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HOPF BIFURCATION PROBLEM FOR A
CLASS OF KOLMOGOROV MODEL WITH A
POSITIVE NILPOTENT CRITICAL POINT∗

Chaoxiong Du1,† and Wentao Huang2

Abstract In this paper, We discuss the Hopf bifurcation problem of a three-
order positive nilpotent critical point (1, 1) of a class of Kolmogorov model. By
using the method offered by [12], we obtain the expressions of quasi-Lyapunov
constants with the help of computer algebra system-MATHEMATICA. By an-
alyzing the structure of these quasi-lyapunov constants, we divide them into
two kinds of cases and study their bifurcation behavior separately. For case 1,
the nilpotent critical point (1, 1) can bifurcate 5 small amplitude limit cycles.
For case 2, 6 small amplitude limit cycles can bifurcate from the three-order
nilpotent critical point (1, 1). In addition, We also give the integrability con-
ditions (i.e., center condition) for each case. In terms of limit cycle bifurcation
for Kolmogorov model with nilpotent positive critical points, our result is new.

Keywords Hopf bifurcation, nilpotent critical point, kolmogorov model, quasi-
Lyapunov constant.
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1. Introduction
Our work focuses on investigating the limit cycle bifurcation and integrability con-
dition of a three-order nilpotent critical point (1, 1) of the following Kolmogorov
model

dx

dt
=x[δ(x− 1)2 − (x− 2)(y − 1) + a11(x− 1)(y − 1) + a12(y − 1)2]

≡xP (x, y),

dy

dt
=− y[2(x− 1)3 + 2δ(x− 1)(y − 1)(y − 2)− b02(y − 1)2 + (b02 − b03)

× (y − 1)3 − (x− 1)(y − 1)(b21x+ b12y − b12 − b21)] ≡ yQ(x, y),

(1.1)

in which a11, a12, b02, b03, b12, b21, ∈ R, δ is a small real parameter and δ → 0.
Here, x and y of system (1.1) denote prey and predator densities, and P (x, y),
Q(x, y) are the intrinsic growth rates or biotic potential of the prey and predators,
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respectively. Obviously, the above system belongs to a class of famous ecologic
model namely Kolmogorov model, Ref. [4, 14] described their realistic meanings.

Some natural predator-prey behavior can be summarized as an ecological model
which further attracts people’s attention and can be discussed and investigated by
using mathematical method. In mathematical ecology, Many mathematic workers
pay more and more attentions to the three most fundamental systems namely the
predator-prey, the competition and the cooperation systems(see [1–4, 6–10, 13, 14,
16]). Theoretically, these systems can be reduced to some kinds of ecological models.
From published references, it can be seen that Kolmogorov model is a class of
investigated thermal ecological model. Kolmogorov model’s equation is described
as 

dx

dt
=xf(x, y),

dy

dt
=yg(x, y),

(1.2)

in which f(x, y) and g(y, x) are polynomials on x, y. Kolmogorov models are widely
used in ecology to describe the interaction between two populations. Of course,
in the context of meaningful research, attention of researchers is restricted to the
behavior of orbits in the ”realistic quadrant” {(x, y) : x > 0, y > 0}. Of particular
significance in applications is the existence of limit cycles and the number of limit
cycles that can bifurcate from positive equilibrium points, because a limit cycle
corresponds to an equilibrium state of the system and the existence and stability
of limit cycles is related to the positive equilibrium points. At the same time, the
problem on the number of limit cycles gets in close touch with famous Hilbert 16th
problem; Hence, many articles studying Kolmogorov models pay more attention to
the limit cycles bifurcation problem. For example, [2] showed a class of Kolmogorov
system could bifurcate five limit cycles including 4 stable cycles; [3] gave an example
about a class of Kolmogorov system which could bifurcate ten limit cycles; [6] stud-
ied the number of limit cycles of polynomial Lienard systems; [7] investigated hopf
bifurcation problem about small amplitude limit cycles and the local bifurcation of
critical periods for a quartic Kolmogrov system at the single positive equilibrium
point (1, 1) and proved that the maximum number of small amplitude limit cycles
bifurcating from the equilibrium point (1, 1) is 7; [9] considered the Kolmogorov
system of degree 3 in R2 and R3 having an equilibrium point in the positive quad-
rant and studied their limit cycle bifurcation problem; [13] studied a class of cubic
Kolmogorov system with three limit cycles; [10] showed a class of cubic Kolmogorov
system could bifurcate six limit cycles; [8, 16] studied a general Kolmogorov model
and obtained the conditions for the existence and uniqueness of limit cycles, at the
same time it classify a series of models. As far as limit cycles of Kolmogorov models
are concerned, many good results have been obtained by analyzing sole positive
equilibrium point’s state.

In terms of limit cycle problem on nilpotent critical points, less literatures has
been published. [1] investigated the problem on limit cycle bifurcation for a class
of Z3-equivariant Lyapunov system of five degrees with three third-order nilpotent
critical points which lie in a Z3-equivariant vector field, and gave the result of
existing 12 small amplitude limit cycles created from the three third-order nilpotent
critical points. [15] characterized local behavior of an isolated nilpotent critical point
for a class of septic polynomial differential systems including center conditions and
bifurcation of limit cycles, and proved that there exist 16 small amplitude limit
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cycles created from the third-order nilpotent critical point. But it is hardly seen
results on limit cycles bifurcation from nilpotent critical points for Kolmogorov
model, here we will complement our work in this area, namely limit cycle bifurcation
of system (1.1).

