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Abstract In this paper, we first conclude sharp upper and sharp lower bounds
of dimensions of a repeller with dominated splitting for C1 expanding maps,
using the techniques in sub-additive and super-additive thermodynamic for-
malism. Furthermore, we prove a sharp upper bound for the Hausdorff dimen-
sion of an expanding measure is given by the unique solution of sub-additive
measure-theoretic pressure equation for C1 local diffeomorphisms.
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1. Introduction
The present paper is motivated by Cao etc [10] and Jordan etc [24]. Let f :M →M
be a smooth map of an m0-dimensional compact smooth Riemannian manifold M .
For each x ∈M , the following quantities

‖Dxf‖ = sup
0 ̸=v∈TxM

‖Dxf(v)‖
‖v‖

, m(Dxf) = inf
0 ̸=v∈TxM

‖Dxf(v)‖
‖v‖

are respectively called the maximal norm and minimum norm of the differentiable
operator Dxf : TxM → TfxM , where ‖ · ‖ is the norm induced by the Riemannian
metric on M . Let Λ be a compact f -invariant subset of M . We call Λ a repeller for
f and f expanding if

(i) there exists an open neighborhood U of Λ such that Λ = {x ∈ U : fn(x) ∈
U for all n ≥ 0};

(ii) there is κ > 1 such that

‖Dxf(v)‖ ≥ κ‖v‖ for all x ∈ Λ and v ∈ TxM.

Assume that a repeller Λ admits a {λj}1≤j≤k-dominated splitting TΛM = E1 ⊕
E2⊕· · ·⊕Ek with E1 � E2 � · · · � Ek and λ1 > λ2 > · · · > λk (See Section 2.3 for
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more details) for a C1-expanding map f . Utilizing the techniques in sub-additive
and super-additive thermodynamic formalism, sharp upper and sharp lower bounds
of dimensions of Λ are given in this paper. Let µ be an ergodic Borel probability
measure on M preserving a C1-local diffeomorphism f . µ is said to be expanding if
the Lyapunov exponents of µ with respect to f satisfies

λ1(µ) ≥ λ2(µ) ≥ · · · ≥ λm0
(µ) > 0.

We also prove that the unique root of sub-additive measure-theoretic pressure equa-
tion can give an upper bound of the Hausdorff dimension of µ.

Let Λ be a conformal repeller for a C1+α expanding map f . Assume that f is
topologically mixing on Λ. Bowen [2] and Ruelle [36] found that

dimH Λ = t∗,

where t∗ is the unique solution of the equation

P (f |Λ,−t log ‖Dxf‖) = 0.

Gatzouras etc in [19] relaxed the smoothness to C1. Bowen, Ruelle, and Gatzouras
and Peres’s approaches are to construct a measure of full dimension, which is equiv-
alent to Hausdorff measure.

For a non-conformal repeller Λ of a C1 map f , Barreira [4, Theorem 3.9] proved
that

s ≤ dimH Λ ≤ dimBΛ ≤ dimBΛ ≤ t,

where s and t are the unique root of the following Bowen’s equation

P (f |Λ,−s log ‖Dxf‖) = 0, P (f |Λ,−t logm(Dxf)) = 0.

Falconer in [12] defined topological pressure of sub-additive potential for a C2 map
f satisfying the bounded distortion condition

‖(Dxf)
−1‖2 · ‖Dxf‖ < 1,

and proved the zero of the topological pressure gives an upper bound of the upper
box dimension of Λ. Zhang [41] introduced a new version of Bowen’s equation,
which involves the limit of a sequence of topological pressures for singular valued
potentials, and obtained a sharp upper bound of Hausdorff dimension of Λ. Fal-
coner’s result automatically implied that for the Hausdorff dimension of Λ, and the
bounded distortion condition is necessary. But Zhang’s approach is to calculate
the Hausdorff measure at each iteration, and is valid for all C1 expanding maps.
In [10], Cao etc considered an ergodic invariant measure µ with positive entropy for
C1+α non-conformal repellers, and constructed a compact expanding invariant set
with dominated splitting corresponding to Oseledec splitting of µ, for which entropy
and Lyapunov exponents approximate to entropy and Lyapunov exponents for µ.
Moreover, they used this construction to give a sharp estimate for the lower bound
estimate of Hausdorff dimension of non-conformal repellers. They also present a
sharp upper bound of the upper box dimension of Λ. We also refer the reader
to [16,17,34] for a detailed description of the recent progress in dimension estimates
for repellers of C1-dynamical systems. In this paper, our first main result extends
the results of Cao etc [10] to C1 expanding maps.
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Let Λ be a repeller for a C1 expanding map. Assume that the map f |Λ possesses
a {λj}1≤j≤k-dominated splitting TΛM = E1⊕ E2 ⊕ · · · ⊕Ek with E1 � E2 � · · · �
Ek and λ1 > λ2 > · · · > λk (See the definition in Section 2.3). Let dimEj = mj ,
rj = m1 + · · ·+mj for j ∈ {1, 2, . . . , k} and r0 = 0. For each s ∈ [0,m0] , n ≥ 1 and
x ∈ Λ, define

