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DIMENSION ESTIMATES FOR REPELLERS
AND EXPANDING MEASURES OF C!
DYNAMICAL SYSTEMS*
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Abstract In this paper, we first conclude sharp upper and sharp lower bounds
of dimensions of a repeller with dominated splitting for C* expanding maps,
using the techniques in sub-additive and super-additive thermodynamic for-
malism. Furthermore, we prove a sharp upper bound for the Hausdorff dimen-
sion of an expanding measure is given by the unique solution of sub-additive
measure-theoretic pressure equation for C* local diffeomorphisms.
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1. Introduction

The present paper is motivated by Cao etc [10] and Jordan etc [24]. Let f: M — M
be a smooth map of an mg-dimensional compact smooth Riemannian manifold M.
For each x € M, the following quantities

IDufll = sup 1P=FW

0AVET, M o]l

0£veT. M ||v]|

are respectively called the maximal norm and minimum norm of the differentiable
operator Dy f : Ty M — Ty, M, where || - || is the norm induced by the Riemannian
metric on M. Let A be a compact f-invariant subset of M. We call A a repeller for
f and f expanding if

(i) there exists an open neighborhood U of A such that A = {z € U : f"(x) €
U for all n > 0};

(ii) there is k > 1 such that
|1 Dy f(v)|| > k||| for all z € A and v € T, M.

Assume that a repeller A admits a {\;}1<j<k-dominated splitting TaM = E; &
Ey® - - @FE, with By = Es = -+ = Epand Ay > Ay > -+ > A (See Section 2.3 for
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more details) for a Cl-expanding map f. Utilizing the techniques in sub-additive
and super-additive thermodynamic formalism, sharp upper and sharp lower bounds
of dimensions of A are given in this paper. Let u be an ergodic Borel probability
measure on M preserving a C'-local diffeomorphism f. u is said to be expanding if
the Lyapunov exponents of p with respect to f satisfies

A1) = Aa(p) = -+ = A () > 0.

We also prove that the unique root of sub-additive measure-theoretic pressure equa-
tion can give an upper bound of the Hausdorff dimension of .

Let A be a conformal repeller for a C'*® expanding map f. Assume that f is
topologically mixing on A. Bowen [2] and Ruelle [36] found that

dimH A= t*7
where t, is the unique solution of the equation

P(f[a, —tlog ||Dxf[[) = 0.

Gatzouras etc in [19] relaxed the smoothness to C*. Bowen, Ruelle, and Gatzouras
and Peres’s approaches are to construct a measure of full dimension, which is equiv-
alent to Hausdorff measure.
For a non-conformal repeller A of a C! map f, Barreira [4, Theorem 3.9] proved
that
s <dimg A < dimgA < dimpA < t,

where s and t are the unique root of the following Bowen’s equation

P(fla;—slog||Dof[[) = 0, P(f[a, —tlogm(Dsf)) = 0.

Falconer in [12] defined topological pressure of sub-additive potential for a C? map
f satisfying the bounded distortion condition

1D f)7HIP - 1D f] < 1,

and proved the zero of the topological pressure gives an upper bound of the upper
box dimension of A. Zhang [41] introduced a new version of Bowen’s equation,
which involves the limit of a sequence of topological pressures for singular valued
potentials, and obtained a sharp upper bound of Hausdorff dimension of A. Fal-
coner’s result automatically implied that for the Hausdorff dimension of A, and the
bounded distortion condition is necessary. But Zhang’s approach is to calculate
the Hausdorff measure at each iteration, and is valid for all C'! expanding maps.
In [10], Cao etc considered an ergodic invariant measure p with positive entropy for
C'*° non-conformal repellers, and constructed a compact expanding invariant set
with dominated splitting corresponding to Oseledec splitting of i, for which entropy
and Lyapunov exponents approximate to entropy and Lyapunov exponents for pu.
Moreover, they used this construction to give a sharp estimate for the lower bound
estimate of Hausdorff dimension of non-conformal repellers. They also present a
sharp upper bound of the upper box dimension of A. We also refer the reader
to [16,17,34] for a detailed description of the recent progress in dimension estimates
for repellers of C'-dynamical systems. In this paper, our first main result extends
the results of Cao etc [10] to C! expanding maps.
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Let A be a repeller for a C! expanding map. Assume that the map f|5 possesses
a {\; }1<j<i-dominated splitting TAM = E1® E2 & --- @ Ej, with By = Ey = -+ =
E, and Ay > Ay > -+ > A; (See the definition in Section 2.3). Let dim E; = m;,
rj=mq+---+mjfor j € {1,2,...,k} and 7o = 0. For each s € [0,m¢],n > 1 and
x € A, define

d
O° (2, f7) =Y milog | Duf"|g, || + (s = 7a) 10g | D f"| By (1.1)
j=1
if rg < s < rqy for some d € {0,1,--- ,k — 1} (We assume ¢°(z, f*) = 0.). Tt is
clear ¥y (s) = {—v° (z, f")}n>1 is super-additive. Let

Payp (5) := P(f]a, ¥ 4(s)). (1.2)

