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HIGH ORDER PARAMETER-UNIFORM
CONVERGENT HDG METHOD FOR

SINGULARLY PERTURBED
CONVECTION-DIFFUSION PROBLEM

Yaxiang Li1 and Jiangxing Wang2,†

Abstract In this paper, a high order hybridizable discontinuous Galerkin
method (HDG) on two layer-adapted meshes have been developed for the sin-
gularly perturbed convection-diffusion problems in one and two-dimensional.
The existence and uniqueness of the HDG solutions are verified. Thanks to
the implementation of two-type different anisotropic meshes, i.e., the Shishkin
and an improved grade meshes, the uniform 2k+1-order super-convergence is
obtained for both one-dimensional and two-dimensional cases.

Keywords Hybridizable discontinuous Galerkin method, uniform conver-
gence, convection-diffusion, singularly perturbed.
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1. Introduction
In this paper, we consider a singularly perturbed convection-diffusion problem of
the form

−ϵ∆u+ β · ∇u+ cu = f in Ω, (1.1)
u = g on ∂Ω, (1.2)

where Ω ∈ Rd(d = 1, 2, 3), 0 < ϵ ≪ 1 denotes the diffusion parameter, β(x, y) >
(β1, β2) > (0, 0) denotes the convection coefficient, c(x, y) ≥ 0 denotes the reaction
coefficient and the function f(x, y) denotes a given source term. Further, we assume
that β, c and f are sufficiently smooth on Ω̄ and c − 1

2divβ > c0 > 0 for some
constant c0. In deed, these hypotheses guarantee that our model problem has a
unique solution in H2(Ω) ∩H1

0 (Ω) for all f ∈ L2(Ω) [20]. On the other hand, it is
known when ϵ → 0, the solution of the model problem usually exhibits boundary
layers at the outflow boundary of Ω [13, 21]. Therefore, the standard method fails
to produce an accurate numerical solution unless the mesh size is smaller than the
singular perturbation parameter ϵ.

The HDG methods were introduced in [2] in the framework of steady-state dif-
fusion as part of the effort of devising efficient implicit discontinuous Galerkin(DG)
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methods for solving elliptic PDE systems. In comparison with the DG method,
the HDG methods guarantee that only degrees of freedom of scalar variable on
inter-element boundaries are globally coupled and that the approximate gradient
attains optimal order of convergence for elliptic problems [3]. Since the HDG meth-
ods inherit many attractive features of DG methods like high parallelize ability,
easy to achieve hp-adaptivity, they have been widely used to solve many kinds of
problems [4–6,8, 15].

However, the parameter-uniform convergent HDG method had been bypassed
in all developed numerical methods when the DG-related methods are applied to
solve the singularly perturbed problem. For instance, in [9–11, 14, 16–21], the au-
thors proposed some discontinuous Galerkin (DG) or local discontinuous Galerkin
(LDG) method for singularly perturbed problem. Among them, the parameter-
uniform numerical methods employing layer-adapted meshes, such as a Shishkin
or a Bakhvalov mesh, ensure a uniform convergence for the singularly perturbed
convection-dominated problems. We note that there is some related papers con-
cerning with using the HDG method for convection-diffusion equation [1, 7, 12].
But, none of them reaches the parameter-uniform convergent which is important
for the numerical method for the singularly perturbed problem. Hence, it remains
unknown how the HDG method be applied to solve the singularly perturbed prob-
lem to achieve uniform convergence. Therefore, in this paper, we develop a high
order parameter uniform HDG method on two-type layer-adapted meshes for one
and two dimensional singularly perturbed problem. The numerical results exhibit
that the HDG method does not produce any oscillation even under uniform meshes
for arbitrary � for both 1-D and 2-D cases. On the other hand, the 2k + 1 order
uniform superconvergence of numerical fluxes are observed numerically for the HDG
method under both meshes. Here the so-called “uniform convergence” means that
the convergence rate is uniformly valid with respect to ϵ. It is worthwhile to point
out that theoretical analysis of the uniform convergence is extremely difficult and
remains an open problem for the HDG method.

