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STRUCTURAL AND PRACTICAL
IDENTIFIABILITY ANALYSES ON THE

TRANSMISSION DYNAMICS OF COVID-19 IN
THE UNITED STATES∗
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Abstract We formulate an epidemic model to capture essential epidemiology
of COVID-19 and major public health interventions. We start with a system of
differential equations involving six compartments, and we use the Goodman
and Weare affine invariant ensemble Markov Chain Monte Carlo algorithm
(GWMCMC) to identify a simplified version of the full model that consists of
only four compartments. We examine well-posedness of the relevant param-
eter estimation problem for the given observations using the U.S. epidemic
data; study the reliability of model selection; analyze the structural identifi-
ability of the selected model; and conduct a practical identifiability analysis
on the selected model using the GWMCMC algorithm. Our study shows that
the selected model is structurally identifiable for the confirmed cases, and for
small measurement errors, key parameters such as the transmission rate are
practically identifiable. We also analyze the stability of the selected model and
prove the global asymptotic stability of the disease-free equilibrium and the
endemic equilibrium by constructing appropriate Lyapunov functions. Our
numerical experiments show that the U.S. will undergo damped transit oscil-
lations towards the endemicity.

Keywords Dynamic model, COVID-19, model selection, identifiability anal-
ysis
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1. Introduction
COVID-19 emerged in late 2019 has caused a pandemic, and triggered multiple
waves of mathematical modeling activities. Differential equation models have been
used to estimate the key ecological parameters, to understand the epidemiological
process, and to evaluate effectiveness of control measures [3,4,11,16,18,19,27,28,35].
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A standard method of using dynamical models to study epidemic trends is to
formulate a model mechanistically based upon the epidemiological characteristics
and the available data before calibrating the model. This method is criticized for its
ignoring data characteristics leading to concern on credibility of analytical results
from the model. Model selection criteria have been developed to strengthen the
model’s credibility and generalizability. The Akaike information criterion [1] and
The Bayesian information criterion [25] are two common criteria for model selection.
For example, Eisenberg et al. [8] applied the SIWR model to data obtained from
a cholera outbreak in 2006 in Angola. They used model selection to compare the
relative importance of the direct or indirect environmental/waterborne transmission
routes in the outbreak. The results showed that both direct and indirect modes of
transmission were important for explaining the Angola outbreak. Model selection
is often used in microscopic models to test the biological assumption to determine
if it fits the experimental data [21, 33]. Therefore, an optimal model that can best
represent observed data and can be used for sequent analyses and predictions can
provide credible information to inform decision making.

Parameter values directly impact on the reliability of an established mathemat-
ical model. Values of key parameters are obtained either through the laboratory
or data fitting. Due to the limited availability of surveillance data, we can only fit
the finite data to estimate parameters in the model. Therefore, it may lead to the
non-uniqueness of the parameter values to cause parameter non-identifiability (i.e.,
there are a variety of parameter combinations that will achieve the best fitting effect
between the model and data, the prediction results produced by different parameter
combinations may be very different). Therefore, it is very important to explore the
well-posedness of the parameter estimation problem for any given observations in
an epidemic model. If a model is not identifiable, it is difficult to guarantee the
reliability of the estimated parameters.

Model parameters’ identifiability analyses include structural and practical iden-
tifiability. The former is carried out under the assumption that the data are noise-
free [2, 5, 8, 22]. The latter, on the other hand, is carried out when the data is
affected by noise [8, 20, 30]. For any given large set of error-free data points, the
model is considered structurally identifiable if it is theoretically possible to uniquely
determine the parameter values from these observations. However, the model is not
structurally identifiable if two or more parameter sets can lead to the same obser-
vational output. On the other hand, a structurally identifiable model may not be
practically identifiable. It may be defined as the ability to estimate a given set
of parameters with an accuracy considered satisfactory according to the context
of the study [13, 29]. In a practical identifiability analysis, if the estimated val-
ues of the parameter are not sensitive to measurement errors and can always be
well estimated, we say that the estimated value of the parameter is “acceptable”
or practically identifiable. If the estimated values of the parameter are quite sen-
sitive to measurement errors, we claim that they are “unacceptable” or practically
unidentifiable [22]. For example, Tuncer et al. [30] performed both structural and
practical identifiability analyses to classical epidemic models such as SIR, SEIR,
and epidemic model with the treatment class (SITR), using different types of data
sets. These findings suggest that health agencies should report prevalence rather
than incidence for the best result of model identifiability.

In general, there are two optimization schemes for non-identifiable parameters:
The first approach is to add independent data sets and use multiple data to fit the
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parameters [31], and another approach is to adopt better fitting algorithms [24].
The Goodman and Weare affine invariant ensemble Markov Chain Monte Carlo
algorithm(GWMCMC) is the most efficient fitting method nowadays [12,23,34]. The
algorithm combines affine invariant ensemble with the traditional MCMC algorithm.
It uses many walkers to iterate simultaneously, and the next position for any one
walker is suggested by an affine invariant transformation which is constructed using
the current positions of the other walkers [12]. Its performance is not affected
by affine transformations of space. Even in the face of non-identifiability, it can
converge to the target posterior distribution quickly.

In this paper, we formulate a general ODE compartmental model based on
COVID-19 epidemiology and data from the United States(U.S.) to carry out model
selection and identifiability analysis to predict the epidemic in the U.S. In the
following section, a general ODE compartmental model (including four special cases)
is formulated, and the AICc criterion is used for model selection. In Section 3, we
analyze the structural and practical identifiability of the best model. In Section 4,
considering the changes of control measures, we add the social distance term and
vaccination to the model. Some unknown parameters of the model have fitted again,
and compare the epidemic trends in the United States under different scenarios.