Clearly, model (1.1) has a nilpotent critical point namely the positive equilibrium
point (1, 1). We will focus on the limit cycles bifurcations of the positive equilibrium
point (1, 1). At first, we introduce a kind of research method about the limit cycles
bifurcations from nilpotent critical point.

In the qualitative theory of ordinary differential equations, the limit cycles bi-
furcations problem for a critical point P of a planar analytic vector field X is a
hot topics. Let DX(P ) denote the differential matrix of X at the critical point P .
When the eigenvalues of the matrix DX(P ) are imaginary, we know that the origin
is monodromic. When the matrix DX(P ) has its two eigenvalues equal to zero but
the matrix is not identically null, it is said that P is a nilpotent critical point. In
a suitable coordinate system, the Lyapunov system with the origin as a nilpotent
critical point can be written as

dx

dt
=y +

∞∑
i+j=2

aijx
iyj = X(x, y),

dy

dt
=

∞∑
i+j=2

bijx
iyj = Y (x, y),

(1.3)

in which the function y = y(x) satisfies X(x, y) = 0, y(0) = 0.
In this paper, employing the integral factor method introduced in [11, 12], we

will discuss several cases, and being based on these cases, we investigate the center-
focus problem and prove the singular point (1, 1) of model (1.1) can bifurcate 6
small limit cycles. To the best of our knowledge, our results on the lower bounds of
cyclicity of a three-order nilpotent critical point for planar Kolmogorov model are
new.

Our work will be expanded as follows. In Section 2, we state some preliminary
knowledge given in [11] which is useful throughout the paper. In Section 3, using the
linear recursive formulae in [11] to do direct computation, we obtain with relative
ease the first 6 quasi-Lyapunov constants of critical point (1, 1). Moreover, we
investigate the center-focus problem and give the sufficient and necessary condition
that critical point (1, 1) of model (1.1) can become a center, at the same time, we
show the fact that critical point (1, 1) can also become a 6-order weak focus and
model (1.1) can bifurcate 6 small limit cycles from (1, 1).

2. The method to compute the Lyapunov constants
of nilpotent critical points

Ref. [12] offered a kind of method to compute the Lyapunov constants of nilpo-
tent critical points. We will use this method to carry out our research work. For
convenience, let’s introduce this method.

The origin of system (1.3) is a three-order monodromic critical point if and only
if b20 = 0, (2a20 − b11)

2 + 8b30 < 0. Without loss of generality, we can assume that

a20 = µ, b20 = 0, b11 = 2µ, b30 = −2. (2.1)
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Otherwise, by letting (2a20 − b11)
2 + 8b30 = −16λ2, 2a20 + b11 = 4λµ, and making

the transformation ξ = λx, η = λy+ 1
4 (2a20−b11)λx

2, we can also arrive at this aim.
From (2.1), system (1.3) becomes the following real autonomous planar system

dx

dt
= y + µx2 +

∞∑
i+2j=3

aijx
iyj = X(x, y),

dy

dt
= −2x3 + 2µxy +

∞∑
i+2j=4

bijx
iyj = Y (x, y).

(2.2)

Write that

X(x, y) = y +

∞∑
k=2

Xk(x, y), Y (x, y) =

∞∑
k=2

Yk(x, y), (2.3)

where for k = 1, 2, · · · ,

Xk(x, y) =
∑

i+j=k

aijx
iyj , Yk(x, y) =

∑
i+j=k

bijx
iyj . (2.4)

For the computation about quasi-Lyapunov constants of the origin of system
(2.2), Ref. [12] offered the following method.

Lemma 2.1 ( [12]). For system (2.2) and any positive integer s and a given number
sequence

{c0β}, β ≥ 3, (2.5)
one can construct successively the terms with the coefficients cαβ satisfying α ̸= 0
of the formal series

M(x, y) = y2 +

∞∑
α+β=3

cαβx
αyβ =

∞∑
k=2

Mk(x, y), (2.6)

such that
∂

∂x

(
X

Ms+1

)
+

∂

∂y

(
Y

Ms+1

)
=

1

Ms+2

∞∑
m=5

ωm(s, µ)xm, (2.7)

where for all k, Mk(x, y) is a k-homogeneous polynomial of x, y and sµ = 0.

Now, (2.7) can be written by(
∂X

∂x
+

∂Y

∂y

)
M − (s+ 1)

(
∂M

∂x
X +

∂M

∂y
Y

)
=

∞∑
m=3

ωm(s, µ)xm. (2.8)

It is easy to see that (2.8) is linear with respect to the function M , so that we can
easily find the following recursive formulae for the calculation of cαβ and ωm(s, µ).

Lemma 2.2 ( [12]). For α ≥ 1, α + β ≥ 3 in (2.6) and (2.7), cαβ can be uniquely
determined by the recursive formula

cαβ =
1

(s+ 1)α
(Aα−1,β+1 +Bα−1,β+1). (2.9)

For m ≥ 1, ωm(s, µ) can be uniquely determined by the recursive formula

ωm(s, µ) = Am,0 +Bm,0, (2.10)
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where

Aαβ =

α+β−1∑
k+j=2

[k − (s+ 1)(α− k + 1)]akjcα−k+1,β−j ,

Bαβ =

α+β−1∑
k+j=2

[j − (s+ 1)(β − j + 1)]bkjcα−k,β−j+1.

(2.11)

Notice that in (2.11), we set

c00 = c10 = c01 = 0,

c20 = c11 = 0, c02 = 1,

cαβ = 0, if α < 0 or β < 0.