ψ̃s (x, fn) =

d∑
j=1

mj log ‖Dxf
n|Ej

‖+ (s− rd) log ‖Dxf
n|Ed+1

‖ (1.1)

if rd < s ≤ rd+1 for some d ∈ {0, 1, · · · , k − 1} (We assume ψ̃0(x, fn) = 0.). It is
clear Ψ̃f (s) = {−ψ̃s (x, fn)}n≥1 is super-additive. Let

P̃sup (s) := P (f |Λ, Ψ̃f (s)). (1.2)

(See the definition of the super-additive topological presure P (f |Λ, Ψ̃f (s)) in (2.1).)
One can easily see that P̃sup (s) is continuous and strictly decreasing in s. Let
ℓd = mk + · · · +mk−d+1 for d = 1, 2, . . . , k and ℓ0 = 0. For t ∈ [0,m0] and n ≥ 1,
define

φ̃t (x, fn) =

k∑
j=k−d+1

mj logm
(
Dxf

n|Ej

)
+ (t− ℓd) logm

(
Dxf

n|Ek−d

)
(1.3)

if ℓd < t ≤ ℓd+1 for some d ∈ {0, 1, . . . , k − 1} (We assume φ̃0(x, fn) = 0.). It is
easy to see that Φ̃f (t) = {−φ̃t (·, fn)}n≥1 is sub-additive and that the sub-additive
topological presure function (see the definition in Definition 2.1)

P̃sub (t) := P (f |Λ, Φ̃f (t)) (1.4)

is continuous and strictly decreasing in t. We state the first main result of the
present paper:

Theorem 1.1. Let Λ be a repeller for a C1 expanding map admitting a {λj}1≤j≤k-
dominated splitting TΛM = E1⊕ E2 ⊕ · · · ⊕ Ek with E1 � E2 � · · · � Ek and
λ1 > λ2 > · · · > λk. Then

s∗ ≤ dimH Λ ≤ dimBΛ ≤ dimBΛ ≤ t∗

where s∗, t∗ are the unique roots of the equations P̃sup (s) = 0, P̃sub(t) = 0 respec-
tively.

Let f : M → M be a C2 map of an m0-dimensional Riemannian manifold M ,
and Λ be a compact f -invariant set. Assume that f is expanding and conformal on
Λ and µ is an ergodic probability measure on Λ. Ruelle [35] proved

dimH µ =
hµ(f)

λ(µ)
,

where dimH µ is the Hausdorff dimension of µ, hµ(f) is the measure-theoretic en-
tropy, and λ(µ) is the Lyapunov exponent of µ. Hu [20] extended the result to
non-conformal case. He obtained

hµ(f)

λ1(µ)
≤ D(µ) ≤ hµ(f)

λs(µ)
, (1.5)
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where λ1(µ) and λs(µ) are the largest and smallest Lyapunov exponents respectively,
D(µ) is dimH µ, dimBµ or dimBµ. Wang etc [39] generalized Hu’s result [20] in the
C2 setting. They stated that for a C1 map f , the zero of the sub-additive measure-
theoretic pressure Pµ(f, {−t logm(Dxf

n)}) gives the upper bound of dimensions of
an ergodic measure µ, and the zero of the super-additive measure-theoretic pressure
Pµ(f, {−t log ‖Dxf

n‖}) gives the lower bound of dimensions of an ergodic measure
µ. Using Theorem A and Theorem C in [9], we have that hµ(f)

λ1(µ)
and hµ(f)

λs(µ)
are the

unique roots of the equations

Pµ(f, {−t log ‖Dxf
n‖}) = 0 and Pµ(f, {−t logm(Dxf

n)}) = 0

respectively. Let f be a C1 self-map on a smooth Riemannian manifold M , and µ be
an f -invariant ergodic expanding Borel probability measure with a compact support
Λ. Suppose f is non-degenerate on Λ, Huang etc [22] proved (1.5). In their paper,
the non-degeneracy condition is used to give some estimates of the distortion of
the differential Dxf . They removed the non-degeneracy condition of f if f is C1+α

self-map. Jordan etc [24] considered a measure µ supported on the limit set of an
iterated function system in Rd which contracts on average, and presented a sharp
upper bound for the Hausdorff dimension of µ. In [30], Mihailescu also obtained
some interesting results for dimension estimates of invariant measures in iterated
function systems with overlaps. Here we also refer the reader to [27–29, 31] for a
detailed description about applications of thermodynamic formalism to dimension
estimates for hyperbolic invariant sets and measures. In this paper we exploit
Jordan and Pollicott’s ideas [24] in an essential way to get a sharp upper bound for
the Hausdorff dimension of an expanding measure µ for a C1 local diffeomorphism.