2. The transmission dynamics with constant recruit-
ment: global convergence to endemic states

In this section, we build a general ODE compartmental model for COVID-19. Let
S(t), E(t), A(t), I(t), Q(t) and R(t) denote the number of susceptible, exposed,
asymptomatic, symptomatic individuals who are not diagnosed, diagnosed and re-
covered individuals at time t respectively. In this model, we consider the popu-
lation’s constant recruitment rate and allow recovery individuals to be susceptible
since some recovered individuals have a low level of antibody [14]. The compartment
diagram of the model is shown in Fig 1.

Figure 1. The compartment diagram of the full-model. λ is the constant recruitment rate; β is the
transmission rate of I compartment; ηi, i = E,A,Q are the multiple of the transmission rate of E , A and
Q compartment relative to I compartment respectively; c is the proportion of asymptomatic infection;
γi, i = A, I,Q represent the recovery rate of A , I and Q compartment respectively; δi, i = I,Q
represent the disease-induced death rate of I and Q compartment respectively; 1

α is the incubation
period; qi, i = A, I represent the detection rate of A and I compartment respectively; ξ is the rate of
the recovered patients return to the susceptible population due to the weakening or disappearance of
antibodies; ω is the natural mortality rate which is not shown in the figure.
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The general ODE compartmental model corresponding to the compartment di-
agram is as follows.

dS

dt
= λ− βS(I + ηEE + ηQQ+ ηAA) + ξR− ωS,

dE

dt
= βS(I + ηEE + ηQQ+ ηAA)− αE − ωE,

dA

dt
= αcE − qAA− γAA− ωA,

dI

dt
= α(1− c)E − qII − γII − δII − ωI,

dQ

dt
= qAA+ qII − γQQ− δQQ− ωQ,

dR

dt
= γAA+ γII + γQQ− ξR− ωR.

(2.1)

2.1. Model selection
The full compartment model (2.1) can be simplified to various extents, based on
different biological hypotheses, leading to different simplified models as shown in
Table 1. We worry that “simplicity” may make us ignore some important factors
describing the disease transmission. Therefore, we perform model selection to de-
termine the best model that explains the data.

Table 1. List of models

Models Assumptions Biological meaning

Model
1

Full model Distinguish between asymptomatic and
symptomatic, suppose the recovery can be

re-infected
Model

2
ξ = 0 Distinguish between asymptomatic and

symptomatic, suppose the recovery will
not be re-infected

Model
3

c = 0, qA = 0, γA = 0 Not distinguish between asymptomatic
and symptomatic, suppose the recovery

can be re-infected
Model

4
ξ = 0, c = 0, qA =

0, γA = 0
Not distinguish between asymptomatic
and symptomatic, suppose the recovery

will not be re-infected

Annotation. I(t) of Model 1 and Model 2 denote the number of symptomatic individuals who are
not diagnosed at time t. While I(t) of Model 3 and Model 4 denote the number of infections who are
not diagnosed at time t.

The Akaike Information Criterion (AIC) is a standard model selection criterion.
But the criterion is only suitable when the number of time points is large in compar-
ison to the number of parameters to be estimated. Therefore, the following modified
AIC (AICc) should be used (see, [26], which is the AIC with a bias correction term
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for a small sample size).

AICc = −2ln(L(θ̂MLE)) + 2K +
2K(K + 1)

W −K − 1
,

where K is the number of unknown parameters, W is the sample size, L is the
likelihood function. The smaller the AICc value of the model, the better that the
model describes the data. In addition, we also calculate the BIC [25] to verify the
reliability of model selection.

To obtain some important parameters of COVID-19 in the natural state (with-
out any control measures), we select the number of remaining confirmed cases from
February 29 to March 14, 2020 in the U.S. to fit the unknown parameters (i.e.,
Data1). These data reflect the acceleration of virus transmission dynamics in the
population and avoid the influence of the prevention and control measures on fitting
the key transmission parameters. Since some model parameters have been reason-
ably estimated in other literature, we fix these parameters as constant values (see
Table 2). The key transmission parameters with local transmission characteristics
(e.g., the transmission rate) are fitted.

Table 2. Definition and values of the constant parameter in the general ODE compartmental model

Parameter Meaning Value Source
λ The constant recruitment into the susceptible population 10424 Calculated

1/α The incubation period 5.2 [17]
γA The recovery rate of A compartment 0.1397 [10]
γI The recovery rate of I compartment 0.0698 [10]
δI The disease-induced death rate of I 0.0412 [10]
γQ The recovery rate of Q compartment 1/10.4 [9]
δQ The disease-induced death rate of Q 0.015 [9]
ω The natural mortality rate 3.425e-5 [32]
Q0 The initial values of the confirmed cases reported 64 [7]
R0 The initial values of the recovery 0 [7]

Annotation. λ = N ∗ Λ/365, N denotes total population and Λ denotes birth rate.

In general, the observed data are always noisy. Method of maximum likelihood
under Bayesian inference for dynamical systems can estimate the the data noise [23].
We assume that the probability model for the observed data is a normal distribution
with mean given by Q(t) and variance given by 1

τ . Since the variance 1
τ of the noise

distribution is unknown, we also take it as one of the parameters to be estimated.
This paper uses the GWMCMC algorithm to calculate the posterior distributions
for all estimated parameters and the initial values. We can obtain the best-fit values
of the parameters and their 95% confidence intervals (95% CI) from the posterior
distribution. All parameter estimates for four models are shown in Table 3. The
results of model selection are shown in Table 4. As seen in Table 4, Model 4 has the
smallest AICc, with AICc=174.5, which means that Model 4 is the most suitable
model to explain the data. The BIC value also verifies this result. Therefore,
considering the two factors of classifying undetected infections as asymptomatic or
symptomatic and the recovered individuals can be re-infected or not, which can
describe the transmission process of COVID-19 in more detail. However, it is not
essential. Fig 2(a) and Fig 2(b) show the fitting curve and its corresponding 95%
confidence interval of Model 4 on Data 1 (the number of confirmed cases).
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Table 3. Model parameters and their fitted values