(2.12)

Lemma 2.3 ( [12]). The expressions of m − th quasi-Lyapunov constants at the
origin of system (2.2) are as follows:

λm =
ω2m+4(s, µ)

2m− 4s− 1
. (2.13)

Lemma 2.4 ( [12]). If system (2.2) has a three-order nilpotent center at the origin,
then there always exists a formal integral factor of the form (2.6).

Clearly, the recursive formulae given by Lemma 2.2 is linear with respect to
all cαβ . Therefore, it is convenient to realize the computation of quasi-Lyapunov
constants by using computer algebraic system like MATHEMATICA.

3. Bifurcation of limit cycles and center condition
of the critical point (1, 1) of model (1.1)

In order to obtain the quasi-Lyapunov constants of the critical point (1, 1) of model
(1.1) and study the limit cycles bifurcations. May as well make the following trans-
formations:

x = x1 + 1, y = y1 + 1, (3.1)

system (1.1) is changed into
dx1

dt
= (x1 + 1)[δx2

1 − (x1 − 1)y1 + a11x1y1 + a12y
2
1 ],

dy1
dt

= −(y1 + 1)[2x3
1 + 2δx1y1(y1 − 1)− b02y

2
1 + (b02 − b03)y

3
1

− x1y1(b21x1 + b12y1)].

(3.2)

Comparing system (2.2) with system (3.2), it is clear that the origin of system
(3.2) is a nilpotent critical point. According to the translation’s invariable property,
model (1.1) has a three-order nilpotent critical point (1, 1). Hence the study on
the origin of system (3.2) will can derive the similar property for the three-order
nilpotent critical point (1, 1) of model (1.1). Next we will investigate the bifurcation
behavior of the origin of system (3.2).
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According to Lemma 2.2 and applying the recursive formulae presented in Lemma
2.1–Lemma 2.3 to carry out calculations by using MATHEMATICA, we can obtain

ω3 = ω4 = ω5 = 0, ω6 = −1

3
b21(−1 + 4s),

ω7 ∼ −1− 2a12 + 2s− 2a12s+ 3c03 + 3sc03,

Let c03 =
1 + 2a12 − 2s+ 2a12s

3(1 + s)
, then

ω8 ∼ 2

5
(−a12 + a11a12 + b02 + 2a12b02 − 3b03)(4s− 3),

Let b03 =
1

3
(−a12 + a11a12 + b02 + 2a12b02), then

ω9 ∼ −2

3
(2a12 − 3a11a12 + a211a12 − 2a12b02 + 2a11a12b02 + 2b12 − 2a12b12)(s− 1).

(3.3)
From (2.13) and (3.3), we obtain the first two quasi-Lyapunov constants at the
origin of system (3.3) as follows:

λ1 ∼ 1

3
b21,

λ2 ∼ −2

5
(−a12 + a11a12 + b02 + 2a12b02 − 3b03).

(3.4)

From (3.4), we know that ω9 ∼ 0 will deduce s = 1 or 2a12 − 3a11a12 + a211a12 −
2a12b02+2a11a12b02+2b12−2a12b12 = 0 . Then we investigate the quasi-Lyapunov
constants according to the following cases.

3.1. Case 1: s = 1

If s = 1, then the origin of system (3.2) is a three-order nilpotent critical point of
1-class. At this kind of case, we can compute the quasi-Lyapunov constants at the
origin of system (3.2), namely the following Theorem.

Theorem 3.1. If the origin of system (3.2) is a three-order nilpotent critical point
of 1-class, then the first 5 quasi-Lyapunov constants at the origin of system (3.2)
are as follows:

λ1 ∼ 1

3
b21;

λ2 ∼ −2

5
(−a12 + a11a12 + b02 + 2a12b02 − 3b03);

λ3 ∼ − 2

105
(−10a12 + 29a11a12 − 26a211a12 + 7a311a12 − 12a12b02

+ 9a11a12b02 + 3a211a12b02 + 22a12b
2
02 − 22a11a12b

2
02 + 4a11b12 + 10a12b12

− 14a11a12b12 − 22b02b12 + 22a12b02b12);

λ4 ∼ 4(a11 − 1)n1

4725(7a11 − 11b02 − 5)2(2− 3a11 + a211 − 2b02 + 2a11b02 − 2b12)2
;

(3.5)
in which n1 is the function about a11, b02, b12, whose expression is shown in Ap-
pendix.
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And
(1)If a11 = 1, then λ5 ∼ 0.

(2) If a11 ̸= 1, n1 = 0, then

λ5 ∼ a11 − 1

6767145000(7a11 − 11b02 − 5)3(2− 3a11 + a211 − 2b02 + 2a11b02 − 2b12)2b12
n2;

in which n2 is the function about a11, b02, b12, whose expression is shown in Ap-
pendix.

By analyzing the construction of quasi-Lyapunov constants of Theorem 3.1, it
is easy to obtain the following result.

Theorem 3.2. If the origin of system (3.2) is a three-order nilpotent critical point
of 1-class, then the origin for system (3.2) can become a 5-order weak focus if and
only if the following condition holds:

b21 = 0, b03 =
1

3
(−a12 + a11a12 + b02 + 2a12b02),

a12 =
2b12(11b02 − 2a11)

(7a11 − 11b02 − 5)(2− 3a11 + a211 − 2b02 + 2a11b02 − 2b12)
,

n1 = 0, a11 ̸= 1.