The rest of this paper is organized as follows. In section 2, we present the detail
of our numerical scheme and the two-type layer-adapted meshes. Section 3 gives
several numerical experiments about uniform and two-type layer-adapted meshes to
verify HDG’s numerical accuracy, i.e., uniform convergence and super-convergence.
Finally, we conclude in Section 4.

2. Numerical Scheme
2.1. layer-adapted meshes
We simplify introduce the Shishkin mesh and the graded mesh which was used to
solve our model problem when ϵ is small. Define the transition parameter

τx = min{1
2
,
κ

β1
ϵ lnN}. (2.1)

Then the domain [0, 1] is divided into two parts: Ω0 = (0, 1−τx), Ωx = (1−τx, 1).
Each sub-domain is equally decomposed into N interval. Therefor, the mesh is
composed of 2N elements. While there are 2N + 1 nodes xi, i = 0, · · · , 2N .

For the graded meshes, we also need to use the parameter τx, the domain Ω0,Ω1

above. The difference of the graded mesh and Shishkin mesh lies that the partition
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xj(j = N/2 + 2, · · · , N + 1) are given by

xj = 1− τx((N + 1− j)h)λ, j = N/2 + 2, · · · , N + 1, (2.2)

where λ is a mesh parameter which is greater than or equal to 1 in practical compu-
tation. It is apparent that the Shishkin mesh is the special case of improved grade
mesh with λ = 1. With increasing λ, more and more mesh points will concentrate
in the neighborhood of 1. Consequently the solution is approximated well on the
boundary layer.

For the 2D/3D case, we use the tensor product Shishkin meshes and improved
graded meshes.

2.2. HDG scheme
To give a clear presentation of the HDG method, here we introduce some com-
putational concepts and notations. Denote by Th the finite element partition of
Ω. For K ∈ Th, denote by hK = diam(K) its diameter, and h = maxK∈Th

hK

the mesh size of Th. Denote by Eh = ∪K∈Th
∂K the skeleton of the mesh, and set

EB
h = Eh ∩ ∂Ω, EI

h = Eh \ EB
h .

In order to define the HDG scheme, we first rewrite (1.1) into a first order system

q+ ϵ∇u = 0 in Ω,

∇ · q+ β · ∇u+ cu = f in Ω.
(2.3)

On each element K ∈ Th, we denote by n the outward normal direction on the
boundary ∂K, and define the following local finite element spaces

Vh = {v ∈ L2(Ω) : v|K ∈ [P k(K)]d,∀K ∈ Th},
Wh = {w ∈ L2(Ω) : w|K ∈ [P k(K)],∀K ∈ Th},
Mh = {µ ∈ L2(Eh) : µ|K ∈ P k(e),∀e ∈ Eh},
Mh(g) = {µ ∈ Mh : ⟨µ, ξ⟩∂Ω = ⟨g, ξ⟩∂Ω,∀ξ ∈ Mh},

where P k(K) denotes the space of polynomials of total degree not larger than k ≥ 0
defined on K, and ⟨u, v⟩∂Th

=
∑

K∈Th
⟨u, v⟩∂K .

Multiplying (2.3) by the test function v, w and integrating by parts leads to

(q,v)K + ϵ(u,∇ · v)K − ϵ⟨u,v · n⟩∂K = 0,

− (q,∇w)K−(u, β · ∇w)K+⟨q·n, w⟩∂K+⟨uβ ·n, w⟩∂K+c(u,w)K=(f, w)K .
(2.4)

