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HOPF BIFURCATION PROBLEM FOR A
CLASS OF KOLMOGOROV MODEL WITH A
POSITIVE NILPOTENT CRITICAL POINT*

Chaoxiong Dub' and Wentao Huang?

Abstract In this paper, We discuss the Hopf bifurcation problem of a three-
order positive nilpotent critical point (1, 1) of a class of Kolmogorov model. By
using the method offered by [12], we obtain the expressions of quasi-Lyapunov
constants with the help of computer algebra system-MATHEMATICA. By an-
alyzing the structure of these quasi-lyapunov constants, we divide them into
two kinds of cases and study their bifurcation behavior separately. For case 1,
the nilpotent critical point (1,1) can bifurcate 5 small amplitude limit cycles.
For case 2, 6 small amplitude limit cycles can bifurcate from the three-order
nilpotent critical point (1,1). In addition, We also give the integrability con-
ditions (i.e., center condition) for each case. In terms of limit cycle bifurcation
for Kolmogorov model with nilpotent positive critical points, our result is new.

Keywords Hopf bifurcation, nilpotent critical point, kolmogorov model, quasi-
Lyapunov constant.
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1. Introduction

Our work focuses on investigating the limit cycle bifurcation and integrability con-
dition of a three-order nilpotent critical point (1,1) of the following Kolmogorov
model

(cil% =z[6(z —1)> = (z —2)(y — 1) +an(z — 1)(y — 1) + ara(y — 1)?]
] =zP(z,y), )
d% =—y[2(x —1)° +26(z — 1)(y — 1)(y — 2) — bo2(y — 1)* + (boz2 — bo3)

X (y—1)% = (x = 1)(y — 1) (b1 + biay — b1z — b )] = yQ(z,y),

in which ai1, a2, bo2, bos, b12, ba1, € R, § is a small real parameter and 6 — 0.
Here, z and y of system (1.1) denote prey and predator densities, and P(z,y),
Q(z,y) are the intrinsic growth rates or biotic potential of the prey and predators,
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respectively. Obviously, the above system belongs to a class of famous ecologic
model namely Kolmogorov model, Ref. [4,14] described their realistic meanings.

Some natural predator-prey behavior can be summarized as an ecological model
which further attracts people’s attention and can be discussed and investigated by
using mathematical method. In mathematical ecology, Many mathematic workers
pay more and more attentions to the three most fundamental systems namely the
predator-prey, the competition and the cooperation systems(see [1-4,6-10, 13, 14,
16]). Theoretically, these systems can be reduced to some kinds of ecological models.
From published references, it can be seen that Kolmogorov model is a class of
investigated thermal ecological model. Kolmogorov model’s equation is described
as

dx
E:wf(xvy)a
(1.2)
Y —yg(a.y)
o =v9(@,y),

in which f(z,y) and g(y, z) are polynomials on z,y. Kolmogorov models are widely
used in ecology to describe the interaction between two populations. Of course,
in the context of meaningful research, attention of researchers is restricted to the
behavior of orbits in the "realistic quadrant” {(x,y) : z > 0,y > 0}. Of particular
significance in applications is the existence of limit cycles and the number of limit
cycles that can bifurcate from positive equilibrium points, because a limit cycle
corresponds to an equilibrium state of the system and the existence and stability
of limit cycles is related to the positive equilibrium points. At the same time, the
problem on the number of limit cycles gets in close touch with famous Hilbert 16"
problem; Hence, many articles studying Kolmogorov models pay more attention to
the limit cycles bifurcation problem. For example, [2] showed a class of Kolmogorov
system could bifurcate five limit cycles including 4 stable cycles; [3] gave an example
about a class of Kolmogorov system which could bifurcate ten limit cycles; [6] stud-
ied the number of limit cycles of polynomial Lienard systems; [7] investigated hopf
bifurcation problem about small amplitude limit cycles and the local bifurcation of
critical periods for a quartic Kolmogrov system at the single positive equilibrium
point (1,1) and proved that the maximum number of small amplitude limit cycles
bifurcating from the equilibrium point (1,1) is 7; [9] considered the Kolmogorov
system of degree 3 in R? and R? having an equilibrium point in the positive quad-
rant and studied their limit cycle bifurcation problem; [13] studied a class of cubic
Kolmogorov system with three limit cycles; [10] showed a class of cubic Kolmogorov
system could bifurcate six limit cycles; [8,16] studied a general Kolmogorov model
and obtained the conditions for the existence and uniqueness of limit cycles, at the
same time it classify a series of models. As far as limit cycles of Kolmogorov models
are concerned, many good results have been obtained by analyzing sole positive
equilibrium point’s state.

In terms of limit cycle problem on nilpotent critical points, less literatures has
been published. [1] investigated the problem on limit cycle bifurcation for a class
of Z3-equivariant Lyapunov system of five degrees with three third-order nilpotent
critical points which lie in a Z3-equivariant vector field, and gave the result of
existing 12 small amplitude limit cycles created from the three third-order nilpotent
critical points. [15] characterized local behavior of an isolated nilpotent critical point
for a class of septic polynomial differential systems including center conditions and
bifurcation of limit cycles, and proved that there exist 16 small amplitude limit
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cycles created from the third-order nilpotent critical point. But it is hardly seen
results on limit cycles bifurcation from nilpotent critical points for Kolmogorov
model, here we will complement our work in this area, namely limit cycle bifurcation
of system (1.1).