(3.6)

Proof. From the expression of λk, k = 1, 2, 3, 4, 5, clearly the necessity holds.
Next we prove sufficiency . In order to prove the origin of system (3.2) is a 5-order
weak focus, we only need to prove that there exists a group of solutions about
a11, b21, b03, a12, b12 such that λ1 = λ2 = λ3 = λ4 = 0, λ5 ̸= 0.

Clearly, b21 = 0 if λ1 = 0. According to λ2 = 0, we can obtain b03 = 1
3 (−a12 +

a11a12 + b02 + 2a12b02) and the expression of λ3, moreover, λ3 = 0 deduces

a12 =
2b12(11b02 − 2a11)

(7a11 − 11b02 − 5)(2− 3a11 + a211 − 2b02 + 2a11b02 − 2b12)
. (3.7)

Next let λ4 = 0, then n1 = 0 or a11 = 1, but a11 = 1 will deduce λ5 = 0, while
n1 = 0 and a11 ̸= 1 will deduce

λ5∼
(a11 − 1)n2

6767145000(7a11−11b02−5)3(2−3a11+a211−2b02+2a11b02−2b12)2b12
̸=0,

(3.8)
otherwise n1 = 0, n2 = 0 will deduce a11 = 1. Proof end.

From the translation’s invariable property, it is clear that the following Theorem
holds.

Theorem 3.3. The critical points (1, 1) of model (1.1) become a 5-order weak
focuses if the condition of Theorem 3.2 holds.

After discussing the weak focus problem of system (1.1), we will investigate the
limit cycles bifurcations of system (1.1). According to Theorem 3.1, we can obtain
the following theorem.

Theorem 3.4. If the critical points (1, 1) of model (1.1) become a 5-order weak
focuses, then model (1.1) can bifurcate 5 small limit cycles from (1, 1).
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Proof. According to Theorem 2.1 in Ref. [12], we only need to prove

D(λ1, λ2, λ3, λ4)

D(b21, b03, a12, b02)
̸= 0, (3.9)

In fact,

D(λ1, λ2, λ3, λ4)

D(b21, b03, a12, b02)

=
16(a11 − 1)n2

1

2480625(7a11 − 11b02 − 5)2(2− 3a11 + a211 − 2b02 + 2a11b02 − 2b12)2
.

(3.10)

If the critical points (1, 1) of model (1.1) become a 5-order weak focus, then a11 ̸= 1
and n1 ̸= 0, hence Eq.(3.9) holds. According to Theorem 2.1 in Ref. [12], the
conclusions of Theorem 3.4 holds. Proof end.

Next we will consider the center problem of system (3.2) or model (1.1) under
case 1, by analyzing the construction of λk, k = 1, 2, 3, 4, 5 of Theorem 3.1, it is
easy to obtain the following results.

Theorem 3.5. If the origin of system (3.2) is a three-order nilpotent critical point
of 1-class , then the first 5 quasi-Lyapunov constants of the origin for system (3.2)
vanish if and only if the following condition is satisfied:

b21 = 0, a11 = 1, a12 = 1, b03 = b02. (3.11)

Moreover, we have the following Theorem.

Theorem 3.6. If the origin of system (3.2) is a three-order nilpotent critical point
of 1-class, then the origin of system (3.2)|δ=0 is a center (or the critical point (1, 1)
of model (1.1)|δ=0 is a center) if and only if the condition of Theorem 3.5 holds,
namely (3.11) holds.

Proof. Obviously, necessity holds. Next, we prove sufficiency. If condition (3.11)
holds, then system (3.2)|δ=0 is changed into the following form:

dx1

dt
=y1(x1 + 1)(1 + y1),

dy1
dt

=− (y1 + 1)(2x3
1 − b02y

2
1 − b12x1y

2
1),

(3.12)

make time transformations dT = (1 + y1)dt, system (3.12) becomes
dx1

dT
=y1(x1 + 1),

dy1
dT

=− 2x3
1 + b02y

2
1 + b12x1y

2
1 ,

(3.13)

whose vector field is symmetric with respect to y−axis. Therefore, under condition
(3.11), the origin of system (3.2)|δ=0 is a center, According to the transformations’
invariant property, the critical point (1, 1) of model (1.1)|δ=0 is a center. Proof end.

Next we will consider the second case, namely the following case.
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3.2. Case 2: s ̸= 1

If s ̸= 1, then ω9 = 0 will deduce 2a12 − 3a11a12 + a211a12 − 2a12b02 + 2a11a12b02 +
2b12 − 2a12b12 = 0, namely

b02 =
2a12 − 3a11a12 + a211a12 + 2b12 − 2a12b12

2a12(a11 − 1)
. (3.14)

At this time,
λ2 ∼ 0, λ3 ∼ 4

21
b12(a11 − 1), (3.15)

from the expressions of b02, we know a11 ̸= 1. Next let b12 = 0, we obtain

λ3 ∼ 0, λ4 ∼ − 4

45
(5a12 − 2)(a12 + a11 − 2), (3.16)

at this time, λ4 ∼ 0 will deduce a12 = 2
5 or a12 = 2−a11, moreover, we will consider

the following two cases.

3.2.1. Case 2.1: a12 = 2
5

If a12 = 2
5 , then

ω13 ∼ − 4

75
(a11 − 1)(5a11 − 8)(s− 2), (3.17)

let ω13 ∼ 0, then a11 = 8
5 or s = 2. Next let’s study it in two different cases.