(See the definition of the super-additive topological presure P(f|a, \T/f(s)) in (2.1).)
One can easily see that f’sup (s) is continuous and strictly decreasing in s. Let
big=mp+ - +mp_gqy ford=1,2,... .k and £y = 0. For ¢t € [0,mp] and n > 1,
define

k
B f) =Y mylogm(Duf"g,) + (t = La)logm (Daf"|5, ) (13)
j=k—d+1
if lq <t < Lyt for some d € {0,1,...,k — 1} (We assume Pz, f) = 0.). Tt is
easy to see that @7 (t) = {—¢" (-, f™)},,>; is sub-additive and that the sub-additive
topological presure function (see the definition in Definition 2.1)

P (t) 1= P(f|a, Py(t)) (1.4)

is continuous and strictly decreasing in t. We state the first main result of the
present paper:

Theorem 1.1. Let A be a repeller for a C' expanding map admitting a {\; }1<;<k-
dominated splitting TaM = F1@® FEo @ --- @ Ey with E1 = FEs = -+ = Ey and
A > Xy > > A, Then

s* <dimgy A < dimgA < dimpA < t*

where s*, t* are the unique roots of the equations ]ssup (s) =0, ]Ssub(t) = 0 respec-
tively.
Let f : M — M be a C? map of an my-dimensional Riemannian manifold M,

and A be a compact f-invariant set. Assume that f is expanding and conformal on
A and p is an ergodic probability measure on A. Ruelle [35] proved

hu(f)
Ap)

where dimg p is the Hausdorff dimension of p, h,(f) is the measure-theoretic en-
tropy, and A(u) is the Lyapunov exponent of p. Hu [20] extended the result to
non-conformal case. He obtained

hu(f) hy(f)
() < D(p)

dimg pu =

IN

(1.5)
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where A1 (p) and Ag(p) are the largest and smallest Lyapunov exponents respectively,
D(u) is dimg p, dimpp or dimppu. Wang ete [39] generalized Hu'’s result [20] in the
C? setting. They stated that for a C! map f, the zero of the sub-additive measure-
theoretic pressure P,(f,{—tlogm(D,f™)}) gives the upper bound of dimensions of
an ergodic measure i, and the zero of the super-additive measure-theoretic pressure

P,(f,{—tlog||D,f™||}) gives the lower bound of dimensions of an ergodic measure

. Using Theorem A and Theorem C in [9], we have that i‘l‘((g and };“((73 are the

unique roots of the equations

Pu(f, {=tlog||Dxf"|[}) = 0 and Pu(f, {~tlogm(D.f")}) = 0

respectively. Let f be a C'! self-map on a smooth Riemannian manifold M, and u be
an f-invariant ergodic expanding Borel probability measure with a compact support
A. Suppose f is non-degenerate on A, Huang etc [22] proved (1.5). In their paper,
the non-degeneracy condition is used to give some estimates of the distortion of
the differential D, f. They removed the non-degeneracy condition of f if f is C1T¢
self-map. Jordan etc [24] considered a measure p supported on the limit set of an
iterated function system in R¢ which contracts on average, and presented a sharp
upper bound for the Hausdorff dimension of p. In [30], Mihailescu also obtained
some interesting results for dimension estimates of invariant measures in iterated
function systems with overlaps. Here we also refer the reader to [27-29, 31] for a
detailed description about applications of thermodynamic formalism to dimension
estimates for hyperbolic invariant sets and measures. In this paper we exploit
Jordan and Pollicott’s ideas [24] in an essential way to get a sharp upper bound for
the Hausdorff dimension of an expanding measure u for a C'* local diffeomorphism.

Let f: M — M be a C" local diffeomorphism on the mg dimensional compact
smooth Riemannian manifold M. Fixed any x € M, for every n > 1, consider the
differentiable operator D, f" : T,M — Tyn()M and denote the singular values of
D, f™ in the decreasing order by

aq (mvfn) 2052(1'7.]0”) Z"'Zamo (T”fn)v

which are the positive square roots of the eigenvalues of (D, f™)* D, f™, here (D, f™)*
is the adjoint of D, f™. Let p be an ergodic f-invariant expanding probability mea-
sure on M with the corresponding Lyapunov exponents

Ar(p) = A2(p) = -+ = Ay (1) > 0.

Oseledec’s Multiplicative Ergodic Theorem [25] tells us that for ¢ = 1,2,--- ,my,
[h.a.e.x,

lim logai(z, ™) = Ai(u).

n—o0o MN

For t € [0, my], set

mo

(Pt (xmfn) = Z log av; (mvfn)+(t_ [tDIOgamo—[t] (:Evfn) (16)

i=mo—[t]+1

for t € [0,my)]. Since f is smooth, the functions x — «; (z, f*) and = — ' (z, f7)
are continuous. It is easy to see that for all n,l € N

ol (@, [ = o, 1) + o (" (), f).
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It follows that the sequence of functions
(I)f(t) = {_@t ('a fn)}n21

is sub-additive. We call them sub-additive singular valued potentials. We show that
the unique solution of the sub-additive measure-theoretic pressure equation

Pu(f{=¢"(.fM}p =0

is an upper bound for the Hausdorff dimension of an ergodic f-invariant expanding
probability measure p as follows.

Theorem 1.2. Let f : M — M be a C' local diffeomorphism on the mq dimensional
compact smooth Riemannian manifold M. Let p be an ergodic f-invariant expanding
probability measure with the corresponding Lyapunov exponents

() = Aa(p) 2+ = Ay (1) > 0.