Clearly, model (1.1) has a nilpotent critical point namely the positive equilibrium
point (1, 1). We will focus on the limit cycles bifurcations of the positive equilibrium
point (1,1). At first, we introduce a kind of research method about the limit cycles
bifurcations from nilpotent critical point.

In the qualitative theory of ordinary differential equations, the limit cycles bi-
furcations problem for a critical point P of a planar analytic vector field X is a
hot topics. Let DX (P) denote the differential matrix of X at the critical point P.
When the eigenvalues of the matrix DX (P) are imaginary, we know that the origin
is monodromic. When the matrix DX (P) has its two eigenvalues equal to zero but
the matrix is not identically null, it is said that P is a nilpotent critical point. In
a suitable coordinate system, the Lyapunov system with the origin as a nilpotent
critical point can be written as

dzr > i
= =yt Y ayr'y’ = X(z,y),
. e (1.3)
Y i,
E = Z bljx yj = Y(Ivy)a
itj=2

in which the function y = y(x) satisfies X (z,y) = 0,y(0) = 0.

In this paper, employing the integral factor method introduced in [11,12], we
will discuss several cases, and being based on these cases, we investigate the center-
focus problem and prove the singular point (1,1) of model (1.1) can bifurcate 6
small limit cycles. To the best of our knowledge, our results on the lower bounds of
cyclicity of a three-order nilpotent critical point for planar Kolmogorov model are
new.

Our work will be expanded as follows. In Section 2, we state some preliminary
knowledge given in [11] which is useful throughout the paper. In Section 3, using the
linear recursive formulae in [11] to do direct computation, we obtain with relative
ease the first 6 quasi-Lyapunov constants of critical point (1,1). Moreover, we
investigate the center-focus problem and give the sufficient and necessary condition
that critical point (1,1) of model (1.1) can become a center, at the same time, we
show the fact that critical point (1,1) can also become a 6-order weak focus and
model (1.1) can bifurcate 6 small limit cycles from (1,1).

2. The method to compute the Lyapunov constants
of nilpotent critical points

Ref. [12] offered a kind of method to compute the Lyapunov constants of nilpo-
tent critical points. We will use this method to carry out our research work. For
convenience, let’s introduce this method.

The origin of system (1.3) is a three-order monodromic critical point if and only
if bag = 0, (2a20 — b11)? + 8bzp < 0. Without loss of generality, we can assume that

ago =, bag =0, b1y =2u, bzo=—2. (2.1)
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Otherwise, by letting (2as9 — b11)? + 8b3g = —16A2,2a + b1; = 4\u, and making
the transformation & = Az, n = A\y+ % (2a20 —bn))\m2, we can also arrive at this aim.
From (2.1), system (1.3) becomes the following real autonomous planar system

dx 2 - i g
o =yt +i+;3am:v y (z,y),
; o (2.2)
y . .
i —223 4+ 2uxy + 4 Z bijx'y’ =Y (x,y).
i+2j=4
Write that - -
k=2 k=2
where for £k =1,2, -,
Xk(x y Z CLZ]J? y Yk x y Z wa y (2'4)
i+j=k i+j=k

For the computation about quasi-Lyapunov constants of the origin of system
(2.2), Ref. [12] offered the following method.

Lemma 2.1 ( [12]). For system (2.2) and any positive integer s and a given number
sequence

{cos}, B =3, (2.5)

one can construct successively the terms with the coefficients cqp satisfying o # 0
of the formal series

Mz.y)=y*+ > casay’ = Mi(w.y), (2.6)
a+p=3 k=2
such that
9 (X o/( Y 1 &
o T rel1 b = m 9.
oz (M5+1> +3y <M5+1> Ms+2 mZ:E)wm(S»N)x ) (2.7)

where for all k, My(z,y) is a k-homogeneous polynomial of x,y and sy = 0.
Now, (2.7) can be written by

(%);+?;)M—(s+1)(?jx+lf) Zwmsu (2.8)

It is easy to see that (2.8) is linear with respect to the function M, so that we can
easily find the following recursive formulae for the calculation of ¢,3 and wy, (s, ).

Lemma 2.2 ( [12]). For a > 1,a+ 8 > 3 in (2.6) and (2.7), cap can be uniquely
determined by the recursive formula

1
Cap = (s+ 1D

Form > 1, wy,(s, 1) can be uniquely determined by the recursive formula

(Aa—1,8+1 + Ba—1,6+1)- (2.9)

Wi (8, 1) = Am,0 + Bm,o, (2.10)



Hopf bifurcation problem for a class of... 1455

where
a+pB—1

Agp = Z k—(s+1)(a —k+1)]arjca—kt1,8—js
k+j=2
a+pB—1

Bag= Y [i—=(s+1)(B—j+1lbjcarpji1-
k+j=2

(2.11)

Notice that in (2.11), we set

coo = €10 = co1 = 0,
Cop — C11 = O, Cp2 — 1, (212)
cap =0, if a<0or g <0.