Case 2.1.1: a12 = 2
5 , a11 = 8

5
If a11 = 8

5 , then λ5 ∼ 0.
Case 2.1.2: a12 = 2

5 , a11 ̸= 8
5 , s = 2

If s = 2, then we obtain

λ5 ∼ − 4

5775
(a11 − 1)(5a11 − 8)(35a11 − 52), (3.18)

let a11 = 52
35 , then

λ6 ∼ − 6893504

4389328125
̸= 0. (3.19)

From the above analysis, we have the following Theorem.

Theorem 3.7. If the origin of system (3.2) is a three-order nilpotent critical point
of 2-class and a12 = 2

5 , then the first 6 quasi-Lyapunov constants of the origin for
system (3.2) are as follows:

λ1 ∼ 1

3
b21;

λ2 ∼ −2

5
(−a12 + a11a12 + b02 + 2a12b02 − 3b03);

λ3 ∼ 4

21
b12(a11 − 1);

λ4 ∼ − 4

45
(5a12 − 2)(a12 + a11 − 2);

λ5 ∼ − 4

5775
(a11 − 1)(5a11 − 8)(35a11 − 52);

λ6 ∼ − 6893504

4389328125
.

(3.20)



1460 C. Du & W. Huang

In the above expressions of λk, we have already let λ1 = λ2 = · · ·λk−1 = 0.

By analyzing the construction of quasi-Lyapunov constants of Theorem 3.7, it
is easy to obtain the following result.

Theorem 3.8. If the origin of system (3.2) is a three-order nilpotent critical point
of 2-class, then the origin for system (3.2) can become a 6-order weak focus if and
only if the following condition holds:

b21 = 0, b03 =
1

3
(−a12 + a11a12 + b02 + 2a12b02),

b02 =
2a12 − 3a11a12 + a211a12 + 2b12 − 2a12b12

2a12(a11 − 1)
,

b12 = 0, a12 =
2

5
, a11 =

52

35
.

(3.21)

Proof. From the expression of λk, k = 1, 2, 3, 4, 5, clearly the necessity holds. Next
we prove sufficiency. Submit (3.21) into λk of Theorem 3.7, we have λ1 = λ2 =
λ3 = λ4 = λ5 = 0, λ6 ̸= 0. Hence, conclusion of Theorem 3.8 holds. Proof end.

Of course, condition (3.21) can also be expressed as follows:

b21 = 0, b03 =
23

105
, b02 =

9

35
, b12 = 0, a12 =

2

5
, a11 =

52

35
. (3.22)

From the translation’s invariable property, it is clear that the following Theorem
holds.

Theorem 3.9. The critical points (1, 1) of model (1.1) become a 6-order weak
focuses if condition (3.21) or (3.22) holds.

After discussing the weak focus problem of system (1.1), we will investigate the
limit cycles bifurcations of system (1.1). According to the above analysis, we can
obtain the following theorem.

Theorem 3.10. If the critical points (1, 1) of model (1.1) become a 6-order weak
focuses (namely under the condition (3.22)), then disturbed model (1.1) can bifurcate
6 small limit cycles from (1, 1).

Proof. According to Theorem 2.1 in Ref. [12], we only need to prove

D(λ1, λ2, λ3, λ4, λ5)

D(b21, b02, b12, a12, a11)
̸= 0.

In fact,

M =
D(λ1, λ2, λ3, λ4, λ5)

D(b21, b02, b12, a12, a11)

=
128(a11 − 1)(956− 1430a11 + 525a211)(1 + 2a12)(−12 + 5a11 + 10a12)

81860625
,

and M |(3.10) = − 591872
77994984375 ̸= 0. Hence, the conclusion of Theorem 3.10 holds.

Proof end.
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3.2.2. Case 2.2: a12 = 2− a11

Under condition a12 = 2− a11, we can obtain λ4 ∼ 0, λ5 ∼ 0, λ6 ∼ 0.
From the above investigation about quasi-Lyapunov constants at the origin of

system (3.2) under case 2 (including case 2.1 and case 2.2), we will also consider the
center problem of the origin of system (3.2)|δ=0 (or the critical point (1, 1) of model
(1.1)|δ=0 ) under case 2. Analyze the expressions of quasi-Lyapunov constants under
case 2, we can easily obtain the following results.

Theorem 3.11. If the origin of system (3.2) is a three-order nilpotent critical point
of non-1-class , then the first 6 quasi-Lyapunov constants of the origin for system
(3.2) vanish if and only if one of the following two conditions is satisfied:

C1 : b21 = 0, b12 = 0, a12 =
2

5
, a11 =

8

5
, b03 =

1

5
, b02 =

1

5
, x (3.23)

C2 : b21 = 0, b12 = 0, a12 = 2− a11, b03 =
1

2
(2− a11), b02 =

1

2
(2− a11). (3.24)

Moreover, we have the following Theorem.

Theorem 3.12. If the origin of system (3.2) is a three-order nilpotent critical point
of non-1-class, then the origin of system (3.2)|δ=0 is a center (or the critical point
(1, 1) of model (1.1)|δ=0 is a center) if and only if one of the two conditions of
Theorem 3.11 holds, namely (3.23) or (3.24) holds.