Based on the above weak formulation, we can define our the HDG formulation as:
find (qh, uh, ûh) ∈ Vk

h ×W k
h ×Mh(g) such that

(qh,v)Th
+ ϵ(uh,∇ · v)Th

− ϵ⟨ûh,v · n⟩∂Th
= 0,

−(qh,∇w)Th
−(uh, β ·∇w)Th

+⟨q̂h ·n, w⟩∂Th
+⟨ûhβ ·n, w⟩∂Th

+c(uh, w)Th
=(f, w)Th

,

⟨ûh, µ⟩∂Ω = ⟨g, µ⟩∂Ω, (2.5)
⟨q̂h · n, µ⟩∂Th\∂Ω = 0,

for all (v, w, µ) ∈ Vh ×Wh ×Mh, where the numerical flux q̂h is choosing as

q̂h · n = qh · n+ τ(uh − ûh), (2.6)

with τ denotes some positive function defined on ∂Th satisfies τ − 1
2β · n ≥ 0.
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Theorem 2.1. The system (2.5) has a unique solution qh, uh, ûh.

Proof. Taking v = qh, w = uh, µ = ûh in (2.5), and then summing them together,
we have

ϵ−1∥qh∥20 + ⟨(τ − 1

2
β · n)uh − ûh, uh − ûh⟩∂Th

+ ((c− 1

2
∇ · β)uh, uh)Th

= (f, uh)Th
.

where we have used the fact that

(β · ∇uh, uh)K = −1

2
((divβ)uh, uh)K +

1

2
< (β · n)uh, uh >∂K ,

Hence, if f = 0, we can derive qh = 0, ûh = 0 and uh = 0.

3. Numerical result
In this section, we present some numerical examples using simple model problems
in both 1D and 2D to verify display the performance of the HDG methods when
the exact solution with or without layers.

3.1. 1D numerical result
Example 3.1 (A smooth solution test in 1D). In this example, we choose ϵ = 1, b =
1, c = 0 and the right hand side f , such that the exact solution is u = sin(πx). This
numerical experiment was performed on uniform meshes. The corresponding error
and convergent order are list in Table 1. From it, we conclude that the HDG method
approximate are convergent at a rate of O(hk+1) for both u and q in L2 norms.
Meanwhile, it has a super-convergent order of O(h2k+1) for the numerical flux ûh.

Table 1. The convergence rate of L2 error on uniform mesh

k h ||u− uh||0 order ||q − qh||0 order ||û− u||∞ order
k=1 1/8 5.0707e-03 4.7136e-03 1.1214e-04

1/16 1.2985e-03 1.9653 1.2047e-03 1.9681 1.4597e-05 2.9416
1/32 3.2830e-04 1.9838 3.0429e-04 1.9852 1.8588e-06 2.9731
1/64 8.2520e-05 1.9922 7.6446e-05 1.9929 2.3461e-07 2.9860
1/128 2.0685e-05 1.9962 1.9158e-05 1.9965 2.9541e-08 2.9895

k=2 1/8 1.2327e-04 1.2081e-04 8.4854e-08
1/16 1.5661e-05 2.9765 1.5338e-05 2.9776 2.7143e-09 4.9663
1/32 1.9720e-06 2.9895 1.9305e-06 2.9900 8.5843e-11 4.9827
1/64 2.4734e-07 2.9951 2.4209e-07 2.9953 4.0762e-12 4.3964

Example 3.2 (A boundary layer test in 1D). We consider the one dimension case
in this example. We take b = 1, c = 0, f = ex and u0 = u1 = 0. Therefore, the
exact solution is

u =
ex(1− e−

1
ϵ ) + e1−

1
ϵ − 1 + (1− e)e

x−1
ϵ

(1− ϵ)(1− e−
1
ϵ )

. (3.1)
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Plotted in Fig.1 are the numerical traces ûh and q̂h under uniform mesh with
ϵ = 10−6and N = 32, respectively. We see that the HDG solutions do not have
any oscillatory behavior even for small ϵ under uniform meshes. In other words, the
HDG method is more local than the finite element and finite difference methods.
Meanwhile, we can obtain that the condition c − 1

2divβ ≥ c0 is not an necessary
condition in this HDG scheme. On the other hand, numerical results presented
in Table 2–3 show that the convergence rate of uh,qh, ûh for Shishkin mesh and
improved graded meshes, respectively. We conclude that, under both meshes, the
2k+1-order uniform super-convergence of numerical flux û is observed for 1D case.
This uniform convergence rate of qh and super-convergence result of ûh are a re-
markable observation which is reported for the first time in the literature to our
knowledge.