Par Model 1 Model 2 Model 3 Model 4
Best-fit
value

95% CI Best-fit
value

95% CI Best-fit
value

95% CI Best-fit
value

95% CI

β 1.03e-09 (8.56,
11.4)e-10

1.27e-09 (1.21,
2.51)e-09

1.02e-09 (9.40,
15.9)e-10

1.11e-09 (1.06,
1.57)e-09

ηE 0.53 (0.50, 0.67) 0.46 (0.10, 0.54) 0.65 (0.25, 0.78) 0.59 (0.31, 0.60)
ηA 0.82 (0.59, 0.89) 0.64 (0.27, 0.68) n/a n/a n/a n/a
ηQ 0.02 (0.01, 0.17) 0.17 (0.03, 0.37) 0.27 (0.001, 0.44) 0.12 (0.01, 0.28)
c 0.40 (0.40, 0.56) 0.55 (0.42, 0.64) n/a n/a n/a n/a
qA 0.002 (0.001, 0.004) 0.002 (0.001, 0.005) n/a n/a n/a n/a
qI 0.13 (0.11, 0.18) 0.24 (0.10, 0.28) 0.09 (0.07, 0.11) 0.09 (0.08, 0.13)
ξ 0.49 (0.35, 0.73) n/a n/a 0.33 (0.01, 0.97) n/a n/a
τ 2.08e-04 (9.89,

28.8)e-05
2.48e-04 (9.54,

32.9)e-05
1.80e-04 (8.28,

25.8)e-05
1.81e-04 (8.57,

26.5)e-05

E0 55 (53, 310) 58 (54, 505) 948 (765, 998) 927 (709, 999)
A0 2084 (1581, 2199) 1773 (1199, 1998) n/a n/a n/a n/a
I0 77 (50, 115) 51 (50, 107) 104 (100, 164) 76 (70, 142)

Annotation. 1
τ is the variance of data noise.

Table 4. List of AICc and BIC for each model

Models No. of parameter fitted AICc BIC Maximum likelihood

Model 1 12 321.13 173.63 2.26e-31
Model 2 11 251.70 171.49 1.70e-31
Model 3 8 184.87 166.54 3.48e-32
Model 4 7 174.57 163.53 4.05e-32
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Figure 2. Fitting results. (a) Fitting of Model 4 to the data of COVID-19 in the United States from
February 29 to March 14, 2020. (b) It’s 95% confidence interval.
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2.2. Stability analysis
In this section, we make a long-range forecast of Model 4 selected by AICc criterion
and mainly explore its global convergence to the endemic state.

First, we get the basic reproduction number (denoted as R0) [6] of Model 4 as:

R0 =
βηEλ

ω(α+ ω)
+

βλα

ω(qI + γI + δI + ω)(α+ ω)

+
βηQλαqI

ω(qI + γI + δI + ω)(γQ + δQ + ω)(α+ ω)
. (2.2)

We have the following conclusions about the equilibrium state and stability of Model
4.

Theorem 2.1. When R0 ≤ 1, the disease-free equilibrium P0 = ( λω , 0, 0, 0, 0) of
Model 4 is globally asymptotically stable.

Proof. Consider the Lyapunov function

V =
β(ηEAB + αB + ηQαqI)

ABC
E +

βB + βηQqI
AB

I +
βηQ
B

Q, (2.3)

where A = qI + γI + δI + ω,B = γQ + δQ + ω,C = α+ ω, then

V ′ =
β(ηEAB + αB + ηQαqI)

ABC
[βS(I + ηEE + ηQQ)− CE] +

βB + βηQqI
AB

(αE

−AI) +
βηQ
B

(qII −BQ)

=β(I + ηEE + ηQQ)

[
β(ηEAB + αB + ηQαqI)

ABC
S − 1

]
≤β(I + ηEE + ηQQ)(R0 − 1).

When R0 ≤ 1, the Lyapunov function V ′ ≤ 0. Furthermore, V ′ = 0 only if
E = I = Q = 0 or R0 = 1. The maximum invariant set in {(S,E, I,Q,R) : V ′ = 0}
is the singleton P0. According to LaSalle-Lyapunov theory [15], the disease-free
equilibrium P0 is globally asymptotically stable when R0 ≤ 1.

2.2.1. Long-range forecast: global convergence to the endemic state

In addition, when R0 > 1, Model 4 has an endemic equilibrium P ∗ = (S∗, E∗, I∗,
Q∗, R∗), where

S∗ =
λ

ω

1

R0
, E∗ =

λ

C

(
1− 1

R0

)
, I∗ =

αλ

AC

(
1− 1

R0

)
,

Q∗ =
qIαλ

ABC

(
1− 1

R0

)
, R∗ =

1

ω
(
αλγI
AC

+
qIαλγQ
ABC

)(1− 1

R0
).

We have the following theorem for the stability of P ∗:

Theorem 2.2. When R0 > 1, the endemic state P ∗ is globally asymptotically
stable for Model 4.
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Proof. Since the last variable of the system does not appear in the first four
equations, we can only consider the first four variables and transform Model 4 into
the following form: 

dS

dτ
= λ̃− β̃S(I + ηEE + ηQQ)− S,

dE

dτ
= β̃S(I + ηEE + ηQQ)− α̃E − E,

dI

dτ
= α̃E − ÃI − I,

dQ

dτ
= q̃II − B̃Q−Q,

(2.4)

where λ̃ =
λ

ω
, β̃ =

β

ω
, α̃ =

α

ω
, q̃I =

qI
ω
, Ã =

qI + γI + δI
ω

, B̃ =
γQ + δQ

ω
. Let the

right side of each of the four differential equations equal to zero in the system (2.4),
obtaining the equations:

λ̃

S∗ − β̃(I∗ + ηEE
∗ + ηQQ

∗) = 1,

β̃
S∗I∗

E∗ + β̃ηES
∗ + β̃ηQ

S∗Q∗

E∗ = α̃+ 1,

α̃
E∗

I∗
= Ã+ 1,

q̃I
I∗

Q∗ = B̃ + 1.