Lemma 2.3 ( [12]). The expressions of m — th quasi-Lyapunov constants at the
origin of system (2.2) are as follows:

o W2m+4(8a ,U,)

= . 2.1
2m —4s —1 (2.13)

m

Lemma 2.4 ( [12]). If system (2.2) has a three-order nilpotent center at the origin,
then there always exists a formal integral factor of the form (2.6).

Clearly, the recursive formulae given by Lemma 2.2 is linear with respect to
all co3. Therefore, it is convenient to realize the computation of quasi-Lyapunov
constants by using computer algebraic system like MATHEMATICA.

3. Bifurcation of limit cycles and center condition
of the critical point (1,1) of model (1.1)

In order to obtain the quasi-Lyapunov constants of the critical point (1, 1) of model
(1.1) and study the limit cycles bifurcations. May as well make the following trans-
formations:

r=x1+1,y=y1 +1, (3.1)

system (1.1) is changed into

dx

ditl = (z1 + 1)[533? — (1 — Dy +anziyr + a12y%]7

d 2
% = —(y1 + 1)[22% + 262191 (y1 — 1) — boayi + (bo2 — bos)yi (3.2)

— z1y1(barz1 + b12y1)]-

Comparing system (2.2) with system (3.2), it is clear that the origin of system
(3.2) is a nilpotent critical point. According to the translation’s invariable property,
model (1.1) has a three-order nilpotent critical point (1,1). Hence the study on
the origin of system (3.2) will can derive the similar property for the three-order
nilpotent critical point (1, 1) of model (1.1). Next we will investigate the bifurcation
behavior of the origin of system (3.2).



1456 C. Du & W. Huang

According to Lemma 2.2 and applying the recursive formulae presented in Lemma
2.1-Lemma 2.3 to carry out calculations by using MATHEMATICA, we can obtain

1
W3 = Wyg = W5 = 0, We = _§b21(_1 +48),

Wy ~ -1 - 2&12 + 25 — 2@128 + 36()3 + 386(]3,
1 + 2a12 —2s + 2@125
3(1+9)

Let co3 = , then

2
wg ~ g(—am + aj1a12 + bo2 + 2a12bp2 — 3bp3)(4s — 3),
1
Let by = g(‘al? + ar1a12 + bo2 + 2a12bo2), then

Wy ~ —5(26112 — 3ayia12 + atyais — 2a12bog + 2a11a12b0s + 2b12 — 2a12b12)(s — 1).

(3.3)
From (2.13) and (3.3), we obtain the first two quasi-Lyapunov constants at the
origin of system (3.3) as follows:

1
AL~ 55217
(3.4)

2
Ao ~ —5(—(112 + a11a12 + boz + 2a12b2 — 3bo3).

From (3.4), we know that wg ~ 0 will deduce s = 1 or 2a12 — 3a11a12 + a3 a12 —
2&12b02 + 20,11&12()02 + 2b12 — 2&12b12 = (0. Then we investigate the quasi—Lyapunov
constants according to the following cases.

3.1. Case 1: s=1

If s = 1, then the origin of system (3.2) is a three-order nilpotent critical point of
1-class. At this kind of case, we can compute the quasi-Lyapunov constants at the
origin of system (3.2), namely the following Theorem.

Theorem 3.1. If the origin of system (3.2) is a three-order nilpotent critical point
of 1-class, then the first 5 quasi-Lyapunov constants at the origin of system (3.2)
are as follows:

1
AL~ 3521;
2
Az ~ *g(*alz + ai1a12 + boz + 2a12bo2 — 3bos);

2
)\3 ~ 7@(7100,12 -+ 29&11&12 — 26(1%1(112 -+ 7a:{’1a12 — 120,12[)02
+ 9a11a12b02 -+ 3a%1a12602 -+ 22(112b(2)2 — 22&11&121)32 -+ 4(111b12 + ].0(1121)12
— 14a11012b12 — 22bo2b12 + 22a12bo2b12);
N 4((111 — 1)n1 .
4725(7(111 — 11b02 — 5)2(2 — 3(111 + a%l — 2b02 + 26011[)02 — 2b12)2’

A4

(3.5)
in which ny is the function about a1, by, bi2, whose expression is shown in Ap-
pendix.
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And
(I)Ifau = 1, then /\5 ~ 0.
(2) If a11 # 1,n1 = 0, then

ail — 1 .
6767145000(7&11 — 11b02 — 5)3(2 — 3(111 + a%l — 2b02 + 2&11b02 — 2b12)2b12 23

As

in which no is the function about ai1, boo, bi2, whose expression is shown in Ap-
pendiz.

By analyzing the construction of quasi-Lyapunov constants of Theorem 3.1, it
is easy to obtain the following result.