Let f : M → M be a C1 local diffeomorphism on the m0 dimensional compact
smooth Riemannian manifold M . Fixed any x ∈ M , for every n ≥ 1, consider the
differentiable operator Dxf

n : TxM → Tfn(x)M and denote the singular values of
Dxf

n in the decreasing order by

α1 (x, f
n) ≥ α2 (x, f

n) ≥ · · · ≥ αm0
(x, fn) ,

which are the positive square roots of the eigenvalues of (Dxf
n)∗Dxf

n, here (Dxf
n)∗

is the adjoint of Dxf
n. Let µ be an ergodic f -invariant expanding probability mea-

sure on M with the corresponding Lyapunov exponents

λ1(µ) ≥ λ2(µ) ≥ · · · ≥ λm0(µ) > 0.

Oseledec’s Multiplicative Ergodic Theorem [25] tells us that for i = 1, 2, · · · ,m0,
µ.a.e.x,

lim
n→∞

1

n
logαi(x, f

n) = λi(µ).

For t ∈ [0,m0], set

φt (x, fn) =

m0∑
i=m0−[t]+1

logαi (x, f
n) + (t− [t]) logαm0−[t] (x, f

n) (1.6)

for t ∈ [0,m0]. Since f is smooth, the functions x 7→ αi (x, f
n) and x 7→ φt (x, fn)

are continuous. It is easy to see that for all n, l ∈ N

φt(x, fn+ℓ) ≥ φt(x, fn) + φt(fn(x), f ℓ).
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It follows that the sequence of functions

Φf (t) =
{
−φt (·, fn)

}
n≥1

is sub-additive. We call them sub-additive singular valued potentials. We show that
the unique solution of the sub-additive measure-theoretic pressure equation

Pµ(f, {−φt(·, fn)}) = 0

is an upper bound for the Hausdorff dimension of an ergodic f -invariant expanding
probability measure µ as follows.

Theorem 1.2. Let f :M →M be a C1 local diffeomorphism on the m0 dimensional
compact smooth Riemannian manifold M . Let µ be an ergodic f -invariant expanding
probability measure with the corresponding Lyapunov exponents

λ1(µ) ≥ λ2(µ) ≥ · · · ≥ λm0(µ) > 0.

Then we have
dimH µ ≤ t∗,

where t∗ is the unique root of the equation Pµ (f, {−φt (x, fn)}) = 0.

For s ∈ [0,m0], x ∈M and n ∈ N, denote

ψs (x, fn) =

[s]∑
i=1

logαi (x, f
n) + (s− [s]) logα[s]+1 (x, f

n) . (1.7)

It is easy to see that

ψs(x, fn+l) ≤ ψs(x, fn) + ψs(fn(x), f l)

for every x ∈ M and n, l ∈ N. It is natural to ask whether dimH µ ≥ s∗ where s∗
satisfies Pµ(f, {−ψs(·, fn)}) = 0?

The paper is organized as follows. In Section 2 we recall definitions and prelim-
inaries, such as dimensions, pressures, dominated splitting, Markov partition and
weak Gibbs measures. In Section 3 we give the detailed proofs of the main results.

2. Preliminaries
2.1. Dimensions of sets and measures
We recall some notions and basic facts from dimension theory, see the books [13,32]
for detailed introduction.

Let X be a compact metric space equipped with a metric d. Given a subset Z
of X, for s ≥ 0 and δ > 0, define

Hs
δ(Z) = inf

{∑
i

|Ui|s : Z ⊂
⋃
i

Ui, |Ui| ≤ δ

}
,

where |·| denotes the diameter of a set. The quantity Hs(Z) = limδ→0 Hs
δ(Z) is

called the s-dimensional Hausdorff measure of Z. Define the Hausdorff dimension
of Z, denoted by dimH Z, as follows:

dimH Z = inf {s : Hs(Z) = 0} = sup {s : Hs(Z) = ∞} .
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Further define the lower and upper box dimensions of Z respectively by

dimBZ = lim inf
δ→0

logN(Z, δ)

− log δ
and dimBZ = lim sup

δ→0

logN(Z, δ)

− log δ
,

where N(Z, δ) denotes the smallest number of balls of radius δ needed to cover the
set Z. Clearly, dimH Z ≤ dimBZ ≤ dimBZ for each subset Z ⊂ X.

If µ is a probability measure on X, then the Hausdorff dimension of µ is defined
by

dimH µ = inf {dimH Y : Y ⊆ X, µ(Y ) = 1} .

Finally, we define the lower and upper pointwise dimensions of the measure
µ at the point x ∈ X by

dµ(x) = lim inf
r→0

logµ(B(x, r))

log r
and d̄µ(x) = lim sup

r→0

logµ(B(x, r))

log r
,

where B(x, r) = {y ∈ X : d(x, y) < r}. In particular, if there exists a number s such
that

lim
r→0

logµ(B(x, r))

log r
= s

for µ-almost every x ∈ X, then dimH µ = s, see [40].
The following lemma gives a method for calculating an upper bound to the

Hausdorff dimension on a measure.