(2.5)

Substituting (2.5) into (2.4), we have:

dS

dτ
= S

[
λ̃

S
− λ̃

S∗ − β̃ηE(E − E∗)− β̃(I − I∗)− β̃ηQ(Q−Q∗)

]
,

dE

dτ
= E

[
β̃ηE(S − S∗) + β̃

(
SI

E
− S∗I∗

E∗

)
+ β̃ηQ

(
SQ

E
− S∗Q∗

E∗

)]
,

dI

dτ
= I

[
α̃

(
E

I
− E∗

I∗

)]
,

dQ

dτ
= Q

[
q̃I

(
I

Q
− I∗

Q∗

)]
.

(2.6)

Let x =
S

S∗ , y =
E

E∗ , z =
I

I∗
, u =

Q

Q∗ , then system (2.6) is equivalent to

x′ = x

[
λ̃

S∗

(
1

x
− 1

)
− β̃ηEE

∗(y − 1)− β̃I∗(z − 1)− β̃ηQQ
∗(u− 1)

]
,

y′ = y

[
β̃ηES

∗(x− 1) + β̃
S∗I∗

E∗

(
xz

y
− 1

)
+ β̃ηQ

S∗Q∗

E∗

(
xu

y
− 1

)]
,

z′ = z

[
α̃
E∗

I∗

(y
z
− 1

)]
,

u′ = u

[
q̃I

I∗

Q∗

( z
u
− 1

)]
.

(2.7)
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Consider the Lyapunov function

V =S∗ (x− 1− lnx) + E∗ (y − 1− ln y) +
β̃ηQS

∗I∗Q∗ + β̃S∗(I∗)2

α̃E∗ (z − 1− ln z)

+
β̃ηQS

∗(Q∗)2

q̃II∗
(u− 1− lnu) , (2.8)

then

V ′ =S∗
(
1− 1

x

)
x′ + E∗

(
1− 1

y

)
y′ +

β̃ηQS
∗I∗Q∗ + β̃S∗(I∗)2

α̃E∗

(
1− 1

z

)
z′

+
β̃ηQS

∗(Q∗)2

q̃II∗

(
1− 1

u

)
u′

=S∗(x− 1)

[
λ̃

S∗

(
1

x
− 1

)
− β̃ηEE

∗(y − 1)− β̃I∗(z − 1)− β̃ηQQ
∗(u− 1)

]

+ E∗(y − 1)

[
β̃ηES

∗(x− 1) + β̃
S∗I∗

E∗

(
xz

y
− 1

)
+ β̃ηQ

S∗Q∗

E∗

(
xu

y
− 1

)]
+

β̃ηQS
∗I∗Q∗ + β̃S∗(I∗)2

α̃E∗ (z − 1)

[
α̃
E∗

I∗

(y
z
− 1

)]
+

β̃ηQS
∗(Q∗)2

q̃II∗
(u− 1)

[
q̃I

I∗

Q∗

( z
u
− 1

)]
=β̃S∗I∗

(
3− xz

y
− y

z
− 1

x

)
+ β̃ηQS

∗Q∗
(
4− xu

y
− y

z
− z

u
− 1

x

)
+ [λ̃− (β̃S∗I∗ + β̃ηQS

∗Q∗)]

(
2− x− 1

x

)
,

where λ̃− β̃S∗I∗ − β̃ηQS
∗Q∗ = S∗ + β̃S∗E∗ > 0, and

xz

y
+

y

z
+

1

x
≤ 3,

xu

y
+

y

z
+

z

u
+

1

x
≤ 4,

x+
1

x
≤ 2.

Therefore, V ′ ≤ 0. V ′ = 0 only if x = 1, y = z = u, where S, E, I, Q satisfy the
set:

M =

{
(S,E, I,Q)|S = S∗,

E

E∗ =
I

I∗
=

Q

Q∗

}
.

Since the equilibrium point (S∗, E∗, I∗, Q∗) is the unique invariant set of the system
(2.4), the endemic equilibrium P ∗ is globally asymptotically stable when R0> 1.

The global convergence to the endemic state means that COVID-19 will become
endemic in the United States in the absence of strict control measures. Simulations
below will also show that the COVID-19 infection in the U.S. will undergo damped
transit oscillations before the final endemic state is reached. We should anticipate
future and multiple outbreaks after the vaccination rollout.



1484 H. Wu, Y. Zhao, C. Zhang, J. Wu & J. Lou

3. Identifiability analysis
This section aims to study the identifiability of fitted parameters in Model 4. We
will study its structural identifiability and practical identifiability separately.

3.1. Structural identifiability analysis
This section analyzes whether each estimated parameter value in Model 4 can be
uniquely determined under the ideal condition with perfect, noise-free data. The
model is not structurally identifiable if two or more parameter sets can lead to the
same observational output. Under this situation, the estimation of the parameters
in the model might not be unique and thus the prediction from the model will be
unreliable. About structural identifiability, Miao et al. [22] gave a clear definition
like the following:

Definition 3.1. A general dynamic system can be expressed as follows:

x′(t) = f(x(t),p),

y(t) = g(x(t),p),

where x(t) ∈ Rm is a vector of state variables, y(t) ∈ Rd is the measurement or
output vector, the parameter vector p ∈ Rq. A parameter set p is called struc-
turally (or uniquely) identifiable if for every q in the parameter space, the equation
g(x(t),p) = g(x(t), q) holds if and only if p = q.
Any unequal parameter set yields different observations and hence the correspond-
ing noise-free data are distinct.