Theorem 3.2. If the origin of system (3.2) is a three-order nilpotent critical point
of 1-class, then the origin for system (3.2) can become a 5-order weak focus if and
only if the following condition holds:

1
ba1 =0, boz = g(—au + ar1a12 + bo2 + 2a12bp2),

_ 2b12(11bg2 — 2a11) (3.6)
(a1 — 11boz — 5)(2 — 3a11 + a3y — 2boz + 2a11boz — 2b12)’

ny :0, arl 7&1

a2

Proof. From the expression of Ag,k = 1,2,3,4,5, clearly the necessity holds.
Next we prove sufficiency . In order to prove the origin of system (3.2) is a 5-order
weak focus, we only need to prove that there exists a group of solutions about
aii, bgl, bog,a12, b12 such that )\1 = )\2 = )\3 = )\4 = O, A5 7£ 0.

Clearly, bo; = 0 if Ay = 0. According to A2 = 0, we can obtain byz = %(—alg +
ai1a12 + boz + 2a12bp2) and the expression of Az, moreover, A3 = 0 deduces

2b12(11b02 — 2(111)
(7&11 — 11602 — 5)(2 — 3CL11 -+ a%l — 2b02 -+ 20,11602 — 2b12) ’

a2 = (37)

Next let Ay = 0, then n; = 0 or a;; = 1, but a1; = 1 will deduce A5 = 0, while
n; =0 and a1; # 1 will deduce

s~ (a11 — 1)77/2 7&0

> 6767145000(7&11 *111)0275)3(2*30411 +a%1721)024‘2&11()0272[)12)21)12 ’
(3.8)
otherwise ny = 0,n5 = 0 will deduce a;; = 1. Proof end. O

From the translation’s invariable property, it is clear that the following Theorem
holds.

Theorem 3.3. The critical points (1,1) of model (1.1) become a 5-order weak
focuses if the condition of Theorem 3.2 holds.

After discussing the weak focus problem of system (1.1), we will investigate the
limit cycles bifurcations of system (1.1). According to Theorem 3.1, we can obtain
the following theorem.

Theorem 3.4. If the critical points (1,1) of model (1.1) become a 5-order weak
focuses, then model (1.1) can bifurcate 5 small limit cycles from (1,1).
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Proof. According to Theorem 2.1 in Ref. [12], we only need to prove

D()\la )\23 )‘37 >\4)

0, 3.9
D(ba1, bo3, a1z, bo2) 7 (8:9)
In fact,
D(A1, A2, A3, A\q)
D(ba1, bo3, a2, bo2) (3.10)

o 16(@11 — 1)TL%
2480625(7&11 — 11b02 — 5)2(2 — 3@11 + a%l — 2b02 + 2&11()02 — 2[)12)2.

If the critical points (1,1) of model (1.1) become a 5-order weak focus, then a;; # 1
and ny # 0, hence Eq.(3.9) holds. According to Theorem 2.1 in Ref. [12], the
conclusions of Theorem 3.4 holds. Proof end. O

Next we will consider the center problem of system (3.2) or model (1.1) under
case 1, by analyzing the construction of Ay, & = 1,2,3,4,5 of Theorem 3.1, it is
easy to obtain the following results.

Theorem 3.5. If the origin of system (3.2) is a three-order nilpotent critical point
of 1-class , then the first 5 quasi-Lyapunov constants of the origin for system (3.2)
vanish if and only if the following condition is satisfied:

b21 =0, a11 = 1, a1z = 1, boz = bo2. (3.11)

Moreover, we have the following Theorem.

Theorem 3.6. If the origin of system (3.2) is a three-order nilpotent critical point
of 1-class, then the origin of system (3.2)|s=o is a center (or the critical point (1,1)
of model (1.1)|5=0 is a center) if and only if the condition of Theorem 3.5 holds,
namely (3.11) holds.

Proof. Obviously, necessity holds. Next, we prove sufficiency. If condition (3.11)
holds, then system (3.2)|s=¢ is changed into the following form:

dx

ditl =y1(x1 + 1)(1 +y1),

- (3.12)

E - — (yl + 1)(2xi’ — onyf — b121'1y%)7

make time transformations dT' = (1 + y;)dt, system (3.12) becomes

dx
=1 =yi(x1 + 1),
dar 3.13
dy1 3 2 2 1
d7T = — Qxl + b02y1 + lexlyla

whose vector field is symmetric with respect to y—axis. Therefore, under condition
(3.11), the origin of system (3.2)|s—¢ is a center, According to the transformations’
invariant property, the critical point (1,1) of model (1.1)|s=0 is a center. Proof end.

O

Next we will consider the second case, namely the following case.
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3.2. Case 2: s#1

If s # 1, then wg = 0 will deduce 2a12 — 3ai1a12 + a%lalg — 2a12bgs + 2a11a12bg2 +
2b12 — 2@12[)12 = 0, namely

2a12 — 3aj1a12 + a3y a2 + 2bia — 2a12b12

boo = 3.14
02 20,12(@11 — ].) ( )
At this time,
4

)\2 ~ 0, )\3 ~ ﬁblg(au — ].), (315)

from the expressions of byz, we know a1; # 1. Next let b1o = 0, we obtain

4

Az~ 0, Ag ~ 7@(5@12 — 2)(&12 + a1 — 2), (316)

at this time, Ay ~ 0 will deduce a1 = % or ajs = 2—ay1, moreover, we will consider
the following two cases.