Then we have
dimH 12 S t*,

where t* is the unique root of the equation P, (f,{—¢" (x, f™")}) = 0.
For s € [0,mg], z € M and n € N, denote

[s]
Ve (z, f1) = Zlogai (z, f) + (s — [s]) log apg41 (2, f™) - (1.7)
i=1

It is easy to see that
O (@, [ < (s 1) + (" (), 1)

for every x € M and n,l € N. It is natural to ask whether dimy p > s. where s.
satisfies P, (f, {—v°(-, f*)}) =07

The paper is organized as follows. In Section 2 we recall definitions and prelim-
inaries, such as dimensions, pressures, dominated splitting, Markov partition and
weak Gibbs measures. In Section 3 we give the detailed proofs of the main results.

2. Preliminaries

2.1. Dimensions of sets and measures

We recall some notions and basic facts from dimension theory, see the books [13,32]
for detailed introduction.

Let X be a compact metric space equipped with a metric d. Given a subset Z
of X, for s > 0 and ¢ > 0, define

,HE(Z) = lnf{Z|Ul|s 1 Z C UU“ |Uz| < (5},

where |-| denotes the diameter of a set. The quantity H*(Z) = lims_oH3(Z) is
called the s-dimensional Hausdorff measure of Z. Define the Hausdorff dimension
of Z, denoted by dimy Z, as follows:

dimy Z =inf{s: H*(Z) =0} =sup{s: H*(Z) = xo}.
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Further define the lower and upper box dimensions of Z respectively by

log N(Z,§ — log N(Z,§
dimpZ = liminf L(’) and dimpZ = limsup LH
50 —logd 5—0 —logd

)

where N(Z,0) denotes the smallest number of balls of radius ¢ needed to cover the
set Z. Clearly, dimy Z < dimpZ < dimpZ for each subset Z C X.
If i1 is a probability measure on X, then the Hausdorff dimension of p is defined
by
dimg p=inf {dimg Y : Y C X, u(Y)=1}.

Finally, we define the lower and upper pointwise dimensions of the measure
w at the point € X by

d‘u(x) = liminf w and Jﬂ(x) = lim sup w

r—0 log r r—0 log r 7

where B(z,r) = {y € X : d(x,y) < r}. In particular, if there exists a number s such

that | 5
i 108 H(B(,1)) _
r—0 logr

for u-almost every x € X, then dimpy p = s, see [40].
The following lemma gives a method for calculating an upper bound to the
Hausdorff dimension on a measure.

Lemma 2.1 (Lemma 6, [24]). Let p be a probability measure on the mg -dimensional
compact Riemannian manifold M. If we can find a sequence of subsets A, C M
such that

(i) lim p(An) =1;
(ii) li_>m Htﬁn (A,) =0 for a sequence {By }nen satisfying lim 3, = 0.
n o0 n—oo

Then it follows that dimpg p < t.

2.2. Pressures

Let (X, f) be a topological dynamical systems (TDS), that is, X is a compact metric
space X with a metric d, and f : X — X is a continuous transformation. Denote
by M(X, f) and M°(X, f) the set of all f-invariant and respectively, ergodic Borel
probability measures on X. A sequence of continuous functions ® = {¢,},~, is
called sub-additive, if

Omitn < On +@mo [, forall m,n>1.

Similarly, we call a sequence of continuous functions ¥ = {1, }, -, super-additive if
—U = {9y}, is sub-additive. -
For x,y € X and n > 0 define the d,,-metric on X by

dp(z,y) = max {d (f'(z), f'(y)) : 0 <i <n}.

Given ¢ > 0 and n > 0, denote by B, (z,e) = {y € X : d,(x,y) < €} Bowen’s ball
centered at = of radius € and length n and we call a subset E C X (n, e)-separated
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if d,,(z,y) > € for any two distinct points z,y € E. A set F' C X is said to be an
(n, e)-spanning subset of X with respect to f if for any x € X, there exists y € F
with d,(z,y) < e. For each p € M(X,f),0<d <1,n>1ande > 0, a subset
F C X is an (n,¢,)-spanning set if the union Uyep By (x,€) has p-measure more
than or equal to 1 — 6.

Definition 2.1. Given a sub-additive sequence of continuous potentials ®={pn}, ~ 1,
let -

P, (®,¢) :=sup { Z e#n(®) . F is an (n,e) — separated subset of X} .
reE

The quantity
1
P(f,®) := lim limsup — log P,,(®, ¢)
n

e=0 nooo

is called the sub-additive topological pressure of ®.

The authors in [21] proved that it satisfies the following variational principle:

P(f,®) = sup {h,(f) + Fu(®, p) : p € M(X, f), (D, p) # —00},
where h,(f) is the metric entropy of f with respect to p and

1
Fu(®, ) = lim f/gan du = mf 7/§0n dp.

n—roo
Existence of the above limit can be shown by the standard sub-additive argument.

Remark 2.1. If & = {¢, },,>1 is additive in the sense that ¢, (z) = ¢(x) +¢(fz)+
-+ p(frlz) £ S,p(z) for some continuous function ¢ : X — R, we simply
denote the topological pressure P(f,®) as P(f, ).

Given a super-additive sequence of continuous potentials ¥ = {¢},~,, we
define the super-additive topological pressure of ¥ = {w”L}nZl by B
P(f,0) = sup {u () + Fu(W, 1) £ o € M(X, )} (2.1)

Note that for any super-additive sequence of continuous potentials and any f in-
variant measure p we have

Fu(W.p) = lim f/wndu—sup ez

It was proved in [10] that the following relation between the super-additive topo-
logical pressure and the topological pressure for additive potentials holds.