Lemma 2.1 (Lemma 6, [24]). Let µ be a probability measure on the m0 -dimensional
compact Riemannian manifold M . If we can find a sequence of subsets An ⊆ M
such that

(i) lim
n→∞

µ (An) = 1;

(ii) lim
n→∞

Ht
βn

(An) = 0 for a sequence {βn}n∈N satisfying lim
n→∞

βn = 0.

Then it follows that dimH µ ≤ t.

2.2. Pressures
Let (X, f) be a topological dynamical systems (TDS), that is, X is a compact metric
space X with a metric d, and f : X → X is a continuous transformation. Denote
by M(X, f) and Me(X, f) the set of all f -invariant and respectively, ergodic Borel
probability measures on X. A sequence of continuous functions Φ = {φn}n≥1 is
called sub-additive, if

φm+n ≤ φn + φm ◦ fn, for all m,n ≥ 1.

Similarly, we call a sequence of continuous functions Ψ = {ψn}n≥1 super-additive if
−Ψ = {−ψn}n≥1 is sub-additive.

For x, y ∈ X and n ≥ 0 define the dn-metric on X by

dn(x, y) = max
{
d
(
f i(x), f i(y)

)
: 0 ≤ i < n

}
.

Given ε > 0 and n ≥ 0, denote by Bn(x, ε) = {y ∈ X : dn(x, y) < ε} Bowen’s ball
centered at x of radius ε and length n and we call a subset E ⊂ X (n, ε)-separated
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if dn(x, y) > ε for any two distinct points x, y ∈ E. A set F ⊂ X is said to be an
(n, ε)-spanning subset of X with respect to f if for any x ∈ X, there exists y ∈ F
with dn(x, y) ≤ ε. For each µ ∈ M(X, f), 0 < δ < 1, n ≥ 1 and ε > 0, a subset
F ⊂ X is an (n, ε, δ)-spanning set if the union ∪x∈FBn(x, ε) has µ-measure more
than or equal to 1− δ.

Definition 2.1. Given a sub-additive sequence of continuous potentials Φ={φn}n≥1,
let

Pn(Φ, ε) := sup

{∑
x∈E

eφn(x) : E is an (n, ε)− separated subset of X
}
.

The quantity
P (f,Φ) := lim

ε→0
lim sup
n→∞

1

n
logPn(Φ, ε)

is called the sub-additive topological pressure of Φ.

The authors in [21] proved that it satisfies the following variational principle:

P (f,Φ) = sup {hµ(f) + F∗(Φ, µ) : µ ∈ M(X, f),F∗(Φ, µ) 6= −∞} ,

where hµ(f) is the metric entropy of f with respect to µ and

F∗(Φ, µ) = lim
n→∞

1

n

∫
φn dµ = inf

n≥1

1

n

∫
φn dµ.

Existence of the above limit can be shown by the standard sub-additive argument.

Remark 2.1. If Φ = {φn}n≥1 is additive in the sense that φn(x) = φ(x)+φ(fx)+
· · · + φ(fn−1x) ≜ Snφ(x) for some continuous function φ : X → R, we simply
denote the topological pressure P (f, Φ) as P (f, φ).

Given a super-additive sequence of continuous potentials Ψ = {ψn}n≥1, we
define the super-additive topological pressure of Ψ = {ψn}n≥1 by

P (f,Ψ) := sup {hµ(f) + F∗(Ψ, µ) : µ ∈ M(X, f)} . (2.1)

Note that for any super-additive sequence of continuous potentials and any f in-
variant measure µ we have

F∗(Ψ, µ) = lim
n→∞

1

n

∫
ψn dµ = sup

n≥1

1

n

∫
ψn dµ.

It was proved in [10] that the following relation between the super-additive topo-
logical pressure and the topological pressure for additive potentials holds.

Proposition 2.1. Let Ψ = {ψn}n≥1 be a super-additive sequence of continuous
potentials on X. Then

P (f,Ψ) = lim
n→∞

P (f,
ψn

n
) = lim

n→∞

1

n
P (fn, ψn) .

Definition 2.2. For a sub-additive potential Φ = {φn}n≥1 , for µ ∈ Me(M,f), 0 <
δ < 1, n ≥ 1, and ε > 0, put

Pµ(f,Φ, n, ε, δ) :=inf

{∑
x∈F

exp

(
sup

y∈Bn(x,ε)

φn(y)

)
:F is an (n, ε, δ)− spanning set

}
,
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Pµ(f,Φ, ε, δ) := lim sup
n→∞

1

n
logPµ(f,Φ, n, ε, δ),

Pµ(f,Φ, δ) := lim inf
ε→0

Pµ(f,Φ, ε, δ),

Pµ(f,Φ) := lim
δ→0

Pµ(f,Φ, δ),

we call Pµ(f,Φ) the sub-additive measure-theoretic pressure of f with respect to Φ.