3.2.1. Case 2.1: a1 = %
If a19 = %, then
4
Wiz ~ —%(au —1)(5a11 — 8)(s — 2), (3.17)
let w13 ~ 0, then a1 = % or s = 2. Next let’s study it in two different cases.
Case 2.1.1: a;p =2, a1 =
If a1 = %, then A5 ~ 0.
Case 2.1.2: aig = %, all 7é %, s=2
If s = 2, then we obtain

Sii[ed

4
A5 ~ — —1)(5a1; — 8)(35a1; — 52), 3.18
5 gr7g (11 — 1)(5a11 — 8)(35a1y ) (3.18)
let a1 = %, then 6393504
Ao o — 92 ), 3.19
6 4389328125 7 (3.19)

From the above analysis, we have the following Theorem.

Theorem 3.7. If the origin of system (3.2) is a three-order nilpotent critical point

of 2-class and a2 = %, then the first 6 quasi-Lyapunov constants of the origin for

system (3.2) are as follows:

2
Az ~ *g(*alz + ar1a12 + bo2 + 2a12bp2 — 3bo3);

4
Az ~ ibm(au - 1)5
A (3.20)
Ag ~ —5(5012 —2)(a12 + a1 — 2);
)\5 ~ —ﬁ(au — 1)(50,11 — 8)(35@11 — 52)7
6893504

A6 ™ ~ 1330328125
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In the above expressions of A, we have already let Ay = Ao = - -+ A\y_1 = 0.

By analyzing the construction of quasi-Lyapunov constants of Theorem 3.7, it
is easy to obtain the following result.

Theorem 3.8. If the origin of system (3.2) is a three-order nilpotent critical point
of 2-class, then the origin for system (3.2) can become a 6-order weak focus if and
only if the following condition holds:

1
ba1 = 0, bps = =(—a12 + a11a12 + boz + 2a12bp2),

3
by — 2012 = 3an1012 + afiars + 2brs = 2aizbiy (3.21)
2a12(a11 — 1)
2 52
b =0, a12 = =, a1 = ==
19 ai2 5 a1l 35

Proof. From the expression of \i, k = 1,2, 3,4, 5, clearly the necessity holds. Next
we prove sufficiency. Submit (3.21) into Ap of Theorem 3.7, we have \; = Ay =
A3 = Ay = A5 = 0, A\¢ # 0. Hence, conclusion of Theorem 3.8 holds. Proof end. [

Of course, condition (3.21) can also be expressed as follows:

23 9 2 52
ba1 = 0, b3 = ——, bo2 bi2=0,a12=—, a1 =

= =22 (3.22)
105 35 5 35

From the translation’s invariable property, it is clear that the following Theorem
holds.

Theorem 3.9. The critical points (1,1) of model (1.1) become a 6-order weak
focuses if condition (3.21) or (3.22) holds.

After discussing the weak focus problem of system (1.1), we will investigate the
limit cycles bifurcations of system (1.1). According to the above analysis, we can
obtain the following theorem.

Theorem 3.10. If the critical points (1,1) of model (1.1) become a 6-order weak
focuses (namely under the condition (3.22)), then disturbed model (1.1) can bifurcate
6 small limit cycles from (1,1).

Proof. According to Theorem 2.1 in Ref. [12], we only need to prove

D()\la AQ, )‘37 )\43 )‘5)

0.
D(ba1, boz, b1z, a12,a11) 7
In fact,
M: D(A17>\27)\3a)\47A5)
D(ba1, b2, b1z, a12,a11)

- 128(&11 — 1)(956 - 1430(111 + 525&%1)(1 + 20,12)(—12 + 5@11 + 10@12)

B 81860625 ’
and M|.10) = —% # 0. Hence, the conclusion of Theorem 3.10 holds.

Proof end. O
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3.2.2. Case 2.2: a;2 =2 — a1

Under condition a2 = 2 — a1, we can obtain Ay ~ 0, A5 ~ 0, A\g ~ 0.

From the above investigation about quasi-Lyapunov constants at the origin of
system (3.2) under case 2 (including case 2.1 and case 2.2), we will also consider the
center problem of the origin of system (3.2)|s—¢ (or the critical point (1,1) of model
(1.1)|5=0 ) under case 2. Analyze the expressions of quasi-Lyapunov constants under
case 2, we can easily obtain the following results.

Theorem 3.11. If the origin of system (3.2) is a three-order nilpotent critical point
of mon-1-class , then the first 6 quasi-Lyapunov constants of the origin for system
(3.2) vanish if and only if one of the following two conditions is satisfied:

X (3.23)

ot =

2 8
Cr: b1 =0,b12=0,a12= P o =g, bos = 5 boz2 =
1 1
CQ : b21 = O, b12 = 0, aip = 2 — aii, bog = 5(2 - all), bog = 5(2 - CL11). (324)

Moreover, we have the following Theorem.