Table 2. The convergence rate of L2 error for k = 2 on Shishkin mesh

ϵ h ||eu||0 order ϵ−
1
2 ||eq||0 order ||û− u||∞ order

1.0e-10 1/8 2.0156e-04 2.5474e-01 5.8555e-02
1/16 2.4361e-05 3.0486 7.3149e-02 1.8001 1.2236e-02 2.6522
1/32 2.9967e-06 3.0231 1.3631e-02 2.4240 9.6365e-04 3.9780
1/64 3.7167e-07 3.0113 1.9924e-03 2.7743 3.7373e-05 4.8807
1/128 4.6278e-08 3.0056 2.6426e-04 2.9144 1.2390e-06 4.8242

1.0e-12 1/8 2.0155e-04 3.2537e-01 5.8555e-02
1/16 2.4350e-05 3.0491 2.2537e-01 1.6109 1.2236e-02 3.3789
1/32 2.9937e-06 3.0239 2.1902e-02 2.2820 9.6365e-04 4.4901
1/64 3.7115e-07 3.0118 3.3432e-03 2.7118 3.7373e-05 4.8633
1/128 4.6205e-08 3.0059 4.3923e-04 2.9282 1.2390e-06 4.7267
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Figure 1. u and ûh (left), q and q̂h (right) under uniform mesh, N = 32, k = 1, ϵ = 10−6.

3.2. Numerical result in 2D
Example 3.3. Firstly, we consider the problem with β = (1, 1), c = 1, ϵ = 1 on a
unit square Ω=[0, 1]2. The right hand side is chosen such that the exact solution is

u = sin(x) sin(y).
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Table 3. The convergence rate of L2 error for k = 2 on grade mesh

ϵ h ||eu||0 order ϵ−
1
2 ||eq||0 order ||û− u||∞ order

1.0e-10 1/8 2.0162e-04 4.1909e-01 4.3007e-02
1/16 2.4361e-05 3.0486 7.1986e-02 2.5145 6.8413e-03 2.6522
1/32 2.9967e-06 3.0231 9.9784e-03 2.8509 4.3415e-04 3.9780
1/64 3.7167e-07 3.0113 1.3115e-03 2.9276 1.4736e-05 4.8807
1/128 4.6278e-08 3.0056 1.6804e-04 2.9643 5.2019e-07 4.8242
1/256 5.7735e-09 3.0028 2.2112e-05 2.9259 1.8657e-08 4.8013

1.0e-12 1/8 2.0155e-04 3.2537e-01 5.8555e-02
1/16 2.4350e-05 3.0491 1.0652e-01 1.6109 1.2236e-02 2.2587
1/32 2.9937e-06 3.0239 2.1902e-02 2.2820 9.6365e-04 3.6665
1/64 3.7115e-07 3.0118 3.3432e-03 2.7118 3.7373e-05 4.6885
1/128 4.6205e-08 3.0059 4.3923e-04 2.9282 1.2390e-06 4.9147
1/256 5.7641e-09 3.0029 7.9211e-05 2.4712 4.2261e-08 4.8738

This numerical experiment was performed on uniform rectangle partitions of the
domain. The corresponding error and convergent order are list in Table 4. From
it, we conclude that the HWG method approximate are convergent at a rate of
O(hk+1) for both u and q in L2 norms.