Remark 2.2. (i) It is easy to see that Pµ(f,Φ, δ) increases with δ. So the limit
in the last formula exists. In fact, it is proved in [11] that Pµ(f,Φ, δ) is
independent of δ. Hence, the limit of δ → 0 is redundant in the definition.

(ii) If Φ = {φn} is additive generated by a continuous function, that is, φn(x) =∑n−1
i=0 φ1(f

ix), then we simply write Pµ(f,Φ) as Pµ(f, φ1).

Theorem 2.1 (Theorem A, [9]). Let (X, f) be a TDS and Φ = {φn}n≥1 a sub-
additive potential on X. For every µ ∈ Me(X, f) with Φ∗(µ) 6= −∞, we have

Pµ(f,Φ) = hµ(f) + F∗(Φ, µ).

Remark 2.3. (i) The results still apply for F∗(Φ, µ) = −∞ if hµ(f) <∞.
(ii) If Φ = {φn}n≥1 is an additive sequence, then we have

Pµ(f, φ1) = hµ(f) +

∫
φ1dµ.

The above equality is also in [32].

2.3. Dominated splitting
We recall the definition of a dominated splitting. Consider a C1+α diffeomorphism
of a compact smooth manifold M of dimension m0 and let Λ ⊂ M be a compact
invariant set. We say that Λ admits a dominated splitting if there is continuous
invariant splitting TΛM = E⊕F and constants C > 0, λ ∈ (0, 1) such that for each
x ∈ Λ, n ∈ N, 0 6= u ∈ E(x), and 0 6= v ∈ F (x)

‖Dxf
n(u)‖

‖u‖
≤ Cλn

‖Dxf
n(v)‖

‖v‖
.

We write E � F if F dominates E. Furthermore, we say that Df -invariant splitting
on Λ

TΛM = E1 ⊕ E2 ⊕ · · · ⊕ Ek, (k ≥ 2)

is a {λj}1≤j≤k-dominated splitting, if there are numbers λ1 > λ2 > · · · > λk,
constants C > 0 and 0 < ε < min1≤i≤k

{
λi−λi+1

100

}
such that for every x ∈ Λ, n ∈ N

and 1 ≤ j ≤ k and each unit vector u ∈ Ej(x), it holds that

C−1en(λj−ε) ≤ ‖Dxf
n(u)‖ ≤ Cen(λj+ε).

We write E1 � E2 � · · · � Ek.
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2.4. Markov partition and weak Gibbs measures
Let Λ be a repeller of a C1 expanding map f . Assume that f |Λ is topologically
mixing. A finite closed cover P1, P2, · · · , Pk of Λ is called a Markov partition of Λ
(with respect to f) if:

(i) Pi 6= ∅ and int (Pi) = Pi;
(ii) int (Pi)∩ int (Pj) = ∅ if i 6= j;

(iii) for any i the set f(Pi) is the union of some of the sets Pj from the partition.

Here int(·) denotes the interior of a set relative to Λ. It is well known that any
repeller Λ of a continuously differentiable expanding map f has Markov partition
of arbitrary small diameter [33] and (Λ, f) is semi-conjugated to (ΣA, σ), a subshift
space of finite type Σk = {1, 2, · · · , k}N, where

ΣA =
{
(i0i1 · · · in · · · ) ∈ Σk : aijij+1

= 1 for every n ∈ N
}
,

and A = aij is the transfer matrix of the Markov partition, namely, aij = 1 if
int(Pi) ∩ f−1 (int(Pj)) 6= ∅ and aij = 0 otherwise. For any n ≥ 1, ΣA,n denotes the
set of finite sequence i = (i0i1 · · · in−1) such that aijij+1

= 1 for all 0 ≤ j ≤ n − 2.
These sequences i are called admissible words. The length of the word is denoted
by |i|. For i = (i0i1 · · · in−1) ∈ ΣA,n, we define

Pi0i1...in−1 =

n−1⋂
j=0

f−j
(
Pij

)
. (2.2)

Definition 2.3. Let φ : Λ → R be a continuous function. We call a (not necessarily
invariant) Borel probability measure µ on Λ a weak Gibbs measure for φ if for any
ε > 0, there exists a positive integer N = N(ε) such that for all n ≥ N , every
admissible sequence (i0i1 . . . in−1) ∈ ΣA,n, and x ∈ Pi0i1...in−1

, we have

e−nε ≤
µ
(
Pi0i1...in−1

)
exp [−nP + Snφ(x)]

≤ enε,

where P is a constant and Snφ(x) =
∑n−1

j=0 φ
(
f j(x)

)
.

Remark 2.4. (i) The authors in [23, 26] proved the existence of such a weak
Gibbs measure µ for a continuous function φ : Λ → R.