Theorem 3.12. If the origin of system (3.2) is a three-order nilpotent critical point
of non-1-class, then the origin of system (3.2)|s=o is a center (or the critical point
(1,1) of model (1.1)|s=¢ is a center) if and only if one of the two conditions of
Theorem 3.11 holds, namely (3.23) or (3.24) holds.

Proof. Obviously, necessity holds. Next, we prove sufficiency. If condition (3.23)
holds, then system (3.2)|s=¢ is changed into the following form:

dx 3 2

CT; =y1(z1 +1)(1+ st 53/1),

i X (3.25)
1 b

o (y1+1)(22% — 52/%)7

system (3.25) has an integrating factor

1
7 3.26
(1+21)2(1 4 1) 1520
and a first integral
5(—15 — 4521 — 1522 + 523 + 3y; + 3 i 1+ 21)"
fo ( x1 7 +oxy + 3y1 + 3Ty +y1)+151n(—&—7x1). (3.27)
1+ 1+uy

If condition (3.24) holds, then system (3.2)|5=¢ are changed into the following
form:

dx
CT; ==yi(z1 + 1)1+ (a11 — D1 + (2 — ann)y)],
i X (3.28)

1
o —(y1 + 1)[227 - 5(2 —an)yil,

system (3.28) has an integrating factor
1
(3.29)

(T+z1)2(1+w)’



1462 C. Du & W. Huang

and a first integral and a first integral

= —6 — 182 — 622 + 223 — 2y + 2a11y — 22y + 2a1120y + 2y® — a11y?
5 =
2(1+21) (3.30)

+In(1+ ml)ﬁ(l + yl)l_a“.

Therefore, under condition (3.23) or (3.24), the origin of system (3.2)|s5=¢ is a
center. According to the transformations’ invariant property, the critical point (1, 1)
of model (1.1)|5=¢ is a center under condition (3.23) or (3.24). Proof end. O

4. Conclusion

The work of this paper focuses on investigating the limit cycle bifurcation prob-
lem of a three-order positive nilpotent critical point (1, 1) of a class of Kolmogorov
model. By computing and analyzing the expressions of quasi-Lyapunov constants
carefully, we divide them into two kinds of cases and study their bifurcation behav-
ior separately. For case 1, the nilpotent critical point (1,1) can bifurcate 5 small
amplitude limit cycles. For case 2, 6 small amplitude limit cycles can bifurcate
from the three-order nilpotent critical point (1,1). In addition, We also give the
integrability conditions (i.e., center condition) for each case. In terms of limit cycle
bifurcation for Kolmogorov model with nilpotent positive critical points, our result
is new.
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Appendix: Expressions of nq, ns

ny =42000bg2 — 201600a11bg2 + 370020a3, boa — 322140a3, bog + 132300a7; bos
— 2058045, boz + 100800b3, — 267120a11b2, + 189000a3, b2, — 504043, b3,
— 17640a7 b3y — 12432003, + 505680a11b3, — 50694002, b3, + 12558043, b3,
— 221760b3, + 166320a11 b3, + 5544003, bgy + 203280b5, — 203280a11 b,
+6000a11b12 — 720002 b1y — 28800a3, b1y + 74178at b1y — 7328445, b1o
4 38856a%,b12 — 11052a],b12 + 1302a5,b12 — 118000bg2b1o + 260400a11bo2bio
+ 3347003 boab1o — 48222143 boobia + 515942a7, boabia — 26975245, bozbi2
+ 7309208 boabra — 7891a];boabiz + 5410035012 — 563620a11b35b12
+ 86344703, b3yb12 — 655834a7,b2yb1o + 275732a7,bagb12 — 3649045, basb12
— 285505, b3,b12 + 482480b3,b19 — 123664a11b35b12 — 43940203, 63,012
+ 625151a3,b3,b10 — 343720a7,b3,b12 + 6249503, b3ob1o — 502232b35b12
+ 698364a11bg,b12 — 845687a7,bg,b12 + 385530a7, bg,b12 — 40895a; bysbia
— 42496b,b12 — 38624a11b3,b12 + 20473643, b),b12 — 12361647, b3yb12
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+ 126148b5,b12 —252296a1 163,12 +126148a7, b5yb1o —200a11 b3, —38720a7, b1,
+ 83530a3, b2, — 7982641, b3, + 36574a5 b2, — 6398a8, b2, + 53600002,

+ 210320a11 boab?y — 496490a3, boab2, + 51731203, boab?y — 24676247, boab?,
+ 42660a5 ; boab3y — 46098003407, + 658580a11b3sbTy — 8571743, b2,b3,