Proof. Obviously, necessity holds. Next, we prove sufficiency. If condition (3.23)
holds, then system (3.2)|δ=0 is changed into the following form:

dx1

dt
=y1(x1 + 1)(1 +

3

5
x1 +

2

5
y1),

dy1
dt

=− (y1 + 1)(2x3
1 −

1

5
y21),

(3.25)

system (3.25) has an integrating factor

1

(1 + x1)2(1 + y1)
, (3.26)

and a first integral

f1 =
5(−15− 45x1 − 15x2

1 + 5x3
1 + 3y1 + 3x1y1 + y21)

1 + x1
+ 15 ln

(1 + x1)
10

1 + y1
. (3.27)

If condition (3.24) holds, then system (3.2)|δ=0 are changed into the following
form: 

dx1

dt
= = y1(x1 + 1)[1 + (a11 − 1)x1 + (2− a11)y1)],

dy1
dt

= = −(y1 + 1)[2x3
1 −

1

2
(2− a11)y

2
1 ],

(3.28)

system (3.28) has an integrating factor

1

(1 + x1)2(1 + y1)
, (3.29)
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and a first integral and a first integral

f2 =
−6− 18x− 6x2 + 2x3 − 2y + 2a11y − 2xy + 2a11xy + 2y2 − a11y

2

2(1 + x1)

+ ln(1 + x1)
6(1 + y1)

1−a11 .

(3.30)

Therefore, under condition (3.23) or (3.24), the origin of system (3.2)|δ=0 is a
center. According to the transformations’ invariant property, the critical point (1, 1)
of model (1.1)|δ=0 is a center under condition (3.23) or (3.24). Proof end.

4. Conclusion
The work of this paper focuses on investigating the limit cycle bifurcation prob-
lem of a three-order positive nilpotent critical point (1, 1) of a class of Kolmogorov
model. By computing and analyzing the expressions of quasi-Lyapunov constants
carefully, we divide them into two kinds of cases and study their bifurcation behav-
ior separately. For case 1, the nilpotent critical point (1, 1) can bifurcate 5 small
amplitude limit cycles. For case 2, 6 small amplitude limit cycles can bifurcate
from the three-order nilpotent critical point (1, 1). In addition, We also give the
integrability conditions (i.e., center condition) for each case. In terms of limit cycle
bifurcation for Kolmogorov model with nilpotent positive critical points, our result
is new.
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Appendix: Expressions of n1, n2

n1 =42000b02 − 201600a11b02 + 370020a211b02 − 322140a311b02 + 132300a411b02

− 20580a511b02 + 100800b202 − 267120a11b
2
02 + 189000a211b

2
02 − 5040a311b

2
02

− 17640a411b
2
02 − 124320b302 + 505680a11b

3
02 − 506940a211b

3
02 + 125580a311b

3
02

− 221760b402 + 166320a11b
4
02 + 55440a211b

4
02 + 203280b502 − 203280a11b

5
02

+ 6000a11b12 − 7200a211b12 − 28800a311b12 + 74178a411b12 − 73284a511b12

+ 38856a611b12 − 11052a711b12 + 1302a811b12 − 118000b02b12 + 260400a11b02b12

+ 33470a211b02b12 − 482221a311b02b12 + 515942a411b02b12 − 269752a511b02b12

+ 73092a611b02b12 − 7891a711b02b12 + 54100b202b12 − 563620a11b
2
02b12

+ 863447a211b
2
02b12 − 655834a311b

2
02b12 + 275732a411b

2
02b12 − 36490a511b

2
02b12

− 2855a611b
2
02b12 + 482480b302b12 − 123664a11b

3
02b12 − 439402a211b

3
02b12

+ 625151a311b
3
02b12 − 343720a411b

3
02b12 + 62495a511b

3
02b12 − 502232b402b12

+ 698364a11b
4
02b12 − 845687a211b

4
02b12 + 385530a311b

4
02b12 − 40895a411b

4
02b12

− 42496b502b12 − 38624a11b
5
02b12 + 204736a211b

5
02b12 − 123616a311b

5
02b12
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+ 126148b602b12−252296a11b
6
02b12+126148a211b

6
02b12−200a11b

2
12−38720a211b

2
12

+ 83530a311b
2
12 − 79826a411b

2
12 + 36574a511b

2
12 − 6398a611b

2
12 + 53600b02b

2
12

+ 210320a11b02b
2
12 − 496490a211b02b

2
12 + 517312a311b02b

2
12 − 246762a411b02b

2
12

+ 42660a511b02b
2
12 − 460980b202b

2
12 + 658580a11b

2
02b

2
12 − 857174a211b

2
02b

2
12

+ 429664a311b
2
02b

2
12 − 61150a411b

2
02b

2
12 − 192640b302b

2
12 + 307728a11b

3
02b

2
12

− 9508a211b
3
02b

2
12 − 105580a311b

3
02b

2
12 + 144864b402b

2
12 − 495804a11b

4
02b

2
12

+350940a211b
4
02b

2
12+252296b502b

2
12−252296a11b

5
02b

2
12−9200a11b

3
12+29680a211b

3
12

− 30640a311b
3
12+9968a411b

3
12+32600b02b

3
12−137580a11b02b

3
12+172320a211b02b

3
12

− 64636a311b02b
3
12 + 120620b202b

3
12 − 282840a11b

2
02b

3
12 + 156252a211b

2
02b

3
12

+ 164920b302b
3
12 − 204884a11b

3
02b

3
12 + 126148b402b

3
12 + 3400a11b

4
12 − 4760a211b

4
12

− 10200b02b
4
12 + 21760a11b02b

4
12 − 22440b202b

4
12.