We will use the differential algebra approach to study the structural identifi-
ability of Model 4. This method builds upon the derivation of the input-output
equation, which contains all the structural identifiability information of the model.
For the structural identifiability of Model 4, we obtain the following theorem:

Theorem 3.1. When parameters λ, 1
α , δi, i = I,Q, γi, i = A, I,Q are fixed, the

unknown parameter set p = [β ηE ηQ qI ] of Model 4 is structurally identifiable
from Data 1 (the number of confirmed cases observed).

Proof. The equation of variable R in Model 4 is unnecessary for determining the
model behavior and so is omitted. From the equation of Q(t) (the fifth equation),
we can get

I =
Q′ + (γQ + δQ + ω)Q

qI
. (3.1)

Taking the derivative of (3.1), we can get

I ′ =
Q′′ + (γQ + δQ + ω)Q′

qI
. (3.2)

Plugging (3.1) and (3.2) into the equation about the variable I in Model 4 and
then take the derivative of the equation yielding:

E=
Q′′+(γQ+δQ+qI+γI+δI+2ω)Q′+(qI+γI+δI+ω)(γQ+δQ+ω)Q

αqI
. (3.3)

E′=
Q(3)+(γQ+δQ+qI+γI+δI+2ω)Q′′+(qI+γI+δI+ω)(γQ+δQ+ω)Q′

αqI
. (3.4)
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Plugging (3.1), (3.3) and (3.4) into the model E equation of Model 4 and take
the derivative yielding:

S =
Q(3) +DQ′′ + C1Q

′ + FQ

β(ηEQ′′ +A1Q′ +B1Q)
. (3.5)

S′ =
Q(4) +DQ(3) + C1Q

′′ + FQ′

β(ηEQ′′ +A1Q′ +B1Q)

+
β(Q(3) +DQ′′ + C1Q

′ + FQ)(ηEQ
(3) +A1Q

′′ +B1Q
′)

[β(ηEQ′′ +A1Q′ +B1Q)]2
.

(3.6)

Where

A1=α+ (qI + γI + δI + ω)ηE + (γQ + δQ + ω)ηE .

B1=α(γQ + δQ + ω) + αηQqI + (qI + γI + δI + ω)(γQ + δQ + ω)ηE .

C1=(α+ω)(γQ+δQ+ω)+(qI+γI+δI+ω)(γQ+δQ+ω)+(α+ω)(qI+γI+δI+ω).

D=α+ qI + γI + δI + γQ + δQ + 3ω.

F =(α+ ω)(qI + γI + δI + ω)(γQ + δQ + ω).

Plugging (3.1), (3.3), (3.5) and (3.6) into the S(t) equation of Model 4. Then
we obtain the input-output equation as follows:

αηEqIQ
(4)Q′′ + αqIA1Q

(4)Q′ + αqIB1Q
(4)Q− αηEqI(Q

(3))2 + βη2EQ
(3)(Q′′)2

+ 2βηEA1Q
(3)Q′′Q′ + 2βηEB1Q

(3)Q′′Q+ αqI(ηEω −A1)Q
(3)Q′′ + βA2

1Q
(3)(Q′)2

+ 2βA1B1Q
(3)Q′Q+ αqI [A1(D + ω)− ηEC1 −B1]Q

(3)Q′ + βB2
1Q

(3)Q2

+ αqI [B1(D + ω)− ηEF ]Q(3)Q+ βη2ED(Q′′)3 + βηE(2A1D + ηEC1)(Q
′′)2Q′

+ βηE(2B1D + ηEF )(Q′′)2Q+ αqI [D(ηEω −A1) + ηEC1 − λβη2E ](Q
′′)2

+ β(A1D + 2ηEC1)A1Q
′′(Q′)2 + 2β[A1B1(D + ηE) + ηEB1C1 + ηEA1F ]Q′′Q′Q

+ αqI [−B1D + (ωD − 2λβηE)A1 + ηEωC1 + ηEF ]Q′′Q′ + β(B1D

+ 2ηEF )B1Q
′′Q2 + αqI [(ωD + C1 − 2λβηE)B1 + (ηEω −A1)F ]Q′′Q

+ βA2
1C(Q′)3 + β(2A1B1C1 +A2

1F )(Q′)2Q+ αqI [−B1C1 + (ωC1 + F

− λβA1)A1](Q
′)2 + β(B1C1 + 2A1F )B1Q

′Q2 + αqI [ω(C1 + F )− 2λβA1]B1Q
′Q

+ βB2
1FQ3 + αqI(ωF − λβB1)B1Q

2 = 0.

(3.7)

We need to get the normalized input-output equation from (3.7). Although the
normalized input-output equation coefficients are very complex, there are only four
unknown parameters. Suppose that another parameter set q = [q1 q2 q3 q4]
can produce the same output, we can choose four coefficients of Q(4)Q′, Q(4)Q,
Q(3)(Q′′)2 and (Q′′)3 to form the following equation group by using the injectivity
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of the coefficients of input-output equations [8]:

αqI(α+AηE+BηE)

αηEqI
=

αq4[α+(q4+γI+δI + ω)q2 +Bq2]

αq2q4
,

βη2E
αηEqI

=
q1q

2
2

αq2q4
,

βη2Eα+A+B + ω

αηEqI
=

q1q
2
2α+ q4 + γI + δI + ω +B + ω

αq2q4
,

αqI [αB + αηQqI + ηEAB]

αηEqI
=

αq4[αB + αq3q4 + (q4 + γI + δI + ω)q2B]

αq2q4
,

where A = qI + γI + δI + ω,B = γQ + δQ + ω. Solving this equation group, we get

β = q1, ηE = q2, ηQ = q3, qI = q4.