(ii) If there exists a constant K > 0 such that for every n ∈ N,

K−1 ≤
µ
(
Pi0i1...in−1

)
exp [−nP + Snφ(x)]

≤ K.

Definition 2.3 is recovered the classical notion of Gibbs measure (See [1] for
more details.).

3. Proofs of Main Results
3.1. Proof of Theorem 1.1
This section is divided into two parts which provide the proof of Theorem 1.1 stated
in Section 1.
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3.1.1. Lower bound for the Hausdorff dimension of repellers.

In this section we prove dimH Λ ≥ s∗, where s∗ is the unique root of the equation
P̃sup(s) = 0, which is defined in (1.2). We first obtain a coarse lower bound of
Hausdorff dimension of a non-conformal repeller as follows.

Lemma 3.1. Assume that f :M →M is a C1 map on the m0-dimensional compact
smooth Riemannian manifold M. Let Λ be a repeller for the map f, if f |Λ possesses a
{λj}1≤j≤k-dominated splitting TΛM = E1⊕ E2⊕· · ·⊕Ek with E1 � E2 � · · · � Ek

and λ1 > λ2 > · · · > λk. Then

dimH Λ ≥ s1,

where s1 is the unique root of Bowen’s equation P (f |Λ ,−ψ̃s(·, f)) = 0.

Proof. Note that x 7→ Ei(x) is continuous on Λ since the splitting TΛM = E1⊕
E2⊕· · ·⊕Ek is dominated, and the continuity of the map x 7→ Ei(x) can be extended
to U (here U is an open neighborhood of Λ in the definition of the repeller), so the
map x 7→

∥∥Dxf |Ei

∥∥ is continuous for every i = 1, 2, . . . , k. Therefore, for any
sufficiently small ε > 0, there exists δ > 0, for any x, y ∈ U with d(x, y) < δ, so that

e−ε ≤ ‖Dxf |Ei
‖−1

‖Dyf |Ei‖−1
≤ eε.

Let {P1, P2 . . . , Pl} be a Markov partition of Λ, with maxi diam(Pi) <
δ
2 . It follows

that for each i = 1, 2, . . . , l the closed δ
4 neighborhood P̃i of Pi is such that P̃i ⊆

U and P̃i ∩ P̃j = ∅ whenever Pi ∩ Pj = ∅. Given an admissible sequence i =

(i0i1 . . . in−1) and the cylinder Pi0i1...in−1
, we denote by P̃i0i1...in−1

the corresponding
cylinder. Since for any x, y ∈ P̃i0i1...in−1

, we have f j(x) ∈ P̃ij , f
j(y) ∈ P̃ij for every

j = 0, 1, . . . , n− 1. Then d(f j(x), f j(y)) < δ and for any n ∈ N, we have

e−nε ≤
∏n−1

j=0 ‖Dfj(x)f |Ei‖−1∏n−1
j=0 ‖Dfj(y)f |Ei

‖−1
≤ enε. (3.1)

Since P (f |Λ ,−ψ̃s1(·, f)) = 0 and ψ̃s1(·, f) is a continuous function on Λ, there is
a weak Gibbs measure µ, for the above ε > 0, there exists N = N(ε) such that for
any n > N and each x ∈ Pi0i1...in−1

, we have

e−nε ≤
µ
(
Pi0i1...in−1

)
exp

(
−
∑n−1

i=0 ψ̃
s1 (f i(x), f)

) ≤ enε.

Since TΛM = E1⊕ E2 ⊕ · · · ⊕ Ek is a dominated splitting, the angles between
different subspaces Ei are uniformly bounded away from zero. Therefore there
exists a > 0 and ξi ∈ P̃i0i1...in−1 for each i = 1, 2, . . . , k with a rectangle of sides

m1︷ ︸︸ ︷
a‖Dξ1f

n|E1
‖−1, . . . , a‖Dξ1f

n|E1
‖−1, . . . ,

mk︷ ︸︸ ︷
a‖Dξkf

n|Ek
‖−1, . . . , a‖Dξkf

n|Ek
‖−1

contained in P̃i0i1...in−1
. Note that

‖Dξif
n|Ei‖−1 ≥

n−1∏
j=0

‖Dfj(ξi)f |Ei‖−1.
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Thus by (3.1), there exists x ∈ Pi0i1...in−1
such that P̃i0i1...in−1

contains a rectangle
of sides

m1︷ ︸︸ ︷
ae−nεA1(x, n), . . . , ae

−nεA1(x, n), . . . ,

mk︷ ︸︸ ︷
ae−nεAk(x, n), . . . , ae

−nεAk(x, n),

where Ai(x, n) =
∏n−1

j=0 ‖Dfj(x)f |Ei
‖−1 for any i ∈ {1, 2, . . . , k}. Note that there is

i ∈ {0, 1, 2, . . . , k − 1} such that ri < s1 ≤ ri+1. Fix r > 0 small enough and set

Q =
{
i = (i0i1 · · · in−1) : ae

−nεAi+1(x, n) ≤ r for all x ∈ Pi0i1···in−1 ,

but ae−nεAi+1(y, n− 1) > r for some y ∈ Pi0i1···in−1

}
.