n2 =30810976560000b202 − 147892687488000a11b
2
02 + 271444703493600a211b

2
02 − 236320190215200a311b

2
02

+ 97054576164000a411b
2
02 − 15097378514400a511b

2
02 + 73946343744000b302 − 195957810921600a11b

3
02

+ 138649394520000a211b
3
02 − 3697317187200a311b

3
02 − 12940610155200a411b

3
02 − 91200490617600b402

+ 370964157782400a11b
4
02 − 371888487079200a211b

4
02 + 92124819914400a311b

4
02 − 162681956236800b502

+ 122011467177600a11b
5
02 + 40670489059200a211b

5
02 + 149125126550400b602 − 149125126550400a11b

6
02

+ 433080500832000b02b12 − 2233381933641600a11b02b12 + 4605486204604320a211b02b12

− 4899248153845920a311b02b12 + 2927753812526760a411b02b12 − 1025180765461440a511b02b12

+ 217966012341840a611b02b12 − 28089030362400a711b02b12 + 1613353006440a811b02b12

+ 2048625220000800b202b12 − 8435120032069920a11b
2
02b12 + 13842516766909320a211b

2
02b12

− 11864370285370680a311b
2
02b12 + 5773529873326740a411b

2
02b12 − 1565624147664780a511b

2
02b12

+ 219720142417860a611b
2
02b12 − 15580220362140a711b

2
02b12 + 1435613156570880b302b12

− 2474619113242080a11b
3
02b12 + 236500649602560a211b

3
02b12 + 1507434908066640a311b

3
02b12

− 910480961688480a411b
3
02b12 + 175457831965920a511b

3
02b12 − 17971594709040a611b

3
02b12

− 5256761511682800b402b12 + 16987259209105920a11b
4
02b12 − 18157750313754660a211b

4
02b12

+ 8215537780193100a311b
4
02b12 − 1795612130011560a411b

4
02b12 + 200511789181200a511b

4
02b12

− 4669268518152000b502b12 + 5004834041536560a11b
5
02b12 − 657639017705880a211b

5
02b12

− 6343754971680a311b
5
02b12 + 104729559467400a411b

5
02b12 + 5598142850280960b602b12

− 8643293133896400a11b
6
02b12 + 3814699136704260a211b

6
02b12 − 769548853088820a311b

6
02b12

+ 1356904316940480b702b12 − 1161874565082000a11b
7
02b12 − 195029751858480a211b

7
02b12

− 946336014790320b802b12 + 946336014790320a11b
8
02b12 + 61728361776000a11b

2
12

− 96375180535200a211b
2
12 − 265197927528000a311b

2
12 + 864193892927688a411b

2
12

− 1047245204783016a511b
2
12 + 720476017627176a611b

2
12 − 306492003578448a711b

2
12

+ 80225339705208a811b
2
12 − 12179708508744a911b

2
12 + 866412897336a1110b

2
12

− 1313183911890000b02b
2
12 + 3765003863478000a11b02b

2
12 − 1902758630958900a211b02b

2
12

− 4646449960820016a311b02b
2
12 + 8700636376201392a411b02b

2
12 − 7209914913510654a511b02b

2
12

+ 3534652185864414a611b02b
2
12 − 1069426612778736a711b02b

2
12 + 191414835716760a811b02b

2
12

− 17703207261138a911b02b
2
12 + 618608774238a1110b02b

2
12 − 2811572911827200b202b

2
12

+ 2712081258615600a11b
2
02b

2
12 + 8658595516552052a211b

2
02b

2
12 − 21817498985973734a311b

2
02b

2
12

+ 21626028962543714a411b
2
02b

2
12 − 11962876028090647a511b

2
02b

2
12 + 3973369699464226a611b

2
02b

2
12

− 761693239781386a711b
2
02b

2
12 + 77164890414672a811b

2
02b

2
12 − 3668789532737a911b

2
02b

2
12

+ 5964575133957800b302b
2
12 − 17939694466334384a11b

3
02b

2
12 + 22318026167430378a211b

3
02b

2
12
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− 14735218650821308a311b
3
02b