Therefore, Model 4 is structurally identifiable when λ, 1
α , δi, (i = I,Q), γi, (i =

A, I,Q) are fixed.
More data sets (if any) can be considered to fit all parameters in the model,

rather than only four parameters with local epidemic characteristics. However, we
also find that the model is not structurally identifiable for all the parameters in the
model. Even if multiple data sets are used, the fitting values of the parameters are
unreliable. In practice, we fix some parameters relevant to the disease characteristics
that have been estimated reliably from statistics (perhaps from data from countries
that experienced the pandemic earlier, such as China and Italy). We further use
available data in the study region (e.g., the U.S.) to identify the strength of public
health interventions and local transmission characteristics.

3.2. Practical identifiability analysis
The parameters fitted in Model 4 are structurally identifiable. It is also a pre-
requisite to obtaining reliable parameter estimation from observational data. The
structural identifiability depends on the assumption that the data are noise-free.
However, the statistics data we got are embedded with noise. Therefore, a key
problem when fitting a model to data is the influence of noise on parameter esti-
mation and model identifiability.

First, we show the robustness of parameter estimation to explore the influence
of different noise distributions. We test several common error models in our simula-
tions: Poisson, Gaussian error (with standard deviation equal to 10% of the mean),
and negative binomial (taking into account over-dispersion, letting the variance
equal to five times the mean and the variance equal to fifty times the mean). For
each error model, the parameter values fitted by Model 4 in the previous section are
taken as the “real value” and brought into the model for prediction. We simulate
100 realizations by adding noise to the number of confirmed cases in the prediction
results. Then, we use the GWMCMC algorithm to re-estimate the model parame-
ters for each realization of the data. The resulting parameter estimates under the
four different noise types are summarized in Table 5. The results show that the
estimated results are similar for all distributions and estimation methods: most of
the parameter estimations are close to the true parameter values. This indicates
that the parameters estimated by using the GWMCMC algorithm are robust to the
distribution of the errors of data.

Next, to quantify the practical identifiability of the parameters estimated, we
take the Gaussian error distribution model as an example to carry on the further
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Table 5. Parameter estimates made from 100 simulated data sets assuming different distributions
(Poisson distribution, Gaussian distribution with σ0 = 10%, Negative binomial distribution with variance
equal to 5 times the mean and variance equal to 50 times the mean) using maximum likelihood estimation,
and true parameters are as in Table. 3 (Model 4)

Parameter True value Poisson Gaussian (σ0=10%) Negative biomial Negative biomial
(5 Times) (50 Times)

β 1.11e-09 1.0968e-09 1.09876e-09 1.1131e-09 1.1219e-09
ηE 0.59 0.6023 0.60134 0.5877 0.5767
ηQ 0.12 0.1200 0.11982 0.1188 0.1197
qI 0.09 0.0905 0.09187 0.0902 0.0894
R0 2.89 2.8615 2.8685 2.8786 2.8925

Annotation. True values are taken from the best-fit value of Model 4 in Table 3.

inquisition. To realize this, we generate 1000 simulated data sets under different
measurement error levels (0%, 5%, 10%, 20%). We still performed the GWMCMC
algorithm to estimate parameters.

The Monte Carlo simulation steps we used are as in [22]. Here, we take the
best-fit value of Model 4 in Table 3 as the true parameter set p0.

(1) Solve the epidemiological model numerically with the true parameters p0

and obtain the output vector Q(tk) at the discrete data time points {tk}nk=1.
(2) Generate M = 1000 residual vectors r̂i drawn from a normal distribution

whose mean is the output vector computed in step (1) and standard deviation is
the σ0% of the mean.

(3) Fit the Model 4 to each of the M simulated data sets by maximizing the
likelihood function using the Goodman and Weare affine ensemble Markov chain
Monte Carlo algorithm to estimate the parameter set pj for j = 1, 2, ...,M .

(4) Calculate the average relative estimation error (ARE) for each parameter in
the set p by

ARE(p(k)) =
1

M

M∑
j=1

|p̂(k)0 − p
(k)
j |

p̂
(k)
0

× 100%,

where p(k) is the kth parameter in the set p, p̂(k)0 is the kth parameter in the true
parameter set p0, p(k)j is the kth parameter in the estimated parameter set pj from
the jth simulation data set, and M is the total number of simulation runs.

(5) Repeat steps 1 through 4 with increasing level of noise, that is take σ0 =
0, 5, 10, 20%.

The ARE can be used to evaluate whether or not the estimated value of each
parameter is acceptable. For minimal measurement error, the estimated value of
the parameter should be close to the true values and the ARE should be chose
to 0. When the measurement error increases, the AREs of the parameter estima-
tion should also increase. In the practical identifiability analysis, if the estimated
values of the parameter are not sensitive to measurement errors, we say that the
estimated parameter is practically identifiable. Otherwise, if the ARE of the es-
timated parameter is large even for a small measurement error, we claim that it
is practically unidentifiable. However, there is no clear-cut rule on the cut-off of
the AREs before they are claimed to be “unacceptable” for a particular problem.
Thus, practical identifiability depends on the underlying problem and judgment of



1488 H. Wu, Y. Zhao, C. Zhang, J. Wu & J. Lou

the investigators. In addition, when diverse statistical algorithms are used to es-
timate parameters, the values of ARE may be different [22]. Therefore, we take a
simplistic approach: if the ARE of that parameter is greater than the measurement
error level, the parameter is practically unidentifiable [29].