Proposition 2.1. Let ¥ = {¢,},~, be a super-additive sequence of continuous
potentials on X. Then B

P(70) = Tim P(, %) = tim P (7" 0)

Definition 2.2. For a sub-additive potential ® = {¢,}, ~,, for p € M*(M, f),0 <
§<1,n>1,and e > 0, put -

P,(f, ®,n,e,0):=inf {Zexp < sup gpn(y)> :F is an (n,e,d) — spanning set} ,

zEF YEB, (z,€)
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1
P,(f, ®,¢,0) := limsup — log P,(f, ®,n,¢,9),

n—oo N

P,(f,®,0) :=lim iglfPu(f, D, ¢,0),
e—

Pu(fa(b) = }I_I}%) P/A(f7q)a5)7

we call P,(f, ®) the sub-additive measure-theoretic pressure of f with respect to ®.

Remark 2.2. (i) It is easy to see that P,(f, ®,d) increases with 0. So the limit
in the last formula exists. In fact, it is proved in [11] that P,(f, ®,0) is
independent of §. Hence, the limit of 6 — 0 is redundant in the definition.

ii) If ® = {p, } is additive generated by a continuous function, that is, ¢, () =
1% g ¥
Z;L:_Ol ¢1(f'x), then we simply write P,(f, ®) as P,(f, ¢1).

Theorem 2.1 (Theorem A, [9]). Let (X, f) be a TDS and ® = {p,}n>1 a sub-
additive potential on X. For every p € M¢(X, f) with ®,(u) # —oo, we have

Pu(fa (I)) = h/t(f) +‘F*(<I)ﬂﬂ)'

Remark 2.3. (i) The results still apply for F,(®, p) = —o0 if h,(f) < oo.

(i) If ® = {¢n}n>1 is an additive sequence, then we have

P,(f,¢1) = hu(f) +/<p1du.

The above equality is also in [32].

2.3. Dominated splitting

We recall the definition of a dominated splitting. Consider a C'*¢ diffeomorphism
of a compact smooth manifold M of dimension my and let A C M be a compact
invariant set. We say that A admits a dominated splitting if there is continuous
invariant splitting TA M = E @ F and constants C > 0, A € (0, 1) such that for each
reAN,neN 0#£ue€ E(x),and 0 # v € F(z)

We write £ < F' if F dominates F. Furthermore, we say that D f-invariant splitting
on A

TA\AM=FE10FE,®---®Ey, (k>2)

is a {\j}i<j<i-dominated splitting, if there are numbers A\ > X > -+ > Ag,

constants C' > 0 and 0 < ¢ < min;<;<g {’\izé‘g“ } such that for every x € A, n € N
and 1 < j <k and each unit vector u € E;(z), it holds that

C—len(/\j—s) < ||Dmfn(U)H < Cen(/\j—i-a)_

We write By = Eo = -+ = E}.
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2.4. Markov partition and weak Gibbs measures

Let A be a repeller of a C! expanding map f. Assume that f|, is topologically
mixing. A finite closed cover Py, Py, -+, Py of A is called a Markov partition of A
(with respect to f) if:

(ii) int (P;)Nint (P;) = 0 if i # j;
(iii) for any i the set f(P;) is the union of some of the sets P; from the partition.

Here int(-) denotes the interior of a set relative to A. It is well known that any
repeller A of a continuously differentiable expanding map f has Markov partition
of arbitrary small diameter [33] and (A, f) is semi-conjugated to (X4, ), a subshift
space of finite type X% = {1,2,--- |k}, where

EA: {(’LOlen) Ezkiaijin :]_ for everyneN},

and A = q;; is the transfer matrix of the Markov partition, namely, a;; = 1 if
int(P;) N f~! (int(P;)) # 0 and a;; = 0 otherwise. For any n > 1, £ 4, denotes the
set of finite sequence i = (igé; - - - in—1) such that iz, = Lforall0 < j<n-—2
These sequences i are called admissible words. The length of the word is denoted
by ‘i| Fori= (ioil . "in_1) S EA,n, we define

n—1

Piiy.ip_y = ﬂ f7(p). (2.2)

Jj=0

Definition 2.3. Let ¢ : A — R be a continuous function. We call a (not necessarily
invariant) Borel probability measure u on A a weak Gibbs measure for ¢ if for any
e > 0, there exists a positive integer N = N(e) such that for all n > N, every
admissible sequence (igiy ...0n—1) € Xan, and z € P4, .4, _,, we have

efne < M (PiDilwinfl) < ene
~ exp[—nP + Spp(x)] T

9

where P is a constant and S,¢(x) = Z;:Ol ¢ (fi(x)).

Remark 2.4. (i) The authors in [23,26] proved the existence of such a weak
Gibbs measure p for a continuous function ¢ : A — R.

(ii) If there exists a constant K > 0 such that for every n € N,

K-l < 1 (Pigiy.oin_1) <K
~exp [—’flP—FS”(p(x” B

Definition 2.3 is recovered the classical notion of Gibbs measure (See [1] for
more details.).

3. Proofs of Main Results

3.1. Proof of Theorem 1.1

This section is divided into two parts which provide the proof of Theorem 1.1 stated
in Section 1.
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3.1.1. Lower bound for the Hausdorff dimension of repellers.

