Ω

(|∇u|p + a(x)|∇u|q)dx

≥

{
‖u‖p, if ‖u‖ ≥ 1,

‖u‖q, if ‖u‖ ≤ 1,

and consequently
‖u‖ ≤ qσ, (3.10)

where qσ is defined in Theorem 1.1.
Therefore, combining (3.9), (3.10) together with (1.2), we have

1

σ
sup

u∈Φ−1(−∞,σ)

Ψ(u) ≤ Cs1qσ + Csrq
r
σ

σ
<

1

λ
(3.11)

and the relation (A3) follows.
Therefore, all the assumptions of Lemma 2.1 are satisfied, so that, the problem

(P ) has at least two weak solutions one of which lies in Φ−1(−∞, σ). The proof of
Theorem 1.1 is now complete.

Remark 3.1. If we assume that k(σ) := σ
Cs1qσ+Csrqrσ

with σ > 0, then one has
max
σ>0

k(σ) < +∞ since r > q > p. Therefore, in this case, for each λ ∈
(
0,max

σ>0
k(σ)

)
Theorem 1.1 ensures the existence of at least two weak solutions. Among other
things, compared with the results obtained by [9, 12], our results are new and very
different because of the following facts:

(C1) assumption (h1) is somewhat weaker than (f2) in [12, Theorem 1.3] or (h2)
in [9, Theorem 1.3];

(C2) in our results, there is no need to assume

(h3) lim
t→0

f(x, t)

|t|p−1
= 0 uniformly in x;

(C3) Theorem 1.1 (and its consequences) represents a more precise version of
Theorem 1.3 in [12].

Remark 3.2. It is easy to check that the following the nonlinearities f satisfy
assumptions (h1) and (h2):

f(x, t) =

{
1 + rtr−1, if t ≥ 0,

1− r(−t)r−1, if t < 0,

where r ∈ (1, p∗). But it does not satisfy the assumption (h3).
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