We generate 1000 simulated data sets under different measurement error levels
(0%, 5%, 10%, 20%), and perform a GWMCMC algorithm to estimate the unknown
parameters of Model 4 for each set of data. The AREs of all unknown parameters of
Model 4 for four measurement error levels (0%, 5%, 10%, 20%) are reported in Table
6. From Table 6 we can see that for the situation of no measurement error (σ0 =
0%), all the four parameter can be well identified (the maximum ARE is 0.84%,
very close to 0), which confirms our structural identifiability analysis in section 3.1.
This also indicates that the reliability of the parameter estimation method. With
the increase of measurement error levels, the AREs of four parameters increase
gradually. In all cases, the AREs of ηQ are less than the corresponding measurement
error levels, which means ηQ is practically identifiable. But when the measurement
error increases to 20%, β and ηE change from identifiable to unidentifiable. This
means that the two parameters are practically identifiable for medium measurement
errors, but become unidentifiable for larger errors. On the other hand, Table 3 shows
the variance of Data 1’s error ( 1

τ ) estimated through the GWMCMC to be 5524,
which is equivalent to the noise level σ0 equal to about 10%. In this sense, it is
reasonable to assume that parameters β and ηE are also practically identifiable in
our research. Unfortunately, the parameter qI is hard to be identified even for the
5% measurement error level.

Table 6. Practical identifiability analysis of parameters of Model 4 by the affine invariant ensemble
Markov chain Monte Carlo simulations for measurement error levels σ0 = 0, 5, 10 and 20%

Parameter ARE ARE ARE ARE
0% 5% 10% 20%

β 0.45% 2.69% 7.01% 20.90%
ηE 0.72% 3.50% 8.00% 23.29%
ηQ 0.84% 4.15% 8.25% 19.75%
qI 0.77% 5.13% 13.08% 28.51%

To vividly describe each parameter’s identifiability, we draw the scatter plots of
parameter estimation at different noise levels (Fig 3), where red stars represent real
parameter values. It can be seen from Fig 3 that as the error level increases, the
scatter plots become more and more dispersed. When the error level is not more
than 10 %, except the parameter qI , the other three parameters ( β, ηE and ηQ )
are gathered near the real value. In addition, we find that for all error levels, the
parameter β is positively correlated with the basic reproduction number R0.

In addition, we consider the statistical information of the basic reproduction
number R0 in 1000 simulations. We find that when the error level σ0 = 10%, the
upper quartile Q1 = 2.66 and the lower quartile Q3 = 3.07. When the error level
increases to σ0 = 20%, the upper quartile of R0 is Q1 = 2.40, and the lower quartile
is Q3 = 3.46. This shows that when the error level is small, R0 will be near the real
value with greater probability, which is consistent with the frequency distribution
histograms of R0 shown in Fig 4.
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Figure 3. The parameter estimates of the Model 4 for 1000 synthetic data generated by Gaussian noise.
True parameters are indicated by red stars.

4. Transit behaviors and long-range forecasts
Model 4 is selected by AICc to describe the early epidemic of the United States,
which does not consider the impact of individual behavior changes and interven-
tion measures on the last epidemic (including wearing masks, vaccination, etc). In
this section, based on Model 4, we add the time-dependent vaccination effect and
the exponential form of social distance term to simulate and predict the scale of
the recent epidemic in the United States. In literature [31], the authors use this
exponential function to describe the impact of changes in social distancing on the
epidemic. A similar functional form is used in our model. Let κ be the social
distance parameter. κ > 0 indicates that the social distance inhibits the spread
of the epidemic. Otherwise, it promotes the spread of the epidemic. It is worth
mentioning that from March 15, 2021 to May 10, 2021, the trend of the confirmed
cases has a significant turning point on April 6, due to the different prevention and
control measures taken in this period. Let t∗ denote the turning point and let two
Heaviside functions (Hϵ(t) = ϵ+H(t− t∗)ϵ1 and Hκ(t) = κ+H(t− t∗)κ1) embody
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Figure 4. The frequency distribution histograms of R0 from 1000 simulations for measurement error
levels σ0 = 10% and σ0 = 20%.

policy changes, where

H(t− t∗) =

{
0, t < t∗

1, t > t∗

So when t < t∗, the social distance parameter is κ and the vaccination effect param-
eter is ϵ. When t > t∗, the social distance parameter is κ+ κ1 and the vaccination
effect parameter is ϵ+ ϵ1. Then the dynamic model during this period is as follows:

dS

dt
= λ− β(1− [ϵ+H(t− t∗)ϵ1])(I + ηEE + ηQQ)SΛ(t)− ωS,

dE

dt
= β(1− [ϵ+H(t− t∗)ϵ1])(I + ηEE + ηQQ)SΛ(t)− (α+ ω)E,

dI

dt
= αE − qII − γII − δII − ωI,

dQ

dt
= qII − γQQ− δQQ− ωQ,

dR

dt
= γII + γQQ− ωR,

(4.1)

where Λ(t) = e−[κ+H(t−t∗)κ1]
E+I+Q

S+E+I+Q+R .
We use the number of confirmed cases from March 15 to May 10, 2021 in the

U.S. (marked as Data 2) to estimate the social distance parameters κ and κ1, the
vaccination effect parameters ϵ and ϵ1 in the system (4.1). The detection rate qI is
practically unidentifiable in Model 4, and more importantly, the detection rate may
change in a different period, so we will also estimate qI under Data 2. Since the
other three parameters (β, ηE and ηQ) that reflect the characteristics of the virus
itself are practically identifiable, we keep their values unchanged as in Table 3.

Estimates of these parameters and corresponding 95% confidence intervals are
given in Table 7. Data 2 (the blue bar chart) and the best fitting curve (the red
curve) are shown in Fig 5(a). The orange bar chart in Fig 5(a) represents the
number of confirmed cases from May 11 to May 17, 2021 (denoted as Data 3). We
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use it to verify the reliability of the results in Table 7. The 95 % confidence interval
corresponding to the best fitting curve is shown in Fig 5(b). Here, κ1 = −17.21 < 0
indicates that the social distance of the U.S. after the turning point t∗ (April 6,
2021) is much smaller than that before t∗. On the other hand, ϵ1 = 0.51 > 0
indicates that the vaccination effect after t∗ is much larger than that before t∗,
which may improve the vaccine coverage.