In this section we prove dimg A > s*, where s* is the unique root of the equation
Piup(s) = 0, which is defined in (1.2). We first obtain a coarse lower bound of
Hausdorff dimension of a non-conformal repeller as follows.

Lemma 3.1. Assume that f : M — M is a C* map on the mg-dimensional compact
smooth Riemannian manifold M. Let A be a repeller for the map f, if f|n possesses a
{)\j}lgjgk—dominated splitting TaAM = FE1® Es®---® FEy, with By = Ey = --- = Ej,
and Ay > Ao > -+ > A\g. Then

dimg A > sq,
where s1 is the unique root of Bowen’s equation P( f|, , —p5(-, f)) = 0.

Proof. Note that  — F;(x) is continuous on A since the splitting TAM = E1®
Es®- - -®Ey, is dominated, and the continuity of the map « — E;(x) can be extended
to U (here U is an open neighborhood of A in the definition of the repeller), so the
map x — HDwﬂEH is continuous for every ¢ = 1,2,..., k. Therefore, for any
sufficiently small € > 0, there exists § > 0, for any z,y € U with d(x,y) < 4, so that

-1
et < ”DIf E; - <

1Dy f B
Let {P, P,..., P} be a Markov partition of A, with max; diam(P;) < g. It follows
that for each ¢ = 1,2,...,[ the closed % neighborhood R of P; is such that ﬁz -

U and E N .ﬁj = () whenever P; N P; = (. Given an admissible sequence i =

g

E;

we denote by P i, . the corresponding

081---tn—1" p—1

(ioil . in—l) and the cylinder Pz
cylinder. Since for any z,y € P,yi,..i,_,, we have fi(x) € P;,, fi(y) € P;, for every
j=0,1,...,n — 1. Then d(f7(z), f/(y)) < § and for any n € N, we have

n—1 —1
D o fles
one < Hz;ol 1D s () f e s
ITi=o 1Dyiy) flE:ll~

Since P(fl,, 777[;51(3 f)) =0 and 1/?51(3 f) is a continuous function on A, there is
a weak Gibbs measure p, for the above € > 0, there exists N = N(¢) such that for
any n > N and each z € F; we have

(3.1)

081 in_1
1 (Pigiy..in_r)

exp (= 15 9 (F1(@), )

Since TAM = FE1® Ey @ --- @ Ey is a dominated splitting, the angles between

different subspaces E; are uniformly bounded away from zero. Therefore there
exists @ > 0 and &; € Py, . for each ¢ = 1,2,..., k with a rectangle of sides

ef’rLE <

< eTLE

cln—1

mi my
al|De, [l 7 s allDe fPe 7Y - allDe el - all D f7 |7

contained in P;

Note that

0%1--fn—1"

n—1

1De f*1e 7t = T 1D psen flell ™
j=0
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Thus by (3.1), there exists © € P;;,...i,_, such that ]51-01-1___1-”,_1 contains a rectangle
of sides

mi mpg

ae” " Ai(x,n),...,ae"" Ay(x,n),...,ae” " Ag(xz,n),...,ae” " A (z,n),

where A;(z,n) = H;-l;OIHij(w)f g, |7t for any i € {1,2,...,k}. Note that there is
i€40,1,2,...,k — 1} such that r; < s < r;41. Fix 7 > 0 small enough and set

Q :{l = (ioil cee in—l) : aefmAiH(:r,n) S r for all x € Pioil'“in—lﬂ
but ae™"*A;41(y,n — 1) > r for some y € P, .., }

Therefore, for every i = (igiy -+ - ip,—1) € Q, we have

—ne

bre <ae " Aipi(x,n) <rforallz e P i, ., (3.2)

where b = mingep |Dof||”" < 1. Let by = maxgep |[Dof||”' < 1, therefore
aby"e~ "t > bre~ "1, Combining with (3.2) one has

logr +logb —loga

ot (3.3)

Let B be a ball of radius r and B a ball of radius 2r with the same center as
that of B. Put

Q1={ieQ|PiﬂB;é(Z)}.
%ecall that Ay (z,n) < As(z,n) < -+ < Ag(z,n). Hence, for each i € Q;, we have
P; N B contains a rectangle of sides

mi1 m;

ae” " Ai(x,n),...,ae" " Ai(x,n),...,ae" " A;(z,n),...,ae” " A;(z,n),

mo—Ti

ae” " A1 (x,n),. .. ae” " A1 (2, n).
(Recall r; = mq + -+ +m;.) It follows that

VOl (131 N B) >a™ eV A (e, n) T A (2, n) ™ - Ay (x,n)™

mo | o—nMoeE Ai+1(z,n)sliriz4i+1(x,n)moim'

Ai(z,n)™ oo Ay(z,n)™

=a

- e (DT _
2 amo .e nmoee | Ai+1(x’n)81 T4 ( . Tmo S1,
a

Ai(z,n)™ oo Ay (z,n)™

> ag - e MOS L poTSL AL (2, ) T A (e, n) ™ Ay ()™

mop—S1
where as = a™° () , and the second inequality is by (3.2). Thus there is a
a
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positive constant az such that

2M0aqgr™0 > vol,y,, (B)