Therefore, for every i = (i0i1 · · · in−1) ∈ Q, we have

bre−nε < ae−nεAi+1(x, n) ≤ r for all x ∈ Pi0i1...in−1 , (3.2)

where b = minx∈Λ ‖Dxf‖−1
< 1. Let b1 = maxx∈Λ ‖Dxf‖−1

< 1, therefore
ab1

ne−nε1 > bre−nε1 . Combining with (3.2) one has

n <
log r + log b− log a

log b1
. (3.3)

Let B be a ball of radius r and B̃ a ball of radius 2r with the same center as
that of B. Put

Q1 =
{
i ∈ Q | Pi ∩B 6= ∅

}
.

Recall that A1(x, n) ≤ A2(x, n) ≤ · · · ≤ Ak(x, n). Hence, for each i ∈ Q1, we have
P̃i ∩ B̃ contains a rectangle of sides

m1︷ ︸︸ ︷
ae−nεA1(x, n), . . . , ae

−nεA1(x, n), . . . ,

mi︷ ︸︸ ︷
ae−nεAi(x, n), . . . , ae

−nεAi(x, n),
m0−ri︷ ︸︸ ︷

ae−nεAi+1(x, n), . . . , ae
−nεAi+1(x, n) .

(Recall ri = m1 + · · ·+mi.) It follows that

volm0

(
P̃i ∩ B̃

)
≥ am0 · e−nm0ε ·Ai+1(x, n)

m0−riAi(x, n)
mi · · · A1(x, n)

m1

= am0 · e−nm0ε ·Ai+1(x, n)
s1−riAi+1(x, n)

m0−s1 ·
Ai(x, n)

mi · · · A1(x, n)
m1

≥ am0 · e−nm0ε ·Ai+1(x, n)
s1−ri

(
b

a

)m0−s1

· rm0−s1 ·

Ai(x, n)
mi · · · A1(x, n)

m1

≥ a2 · e−nm0ε · rm0−s1 ·Ai+1(x, n)
s1−riAi(x, n)

mi · · ·A1(x, n)
m1

where a2 = am0

(
b

a

)m0−s1

, and the second inequality is by (3.2). Thus there is a
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positive constant a3 such that

2m0a3r
m0 ≥ volm0

(
B̃
)

=
∑
i∈Q1

volm0

(
P̃i ∩ B̃

)
≥
∑
i∈Q1

a2 · e−nm0ε · rm0−s1 ·Ai+1(x, n)
s1−riAi(x, n)

mi · · ·A1(x, n)
m1 .

It yields that∑
i∈Q1

e−nm0εAi+1(x, n)
s1−riAi(x, n)

mi · · ·A1(x, n)
m1 ≤ Crs1 ,

where C =
2m0a3
a2

. Therefore

µ(B) ≤
∑

(i0i1...in−1)∈Q1

µ
(
Pi0i1...in−1

)
≤
∑
i∈Q1

exp

(
nε−

n−1∑
i=0

ψ̃s1
(
f i(x), f

))
≤
∑
i∈Q1

enε ·Ai+1(x, n)
s1−riAi(x, n)

mi · · ·A1(x, n)
m1

=
∑
i∈Q1

e−nm0ε ·Ai+1(x, n)
s1−riAi(x, n)

mi · · ·A1(x, n)
m1 · en(m0+1)ε

≤ CC1r
s1+

m0+1
log b1

ε,

where C1 = ( ba )
m0+1
log b1

ε, and the last inequality is by (3.3). Thus

lim inf
r→0

logµ(B)

log r
≥ m0 + 1

log b1
ε+ s1.

Since ε is arbitrary, we have dµ(x) ≥ s1, which implies that dimH µ ≥ s1. Hence
dimH Λ ≥ s1.

For any k ∈ N, the set Λ is also a repeller for f2k . By Lemma 3.1, for every
k ∈ N, we have dimH Λ ≥ sk where sk is the unique root of the equation

P
(
f2

k
∣∣∣
Λ
,−ψ̃s

(
·, f2

k
))

= 0.