+ 42966443, baybt, — 6115007, b3,0%5 — 192640b3,b7, + 30772811 b3,b%,

— 9508a%, b3,b3y — 105580a3, biyb2y 4 144864b5,b37y — 495804a11 by
435094003, bgob?y 42522965, b7, — 2522961 1 bje b3y —9200a11 b3, +29680a7, b3,
— 3064003, b3, +9968a7, b3, +32600b02b3, — 137580a11boab3y +172320a2  boab3,
— 6463645, bo2b3y + 120620b2,b75 — 282840a11b3,b35 + 156252a7, 3505,

+ 16492003,b75 — 204884a11 b33, + 126148b3,b3, + 3400a11b], — 4760a3, b7y
— 10200bg2biy + 21760a11bo2biy — 2244003,b15.

ny =3081097656000002, — 147892687488000a,,b2, + 271444703493600a3, b3, — 236320190215200a3, b2,
4 97054576164000a7, b3, — 15097378514400a3, b2, + 7394634374400063, — 195957810921600a;11b3,
+ 138649394520000a3 , b3, — 3697317187200a%, b3, — 12940610155200a7, b3, — 9120049061760054,
+ 370964157782400a11bgs — 371888487079200a3, by, 4 92124819914400a3, b3, — 16268195623680005,
4 122011467177600a11 b3, + 40670489059200a%, b3, + 14912512655040063, — 149125126550400a11 b5,
+ 433080500832000b2b12 — 2233381933641600a11bo2b12 + 4605486204604320a3 bozb12
— 4899248153845920a7  boaby2 + 2927753812526760a], bogbi2 — 1025180765461440a3, boabia
+ 217966012341840a$ boab12 — 28089030362400a], byab1z + 1613353006440a5, bozbia
+ 2048625220000800b3,b12 — 8435120032069920a11b2,b12 + 13842516766909320a7 b25b12
— 11864370285370680a7, b2yb12 + 5773529873326740a7,b2,b12 — 1565624147664780a5,b2,D12
+219720142417860a8, 3512 — 15580220362140a7, b2yb12 + 1435613156570880b3,b12
— 2474619113242080a11b3,D12 + 236500649602560a2,b3,D12 4+ 1507434908066640a3 , b3ob12
— 910480961688480a7, b3ab12 + 175457831965920a3, b3yb1o — 17971594709040a8, b35b12
— 5256761511682800b3,b12 + 16987259209105920a11bisb12 — 18157750313754660a, by bi2
+ 8215537780193100a3, bjobia — 1795612130011560a7, bgabi2 + 200511789181200a5, bgsb1a
— 4669268518152000b35b12 + 5004834041536560a11 63,012 — 657639017705880a2,b55b12
— 6343754971680a3, bob1a + 104729559467400a 7, b3ob12 + 5598142850280960b5,b12
— 8643293133896400a11b5,b12 + 3814699136704260a7,b3,b12 — 769548853088820a3, b3y b12
+ 1356904316940480b7,b12 — 1161874565082000a11b5sb12 — 195029751858480a3 biab12
— 946336014790320b5,D12 + 946336014790320a11b5,D12 4 61728361776000a1, b2,
— 96375180535200a3, b3, — 265197927528000a3, b3, + 864193892927688a7, b2,
— 1047245204783016a5, b2, + 720476017627176a$, b3, — 306492003578448a], b3,
+ 80225339705208a5, b2, — 12179708508744a3, b2, + 8664128973361 ,0b%,
— 1313183911890000b92b2, 4+ 3765003863478000a11bgab?, — 1902758630958900a2, byab?,
— 4646449960820016a3 bgab?, + 8700636376201392a7 bo2bT, — 7209914913510654a53; boabis,
+ 3534652185864414a$, boab?, — 1069426612778736a], bo2bly + 191414835716760a5; boabl,
— 17703207261138a3, boab?, + 618608774238a1, 0bgab?, — 281157291182720062, b3,
+ 2712081258615600a1 1 baob35 + 8658595516552052a%, b2,bly — 21817498985973734a%, b2,b%,
+ 21626028962543714a1, b2,0%, — 11962876028090647a5, b2,b%5 + 397336969946422608, b2,b%,
— 761693239781386a 1, b2,b%, + T7164890414672a%, b2,b3, — 3668789532737a3,b3,b%,
+ 5964575133957800b3,b%, — 17939694466334384a;11b3,b%, + 22318026167430378a2, biybly
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— 14735218650821308a3, b3sb%, + 5329620360327143a;, baybl, — 372043315505272a3, bisb2,

— 324710534850138a8, b3,b%,, + 89073183143800a], bi,b3, — 812760103849945, b3,b%,

+ 8686621642788888b,b7, — 62888501067656a11bgyb7, — 20327450894869064a%, bisb2,

+ 27486980368797409a3, bi,b3, — 17208313003002872a3, bi,b3, + 5481271297882039a3, bisb2,
— 885145354153178a8 by b2, + 66645574401294a], bi,b2, — 13085124106321980b5,b2,

+ 23070057464239700a11b3,b%, — 28433322106804959a3, b,b3y 4+ 16745528154544130a3, 55,02,
— 4627859687526003a7, b3,b7s + 538483491464792a7, bi,b7, — 649885280040a8, b3,b7,