= Z VOl (.51 N B)

i€

> Z Qg - e MOS L poTS LA (2, )P T A (e, )T Ay ()™

icQ
It yields that
Z e MM A (2, n) S T Ay (mm) ™ - Ar (o, n) ™ < Ot
i€eQ:
mo

2
where C = ag. Therefore
as

uBY < Y u(Punein)

(i0%1...in—1)EQ1

VAN
@
”
=)
3
™
I
<
2
—~
=
—
8
~
~
~—
N——

i€e9, =0
< A S A (2, )™ - Ay ()™
Z € 1+1(a:,n) l(xan) o 1('7:7”)
icQ
— Z —nmoe | Ai+1($,n)sl_”z4i(.%' n)ml . -Al(x,n)ml _en(mo-i-l)e
icQ;

mo+1
where C; = (2) 21 % and the last inequality is by (3.3). Thus

1 B 1
lim inf og 1(B) > mo +
r—0  logr log by

€+ s1.

1

Since ¢ is arbitrary, we have d# (x) > s1, which implies that dimg pu > s1. Hence

dlmHA Z S1.

O

For any k € N, the set A is also a repeller for f2°. By Lemma 3.1, for every

k € N, we have dimy A > s where s is the unique root of the equation

P, (7)) =0

Note that any f 2*_invariant measure 1 must be f2k+1—invariant. This together with

the super-additivity of {71/33(~,f")} (
n>1
any f2k—invariant measure (i,

s P (7706 2 (fw(f?’““) - / o, ) du)

QQH (hu<f2’°“> 2 / P (z, 1) du)
= gl = [0y ).

v

See definition in (1.1).) yields that for



1508 J. Wang & T. Liu

Hence,
P (P ) 2 e (P ™). s

By Proposition 2.1, we have

Pap(s) = lim P (£ <0, 1)) = P (Fln- {07 (./M)) . 39)

k—oc0 Qk

By (3.4), we have that s < sp41 and hence, there is a limit s* = klim sk. We have

— 00
that dimg A > s*. Note that s* > s, for every k > 1. It now follows from (3.5) and
Piup(+) is continuous, strictly decreasing in s that Py, (s*) < 0. On the other hand

for any € > 0, there is a positive integer K such that sy > s* —¢ for any k > K.
Thus Pysyp(s* —¢) > 0 for every € > 0. Therefore Pyup(s*) > 0. So Psyp(s*) =0.

3.1.2. Upper bound for the box dimension of repellers

Secondly we prove dimgA < t*, where ¢* is the unique root of the equation JSSHb (t) =
0, which is defined in (1.4).

For any sufficiently small e > 0, let {Py, P2,---, P} be a Markov partition
of A and § > 0 as that in the proof of Lemma 3.1. We still denote by P; the
%—neighborhood of P; as that in the proof of Lemma 3.1. Note that the map
x — m(Dy f|E,) is continuous on U for each ¢ € {1,2,...,k}, and the {\;}1<;j<i-
dominated splitting can be extended to U, where U is an open neighborhood of A
in the definition of the repeller.

Choose a number s such that t* < s < mg and assume that {3 < s < {441 for
somed € {0,1,...,k—1} (Recall dim E; = m; and {q = mp+mp_1+---+mp_a41.).
Since ]Bsub (s) < 0, we may find a positive integer ¢ for which

T e S <

€S,

for all y; € P;, where i = (igiq - - - i4—1) is an admissible sequence, S, is the collection
of all admissible sequences of length ¢, P, is a cylinder (see (2.2)), and ¢° (-, f?) is
as in (1.3). For any n > 1, let

Ei)_l

n—1
Bi(z,nq) = H m(D gia(q) f?
j=0

for i € {1,2,...,k}, it follows that for all y; € B,

D Br-a(yss@)* ™ Broayr (33, @)™ - Bioa (v, 0™ Br(yi, )™ < 1. (3.6)
ies,

Given 0 < r <1, set
Q = {i = (ioil . inq—l) : Bk_d(x,nq) <r for all z € Pi[)iln-inq—l

but r < Bi_a(y, (n —1)q) for some y € Piji, i, 1y, }
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Since = — B;(x,q) is continuous and f? is expanding, then for each n > 1, all
i€4{1,2,--- k}and all z,y € Pii,..ipy_1»

Bi(y,nq)
Therefore for any i = (i142 - - ing—1) € 9,
bre™ " < Bg_q(z,nq) <r, (3.7)

for all x € P,

1091 ing—17

where b = mingep Br_q(z,q) < 1. Let
by = glgi(m(DmffI)*l <1
and hence bre™"* < b7, we have

logb + logr

. 3.8
logb; + ¢ (3:8)

For every admissible sequence (gt .. .), there is a unique integer n € Z such
that (igi1 ...ing—1) € Q. In particular, A C Uieg P;. Note that

m(DgcfmI|El)‘1 <m (Dxfnq|E2)—1 <o <m(DpfMy )
and for all s € {1,...,k} and any = € A,
m (Do f"5) " < Biz,ng).