Table 4. The convergence rate for example 3.1

k N Erroru order Errorq order
1 4 1.0843e-3 3.7391e-3

8 2.8654e-4 1.9200 1.0774e-3 1.7951
16 7.4635e-5 1.9408 3.0697e-4 1.8114
32 1.9196e-5 1.9590 8.7475e-5 1.8112
64 4.8920e-6 1.9723 2.5057e-5 1.8037

2 4 3.2293e-5 9.4870e-5
8 4.0544e-6 2.9937 1.2465e-5 2.9281
16 5.0895e-7 2.9939 1.6384e-6 2.9275
32 6.3831e-8 2.9952 2.1672e-7 2.9184
64 7.9986e-9 2.9964 2.8974e-8 2.9030

3 4 3.6486e-7 1.3215e-6
8 2.3658e-8 3.9469 9.3925e-8 3.8145
16 1.5144e-9 3.9655 6.6827e-9 3.8130
32 9.6159e-11 3.9772 4.7804e-10 3.8052
64 6.0795e-12 3.9834 3.4647e-11 3.7863

Example 3.4. A boundary layer test in 2D. We consider our model Problem with
Ω = [0, 1]2,β = [1, 1]′, c = 1. The right side term f is properly chosen such that the
exact solution is

u = xy(1− e
−(1−x)

ϵ )(1− e
−(1−y)

ϵ ).
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The convergence behaviors of the HDG solution of Example 3.3 are similar to
Example 3.2. Hence, we only list the convergence behaviors on Shishkin mesh in
Table 5. Our numerical results show that, under Shishkin meshes, the ϵ uniform
convergence rate of qh is observed for 2-D case. Moreover, it is clear that higher
order methods lead to better approximation results and are computationally cheaper
than lower order methods for similar numerical results.

Table 5. The convergence rate for example 3.2
k N ϵ ||eu||0 order ϵ−

1
2 ||eq||0 order ϵ ||eu||0 order ϵ−

1
2 ||eq||0 order

1 4 1.0e-4 1.07e-3 1.10e-3 1.0e-6 2.94e-4 2.10e-3
8 6.05e-4 1.99 6.40e-4 1.89 1.36e-4 2.69 6.40e-4 4.13
16 2.91e-4 1.80 3.12e-4 1.76 3.33e-5 3.47 3.12e-4 1.77
32 1.25e-4 1.80 1.31e-4 1.84 1.26e-5 2.06 1.31e-5 1.83
64 4.81e-5 1.88 4.99e-5 1.90 4.81e-6 1.88 4.99e-5 1.90

2 8 1.54e-4 9.07e-5 1.27e-4 9.07e-5
16 3.02e-5 4.01 2.82e-5 2.89 1.38e-5 5.47 2.82e-5 2.89
32 7.11e-6 3.07 7.21e-6 2.90 1.50e-6 4.72 7.21e-6 2.90
64 1.58e-6 2.95 1.61e-6 2.94 2.00e-7 3.94 1.61e-6 2.94

In Fig 2, we plot the exact solution and computational results for ϵ = 10−6 in a
Shishkin mesh with 256 elements. It can be concluded that the HDG method plays
well in solving singularly perturbed problem.
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Figure 2. From left to right: exact solution, Numerical solution k = 2, and Numerical solution k = 3
for ϵ = 1.0e − 6.

4. Conclusion
In this paper, the HDG method was implemented to solve the singularly perturbed
convection-diffusion equations. The existence and uniqueness of the HDG solution
is verified first. Then, under the uniform and two-type layer-adapted meshes in one
and two dimensional settings, numerically we demonstrate that the combination of
HDG methods and the layer-adapted meshes is a robust approach for solving singu-
larly perturbed problems. Our numerical results show that the HDG method does
not produce any oscillation even under the uniform mesh for 1-D. More significantly,
under the layered adapted meshes, the optimal convergent order and 2k + 1-order
uniform super-convergence of numerical fluxes are observed for both 1-D and 2-D
cases. This uniform super-convergence result is a remarkable observation which is
reported for the first time in the literature to our knowledge. The analysis of uni-
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form convergence and super-convergence property will be considered in our further
study.
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