2
12 + 5329620360327143a411b

3
02b

2
12 − 372043315505272a511b

3
02b

2
12

− 324710534850138a611b
3
02b

2
12 + 89073183143800a711b

3
02b

2
12 − 8127601038499a811b

3
02b

2
12

+ 8686621642788888b402b
2
12 − 62888501067656a11b

4
02b

2
12 − 20327450894869064a211b

4
02b

2
12

+ 27486980368797409a311b
4
02b

2
12 − 17208313003002872a411b

4
02b

2
12 + 5481271297882039a511b

4
02b

2
12

− 885145354153178a611b
4
02b

2
12 + 66645574401294a711b

4
02b

2
12 − 13085124106321980b502b

2
12

+ 23070057464239700a11b
5
02b

2
12 − 28433322106804959a211b

5
02b

2
12 + 16745528154544130a311b

5
02b

2
12

− 4627859687526003a411b
5
02b

2
12 + 538483491464792a511b

5
02b

2
12 − 649885280040a611b

5
02b

2
12

− 2931481772915424b602b
2
12 − 2226100854005816a11b

6
02b

2
12 + 9004246880868680a211b

6
02b

2
12

− 7568683603910065a311b
6
02b

2
12 + 2459223371694754a411b

6
02b

2
12 − 355353113837829a511b

6
02b

2
12

+ 5586599907276144b702b
2
12 − 10594463032771372a11b

7
02b

2
12 + 8927957712983633a211b

7
02b

2
12

− 2740909868015806a311b
7
02b

2
12 + 240319302712881a411b

7
02b

2
12 + 344305034440904b802b

2
12

− 98964076947056a11b
8
02b

2
12 − 834986949428600a211b

8
02b

2
12 + 589645991934752a311b

8
02b

2
12

− 589556032293932b902b
2
12 + 1179112064587864a11b

9
02b

2
12 − 589556032293932a211b

9
02b

2
12

− 15791019040200a11b
3
12 − 378988663137120a211b

3
12 + 1065697829092410a311b

3
12

− 1336030289250684a411b
3
12 + 922024329715608a511b

3
12 − 370551538066176a611b

3
12

+ 88014941090538a711b
3
12 − 11463106613700a811b

3
12 + 501566206764a911b

3
12 + 823270584383600b02b

3
12

+ 1304120543691520a11b02b
3
12 − 6824400572993030a211b02b

3
12

+ 10880335110555623a311b02b
3
12 − 8886195476719627a411b02b

3
12 + 4115663682406832a511b02b

3
12

− 1086500661017238a611b02b
3
12 + 151333879271113a711b02b

3
12 − 8862615635993a811b02b

3
12

− 3179166599086980b202b
3
12 + 14303757179371960a11b

2
02b

3
12 − 27821375837704111a211b

2
02b

3
12

+ 27315702828360809a311b
2
02b

3
12 − 14440744119124418a411b

2
02b

3
12 + 4057465602673654a511b

2
02b

3
12

− 567707346024123a611b
2
02b

3
12 + 36314951785049a711b

2
02b

3
12 − 15094671599463680b302b

3
12

+ 25360709448656992a11b
3
02b

3
12 − 28829454903762688a211b

3
02b

3
12 + 15447407491720941a311b

3
02b

3
12

− 3454311259925265a411b
3
02b

3
12 + 140995589951903a511b

3
02b

3
12 + 33482109131217a611b

3
02b

3
12

− 4168401626452144b402b
3
12 + 1561381746811636a11b

4
02b

3
12 + 8083809233690693a211b

4
02b

3
12

− 8786014632746015a311b
4
02b

3
12 + 2939347485612195a411b

4
02b

3
12 − 410544966705765a511b

4
02b

3
12

+ 9652063969809484b502b
3
12 − 21526479767881948a11b

5
02b

3
12 + 18521519748817496a211b

5
02b

3
12

− 4984635553061720a311b
5
02b

3
12 + 492651544311708a411b

5
02b

3
12 + 7463471217925436b602b

3
12

− 9264562240459356a11b
6
02b

3
12 + 1072171687798096a211b

6
02b

3
12 + 728919334735824a311b

6
02b

3
12

− 671452602478552b702b
3
12 + 2621251225414484a11b

7
02b

3
12 − 1949798622935932a211b

7
02b

3
12

− 1179112064587864b802b
3
12 + 1179112064587864a11b

8
02b

3
12 − 94393267991000a11b

4
12

+ 429205635419600a211b
4
12 − 638693619085630a311b

4
12 + 451995235349324a411b

4
12

− 172689224812888a511b
4
12 + 35713543384820a611b

4
12 − 2518103047586a711b

4
12 + 213085652420000b02b

4
12

− 2244024610098400a11b02b
4
12 + 4433965040427970a211b02b

4
12 − 3922219151642558a311b02b

4
12

+ 1732937799673278a411b02b
4
12 − 382638593386938a511b02b

4
12 + 34562240504568a611b02b

4
12

+ 3022236333749300b202b
4
12 − 9267217588901760a11b

2
02b

4
12 + 11372679837292086a211b

2
02b

4
12

− 5967901378964926a311b
2
02b

4
12 + 1403794513757394a411b

2
02b

4
12 − 148005598398126a511b

2
02b

4
12

+ 6369389198356560b302b
4
12 − 13149313438274792a11b

3
02b

4
12 + 8684596524474492a211b

3
02b

4
12

− 1781649667952968a311b
3
02b

4
12 + 122330412001460a411b

3
02b

4
12 + 5697253565779424b402b

4
12

− 5906103481893784a11b
4
02b

4
12 − 321870295180704a211b

4
02b

4
12 + 583554551072060a311b

4
02b

4
12

+ 2014063890247692b502b
4
12 + 2198211861693888a11b

5
02b

4
12 − 1573347824572872a211b

5
02b

4
12

− 1196708243691952b602b
4
12 + 1541103237773676a11b

6
02b

4
12 − 589556032293932b702b

4
12

+ 56570891332600a11b
5
12 − 134861384906440a211b

5
12 + 103657131846240a311b

5
12 − 38917637205608a411b

5
12

+ 4053617709176a511b
5
12 − 178936013927800b02b

5
12 + 696055160643540a11b02b

5
12

− 738972301255100a211b02b
5
12 + 319960374810356a311b02b

5
12 − 47762701617988a411b02b

5
12

− 846064393377660b202b
5
12 + 1710215641090420a11b

2
02b

5
12 − 990677990744772a211b

2
02b

5
12

+ 211573610369436a311b
2
02b

5
12 − 1250355346513840b302b

5
12 + 1304907048249684a11b

3
02b

5
12

− 416207025366892a211b
3
02b

5
12 − 643391050491468b402b

5
12 + 407355819249004a11b

4
02b

5
12

− 180950606772496b502b
5
12 − 8114966077400a11b

6
12 + 12823347424160a211b

6
12 − 2047352882120a311b

6
12

+ 22683188182200b02b
6
12 − 60368215327560a11b02b

6
12 + 18279625917840a211b02b

6
12

+ 72341359365240b202b
6
12 − 55083101815000a11b

2
02b

6
12 + 49364359801680b302b

6
12.
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