Since TAM = E1® E>® - - - @® E}, is dominated, we conclude that there is a constant
C7 > 0 such that

-1

N(A,r)
<0 - Z Dy;f |Ek) T . m(Dyifnq‘Ekfdﬂ)_mkidH
rME—d+1
i€cQ
B . me B _ . Mk —d+1
< - Z k (y,,nq) R k—d+1 (yhnqzzk,dﬂ
= Bi—a (yi,nq) Bi—a (yi,nq)
=Cp- Z By (yi,ng)™ +++ Br—at1 (yi,nq)"™* " Bi_a (v, nq)’“
i€eQ
=C1- Y B (y1,n0)™ - Bi—as1 (51,70)™ " Bi—q (y31,10)° " Bi_a (y1,nq)~°
i€eQ

<Cl'1 b Sp—Senes
<Oy b5 (br) PR EE

where N(A,r) denotes the smallest number of balls of radius r required to cover A.
Here the penultimate inequality is by (3.6) and (3.7), and the last inequality is by
(3.8). Therefore

log N(A —
lim sup og N(A,7) < s+ .
r—0 —logr logby +¢
Let € tend to 0, we have
log N(A
Jimsup 28V
r—0 —logr
So that dimgA < s. By the arbitrariness of s one has dimgA < t*.
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3.2. Proof of Theorem 1.2

To prove Theorem 1.2, we need a coarse upper bound for the Hausdorff dimension
of an ergodic f-invariant expanding probability measure p first. We now provide
the following useful lemma, which estimates the Hausdorff measure of the image of
a small set under a C! local diffeomorphism. It is similar to Lemma 3 and Corollary
1in [41].

Lemma 3.2. Let f : M — M be a C* local diffeomorphism on the mq-dimensional
compact smooth Riemannian manifold M. Fiz t € [0,mq], then for any by > 2,/mqg

and Cy > thé, there is pg > 0 such that for allz € M and all A C B (z, po) we
have
Hy,(A) < CH,(f(A))

for all 0 < p < pg, where
b = by exp {—logamo,[t](x,f)} and C = Cyexp {—got(x, f)} i

Proof. For simplicity, we just prove the lemma on the assumption that M is the
Euclid space R™0. For the general case, we can use local charts to prove it.

Since f : M — M is a C" local diffeomorphism on the mg-dimensional compact
smooth Riemannian manifold M, then there is a constant p; > 0, for every x € M
such that flp, .yt B(z,p1) = f(B(z,p))isa C! diffeomorphism. Let € be a
small positive number with (14 ¢)e® < 2. For such &, there exists 0 < py < p1 such
that for y, z € M with d(y, z) < po the following properties hold:

(@) [y =2 =Dy fH(f(y) = F)| < elly - 21

(b) |10gal(y7f) - logal(zaf)| <e for i = 1727 cor,Mo.
Assume A C B (z,po) . Fix any 0 < p < po. Let a = H},(f(A)) (a is finite). Then
for any n > 0, there are {z;} C f (B («, po)) such that f(A) C U;B (z;,r;) and

Zr§ <a+n where r; <p.
J

Let B} = {y € B(z,po) : f(y) € B(zj,7;)}. Note that U; B} 2 A. By (a) we con-
clude B; is contained in an ellipse with principal axes

(L+e)rjar(y ) A+ -as(yy, /) (L+e)ry - amg (y, /)7,

where y; € B (x,p0), f (y;) = z;. Then by (b) we obtain that B’ is contained in
an ellipse with principal axes

(I+4+¢e)rj - efai(x, f)_l7 (I1+¢e)rj - e“asl(x, f)_l, e (T4 e)ry - efaum, (2, f)_l.

Therefore B is covered by

exp {_ Z?lomg_[tHl log o (, f)}
exp {_[t] logamg—[t] ({I?, f)}
balls with radius (1 4 ¢)e®/mqr; exp {— log vy — 4 (2, f)} . In fact the radius
(14 ¢)e®y/morj exp {— log vy —[4 (z, f)}

2y/mg exp { —10g Apo—pg(z, f)} - p
bp.

VANPAN
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Therefore
Hiy (B)) < exp{ > (~logai(e, /) + [10g amy (e, )}
i=mo—[t]+1

(14 ¢)ef\/mo)" - rbexp {—tlog am, 1y (z, f)}
< (2y/mg)texp [fcpt(x,f)] ~r§- .

Summing up over all j we get
Hip(4) < 3 Hi, (B))
J
< 2'(y/mo)" exp [—¢'(x, )] D7}

J

< 2%(\/mg)" - exp [—(pt(aﬁ, f)} “(a+mn).

Since 1 > 0 is arbitrary, this proves the lemma. O

The following lemma gives a coarse upper bound for the Hausdorff dimension
of an ergodic f-invariant expanding probability measure p, which is the zero point
of the additive measure-theoretic pressure. The method of proof involves applying
Lemma 2.1. We initially define a suitable sequence of sets {A,},~;. We utilize
Lemma 3.2 to estimate how one iteration of a C'! local diffeomorphism f effects the
Hausdorff measure of some dynamical balls, which cover A,,.

Lemma 3.3. Let f : M — M be a C* local diffeomorphism on the mq-dimensional
compact smooth Riemannian manifold M. Let p be an ergodic f-invariant expanding
probability measure with the corresponding Lyapunov exponents

A(p) = A2(p) = -+ = Ay (1) > 0.

Then we have
dimpg p < 1,

where ty is the unique root of the equation P, (f,—¢'(-, f)) = 0.
Proof. Fix any € > 0 such that —\,,, (1) + 2 < 0. We choose s > t; such that

haf) — / (. f) dp = —3.