Table 7. Definition and fitted values of parameters in the model (4.1).
Parameter Meaning Best-fit Value 95% confidence interval

ϵ The effect of vaccination 0.12 (0.01, 0.26)
ϵ1 The effect of vaccination 0.51 (0.49, 0.52)
κ The social distance rate 11.24 (6.94, 12.35)
κ1 The social distance rate -17.21 (-17.55, -16.18)
qI The detection rate 0.17 (0.17, 0.21)
E0 The initial value of E 5.64e+06 (5.35e+06, 5.65e+06)
I0 The initial value of I 4.99e+06 (4.23e+06, 4.99e+06)
R0 The initial value of R 2.61e+07 (2.28e+07, 4.45e+07)

τ1
1
τ1

is the variance of data noise from March 15 to April 5, 2021 1.67e-09 (1.01e-09, 2.45e-09)

τ2
1
τ2

is the variance of data noise from April 6 to May 10, 2021 7.61e-10 (5.01e-10, 9.83e-10)
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Figure 5. Fitting results. (a)Piecewise fit of the model (4.1) to the data of COVID-19 in the United
States from March 15 to May 10, 2021. (b)95% confidence interval

We find that if the United States maintains the same prevention and control
strategy as that before the turning point t∗ (i.e κ = 11.24, ϵ = 0.12), the COVID-19
epidemic may break out again after several years (Fig 6(a)). Since the numerical
span on the ordinate is big, we show the figure on the logarithmic scale against
time so that the dynamic characteristic of the curve can be displayed more clearly.
The longitudinal axis in Fig 6(a) represents the logarithm of the number of all cases
in the United States. In addition, we also mark the peak value and corresponding
time point of the possible outbreak of COVID-19 in the United States. The peaks
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of each outbreak will gradually weaken over time. However, there will still be a
large number of infections, and it will eventually become a local epidemic in the
United States.
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Figure 6. Prediction in different situations.(a) The prediction of total cases with κ = 11.24, ϵ = 0.12
and t < t∗. (b) The prediction of the number of confirmed cases with different values of κ1 and ϵ1.

We study the impact of several different social distances and vaccination on the
epidemic trend (Fig 6(b)). All the curves in the figure are under the condition that
κ = 11.24, ϵ = 0.12. The longitudinal axis in Fig 6(b) represents the number of
confirmed cases reported in the U.S. For example, the dark-blue line is the best
fitting curve for March 15, 2021 to April 5, 2021. The sky-blue line is the best
fitting curve for April 6, 2021 to May 10, 2021 and the forecast curve after that.
Compared with the purple line and the sky-blue line we find that a reduction in
social distancing would increase the number of confirmed cases, while maintaining
the vaccine’s effectiveness. As social distancing continues to decline, there will
be an outbreak of the diagnoses (the green line). It suggests that proper social
distancing is necessary until the outbreak is truly over. In addition, if maintain the
social distancing between April 5, 2021 and May 10, 2021 and only increase the
vaccine effectiveness, the number of diagnosed will drop rapidly (the yellow line).
These data show that maintaining appropriate social distancing and strengthening
vaccination are both effective measures to control the outbreak.

5. Discussion
If the parameters of the model can be properly estimated, the prediction conclusions
will be more reliable. Structural identifiability issues for parameter estimation have
been studied for some biological systems. In this paper, we establish a dynamic
model that strictly distinguishes between confirmed and unconfirmed infections to
describe the spread of COVID-19 in the U.S. We have discussed four models in
this manuscript. The significant differences include: (1) whether the undetected
infections are divided into asymptomatic or symptomatic. (2) whether the recovery
will be infected again. All of the four models are fitted with the number of confirmed
cases in the U.S. The result shows that the most suitable model is the one that
ignores the difference between asymptomatic and symptomatic, and assumes that
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recovered patients will not be re-infected. In other words, it is relatively optimal
among the four models for interpreting the confirmed case data.

Choosing a model suitable for the data is only the first step. It is also very
important to uniquely determine the model’s unknown parameters from the actual
data. We need to determine which parameters can be uniquely determined by these
data, while other parameters cannot. Therefore, parameters’ identifiability anal-
yses must be performed before any statistical method is applied to estimate the
unknown parameters from the experimental data. We prove that four unknown
parameters of the selected model can be uniquely determined with noise-free data.
If the model is structurally unidentifiable, there is no need for further study. How-
ever, although the model is structurally identifiable, these parameters may be not
practically identifiable. At this moment, a suitable algorithm is critical to get opti-
mal estimations of parameter values. Monte Carlo simulation is an important tool
to validate the identifiability analysis results, perform sensitivity analyses for model
parameters, and evaluate parameter estimation methods. In this manuscript, we
use the GWMCMC algorithm to analyze the practical identifiability of the selected
model. These results show that some parameters are identifiable at a negligible
noise level. However, as the noise of data increases, the parameter identifiability
weakens.

More data sets (if any) can be considered to fit all parameters in the model,
rather than only four parameters with local epidemic characteristics. However,
we find that the model is not structurally identifiable for all the parameters in
the model. That is, even if multiple data sets are used, the best-fitted parameter
values are unreliable. The structural unidentifiability of the model may be due
to the structure of the model itself. In practice, we can fix some parameters that
have been estimated reliably from statistics, and only fit those “difficult-to-obtain”
parameters by traditional statistical methods.

The study suggests that if the officials in the U.S. do not respond to the outbreak
with some degree of containment, the novel coronavirus will remain volatile in the
United States and eventually become endemic. We also find that strengthening
social distancing policy and improving vaccination effectiveness can accelerate the
end of the epidemic. Otherwise, the epidemic will outbreak again.

Although the model can explain and predict the transmission characteristics of
the COVID-19 in the U.S., it cannot study more complex outbreaks, such as the
transmission of mutant strains, due to its relatively simple structure. We will focus
on the relevant research in the future. In conclusion, we suggest that the selection
of models and the identification analysis of parameters should be considered as one
of the important research directions.
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