— 2931481772915424b5,b3, — 2226100854005816a11b5,b2, 4+ 9004246880868680a2, 63,02,

— 7568683603910065a3 b3,b%, + 2459223371694754a],bS,b25 — 355353113837829a5, b3,b75

+ 5586599907276144b7,b%, — 10594463032771372a11 biub?y + 8927957712983633a3, biyb3,

— 2740909868015806a5; bl,b35 + 240319302712881a1, bisb%, + 344305034440904b5,b%,

— 98964076947056a11b5,b%, — 834986949428600a2, bS,b2, 4+ 589645991934752a3,b3,b2,

— 58955603229393205,b%, 4+ 1179112064587864a,1b9,0%, — 589556032293932a7, b5,b2,

— 15791019040200a1 b3, — 378988663137120a3; b3, + 1065697829092410a3, b3,

— 1336030289250684a1, b3, + 922024329715608a3, b3, — 370551538066176a$, b3,

+ 88014941090538a] b3, — 11463106613700a%, b3, + 501566206764a], b3, + 823270584383600b92b5,
+ 1304120543691520a11 bo2b3, — 6824400572993030a2 boab3y

4 10880335110555623a3 boab, — 8886195476719627as, boably 4 4115663682406832a5, bo2b?,
— 1086500661017238a$; bo2b3, + 151333879271113a],boab3, — 8862615635993a%, boobs,

— 3179166599086980b2,b%, + 14303757179371960a11b2,b3, — 27821375837704111a3,b3,b%,

+ 27315702828360809a3, b2,b35 — 14440744119124418a7,b3,b35 + 4057465602673654a3, 02,3,
— 567707346024123a$, b3,b%, 4 36314951785049a, b2,b3, — 15094671599463680b3, b3,

+ 25360709448656992a11b3,b%, — 28829454903762688a3, b,b?y 4 15447407491720941a%, 53,53,
— 3454311259925265a7, b3,b?y + 140995589951903a5, b,b3, + 33482109131217a5, 53,53,

— 4168401626452144b3,b3, + 1561381746811636a11 bgyb, + 8083809233690693a2, biyb,

— 8786014632746015a%, bg,by + 2939347485612195a7, bpabis — 410544966705765a7, bog by

+ 9652063969809484b3,b%, — 21526479767881948a11bi,b3, + 18521519748817496a, by, by

— 4984635553061720a% bably + 492651544311708a7,b,b3, + 7463471217925436b5, b5,

— 9264562240459356a1 13,03, + 1072171687798096a%, 05,035 + 728919334735824a3, b3,b3,

— 671452602478552b7,b3, + 2621251225414484a,1b3,b3, — 1949798622935932a2, b3,b3,

— 1179112064587864b5,b3, + 1179112064587864a,1b5,b3, — 94393267991000a,, b},

+ 429205635419600a2, bty — 638693619085630a3 bty + 451995235349324a7 b3,

— 17268922481288845, bl + 35713543384820a$, b1, — 2518103047586, b1, + 213085652420000b02b1,
— 2244024610098400a1 1 boa bl + 4433965040427970a2, boabl, — 3922219151642558a%, boobt,

+ 1732937799673278a7, bo2bls — 382638593386938a], boabls + 34562240504568a8  boabi,

+ 302223633374930002,b7, — 9267217588901760a11b3,b1, + 11372679837292086a7, b3,b15

— 5967901378964926a3, ba,by 4+ 1403794513757394a 7, b2,b1, — 148005598398126a3, b2,y

+ 6369389198356560b3,b1, — 13149313438274792a1,b3,b1s + 8684596524474492a3, b3,b1,

— 1781649667952968a3, by,bls + 122330412001460a], b3,bts + 5697253565779424b3,b1,

— 5906103481893784a,1b3yb1, — 321870295180704a3, bjybls + 583554551072060a3, basbis

+ 2014063890247692b5,b1, + 2198211861693888a11b5,b1, — 1573347824572872a2, bi,bi,y

— 1196708243691952b5,b1, + 1541103237773676a11b5,b1, — 5895560322939320,b1,

+ 56570891332600a1, b5, — 134861384906440a%, b7, + 103657131846240a%, b7, — 38917637205608a7, b3,
+ 4053617709176a3, b3, — 178936013927800bg2b3, + 696055160643540a11bo2bS,

— 738972301255100a3 , boabS, + 319960374810356a3, byab, — 47762701617988a7, bo2bly

— 846064393377660b3,b75 + 1710215641090420a,1 62,07, — 990677990744772a3, b2,b75

+ 211573610369436a7, b3,bTs — 1250355346513840b3,b7, + 1304907048249684a11b3,b5,

— 416207025366892a7, b3,b3y — 643391050491468b3,b35 + 407355819249004a11bjyb3,

— 180950606772496b5,b3, — 8114966077400a11bS, + 12823347424160a, b8, — 2047352882120a3, b5,
+ 22683188182200b92b%, — 60368215327560a11boabSs + 18279625917840a3 boobS,

+ 7234135936524062,0%, — 55083101815000a11 62,65, + 49364359801680b3,65,.
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