Recall the definition of ¢*(z, f) in (1.6). By Lemma 2.2 in [38] we conclude that for
the above & > 0, there exists an integer N7 = Nj(¢) such that, for p-almost every
points x € M and any L > Ny,

n—1
1 L
Ao (i) =€ < lim — ;:Oj logm (Dyizp f5) < Ao (1) + €.

Let po be as in Lemma 3.2. Fix § € (0, pg) and consider a finite measurable partition
¢ with diam¢ = max {diam C¢ : C¢ € £} < 3. Let C¢,(z) be the element of the
partition

& =EV RO Vv ()
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containing z. It is easy to see C¢, (z) C B, (x, g) By the Shannon-McMillan-
Breiman theorem in [37], we obtain that for p almost every x € M,

bl
n—oo

lim - IOgM (CEn ((E)) _ hu(fa 5)
n

where h,(f,€) is the measure-theoretic entropy of f with respect to . Therefore

—log 1 (Bn (2, 5)) < lim 1084 (Ce. (@) _ hou(f,€) < hu(f).

lim sup
n— o0 n n— oo

Let by > 2/mg, Cy > 23m§ and choose N > Nj large enough such that

Coe V¢ < 1 and e[Amo ) —2e]N bo. (3.9)

Since the measure p is ergodic, the Birkhoff Ergodic Theory says that for p almost
every x € M,

nN—1

lim e > o (e f) = [ ) d
1=0

n—oo NN

We would like to choose sets A, C M such that any x € A,, satisfies

(@) o (0¥ 1)+ ) < e (Bunte5))

(b) nN [~ [ @*(z, f) du—e] <= SN % (Fia, f) <nN [— [ ¢ (. f) dute];

(c) nN [Amy (1) = 26] <Y " logm (Dyiny fN) < 0N [Am, (1) + 2]
1=0

Let E be a maximal (nNN, §)-separated subset of A,,, then A,, C ijeE B,n (z},0).

Furthermore the balls B,,x (z;,3) less than or equal to exp {n [k, (f) + €]} . For
x € A,, let

n—1
bk('r) = (bO)k exXp {_ Z IOg Ao —[s] (fiNxa fN) }

i=n—~k

for k=1,2,--- ;nand 3, = {boe[’/\’"o(“)”sw}np where 0 < p < pg. For x € A,
by (c) we have

bu(x)p < (bo)" - exp {— z_: log m (DfinfN)} p

=0
< (bo)" - exp {1 Py (1) — 221} - p
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Using Lemma 3.2 n times, we conclude

Hzn (B"N(x’ 6)) < H; a:)p (BTLN(‘Z‘ 6))
< Coexp {—¢® (z, f¥

)M (P (Bun(@,))
< Coexp {—¢° (z, fN)} - H;
)

w1 (@)p (Bn— 1>N( (x),9))

< Cyexp{—¢® (x, fV)} - exp{ o (SN (@), fY)}-
M oiwyp (Y (Baenyn (FY(2),6)))
<

i exp [— Yo (£ (@), fN)] W (B (Y (2),5))
1=0
< CyCh - exp [— Z_: ©° (fiN($)7fN)] ;
1=0

where C1 = sup,¢ s H;(B(x,0)). It yields that

Hﬂn Z H5 BnN .13],6))

r;€EE

<> CpCy-exp [—isﬁs (f (Ij)’fN)]

r;€F
nN-—1 )
SW%ZW[ZﬁWWﬂ]
z;€E i=0

< CyCy-exp[nN (hyu(f) +¢€)] - exp {nN [—/s@s(%f) du+€]}

=CyCy - exp {nN {hu(f) - /gos(x,f) dp + 25]}
=CpCy e NE
= (Coe_NE)n . Cl.

Since N satisfies Coe™™¢ < 1, we have that

lim Hj (A,) =0.

n—oo
The definition of 5, and (3.9) tell us that 8, — 0 if n — oco. Combining with
Lemma 2.1, we obtain dimg g < s. Thus dimg p < t. O

Now we are ready to present the proof of Theorem 1.2.

Proof of Theorem 1.2. For any n > 1, the measure p is f-invariant ergodic, but
it may be not ergodic for f™ although pu is still f™-invariant. It is well known that
there exists an f"-ergodic probability measure v such that

M:%[V+f*(l/)++f:ﬁbil(y)]7

where m € N\{0} divides n (see Theorem 2.1 in [18] for proofs). By Proposition
2.7 and Lemma 3.5 in [22], we have dimy v = dimpy p. Since v is expanding and
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ergodic for f™, then we apply Lemma 3.3 to get
dimg p =dimg v <t,,

where t,, is the unique root of the equation P, (f”,—¢® (-, f*)) = 0. By the sub-
additivity of {—¢°(-, f™)}n>1, we obtain

2% [hu(kaH) —/<p3(x,f2’““> du} < 2% [hu(fz") —/ws(x,fzk) du]

Hence 1 1
k+1 . k+1 k s k
W‘PM (f2 7_906('7]02 ))§27]C‘Pli(f2 , —@ ('7f2 ))
Then we have tor+1 < tor and hence the limit ¢t* = lim t,r exists. Therefore

k—o0
dimyg p < t*. Combining with

By (f A= (o ))) = hu(f) — tim [ St (e, f7) dp

n—00 n

— hu(f) — lim / e, 2 du

k—oo 2K
.1 K K
= lim P (2,61, 1)),

we conclude P, (f, {—(pt* (-,f™}) = 0. The proof of Theorem 1.2 is completed. [
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