Note that any f2k -invariant measure µ must be f2k+1 -invariant. This together with
the super-additivity of

{
−ψ̃s(·, fn)

}
n≥1

(See definition in (1.1).) yields that for

any f2k -invariant measure µ,
1

2k+1
P
(
f2

k+1

,−ψ̃s(·, f2
k+1

)
)
≥ 1

2k+1

(
hµ(f

2k+1

)−
∫
ψ̃s(x, f2

k+1

) dµ

)
≥ 1

2k+1

(
hµ(f

2k+1

)− 2

∫
ψ̃s(x, f2

k

) dµ

)
=

1

2k

(
hµ(f

2k)−
∫
ψ̃s(x, f2

k

) dµ

)
.
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Hence,
1

2k+1
P
(
f2

k+1

,−ψ̃s(·, f2
k+1

)
)
≥ 1

2k
P
(
f2

k

,−ψ̃s(·, f2
k

)
)
. (3.4)

By Proposition 2.1, we have

P̃sup(s) = lim
k→∞

1

2k
P
(
f2

k

,−ψ̃s(·, f2
k

)
)

= Pvar

(
f |Λ ,

{
−ψ̃s (·, fn)

})
. (3.5)

By (3.4), we have that sk ≤ sk+1 and hence, there is a limit s∗ = lim
k→∞

sk. We have
that dimH Λ ≥ s∗. Note that s∗ ≥ sk for every k ≥ 1. It now follows from (3.5) and
P̃sup(·) is continuous, strictly decreasing in s that P̃sup (s∗) ≤ 0. On the other hand
for any ε > 0, there is a positive integer K such that sk ≥ s∗ − ε for any k ≥ K.
Thus P̃sup(s

∗ − ε) ≥ 0 for every ε > 0. Therefore P̃sup(s
∗) ≥ 0. So P̃sup(s

∗) = 0.

3.1.2. Upper bound for the box dimension of repellers

Secondly we prove dimBΛ ≤ t∗, where t∗ is the unique root of the equation P̃sub(t) =
0, which is defined in (1.4).

For any sufficiently small ε > 0, let {P1, P2, · · · , Pl} be a Markov partition
of Λ and δ > 0 as that in the proof of Lemma 3.1. We still denote by P̃i the
δ
4 -neighborhood of Pi as that in the proof of Lemma 3.1. Note that the map
x 7→ m(Dxf |Ei

) is continuous on U for each i ∈ {1, 2, . . . , k}, and the {λj}1≤j≤k-
dominated splitting can be extended to U , where U is an open neighborhood of Λ
in the definition of the repeller.

Choose a number s such that t∗ < s ≤ m0 and assume that ℓd < s ≤ ℓd+1 for
some d ∈ {0, 1, . . . , k−1} (Recall dimEj = mj and ℓd = mk+mk−1+· · ·+mk−d+1.).
Since P̃sub (s) < 0, we may find a positive integer q for which∑

i∈Sq

e−φ̃s(yi,f
q) < 1

for all yi ∈ Pi, where i = (i0i1 · · · iq−1) is an admissible sequence, Sq is the collection
of all admissible sequences of length q, Pi is a cylinder (see (2.2)), and φ̃s (·, fq) is
as in (1.3). For any n ≥ 1, let

Bi(x, nq) =

n−1∏
j=0

m(Dfjq(x)f
q|Ei)

−1

for i ∈ {1, 2, . . . , k}, it follows that for all yi ∈ Pi,∑
i∈Sq

Bk−d(yi, q)
s−ℓd ·Bk−d+1(yi, q)

mk−d+1 · · ·Bk−1(yi, q)
mk−1Bk(yi, q)

mk < 1. (3.6)

Given 0 < r ≤ 1, set

Q =
{
i =

(
i0i1 . . . inq−1

)
: Bk−d(x, nq) ≤ r for all x ∈ Pi0i1...inq−1

but r < Bk−d(y, (n− 1)q) for some y ∈ Pi0i1...i(n−1)q−1

}
.
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Since x 7→ Bi(x, q) is continuous and fq is expanding, then for each n ≥ 1, all
i ∈ {1, 2, · · · , k} and all x, y ∈ P̃i0i1...inq−1 ,

e−nε ≤ Bi(x, nq)

Bi(y, nq)
≤ enε.

Therefore for any i = (i1i2 · · · inq−1) ∈ Q,
bre−nε < Bk−d(x, nq) ≤ r, (3.7)

for all x ∈ Pi0i1...inq−1
, where b = minx∈ΛBk−d(x, q) < 1. Let

b1 = max
x∈Λ

m(Dxf
q)−1 < 1

and hence bre−nε ≤ bn1 , we have

n ≤ log b+ log r

log b1 + ε
. (3.8)

For every admissible sequence (i0i1 . . .), there is a unique integer n ∈ Z such
that (i0i1 . . . inq−1) ∈ Q. In particular, Λ ⊂

⋃
i∈Q Pi. Note that

m
(
Dxf

nq|E1

)−1 ≤ m
(
Dxf

nq|E2

)−1 ≤ · · · ≤ m
(
Dxf

nq|Ek

)−1

and for all i ∈ {1, . . . , k} and any x ∈ Λ,

m
(
Dxf

nq|Ei

)−1 ≤ Bi(x, nq).

Since TΛM = E1⊕E2⊕· · ·⊕Ek is dominated, we conclude that there is a constant
C1 > 0 such that

N(Λ, r)

≤ C1 ·
∑
i∈Q

m(Dyi
fnq|Ek

)−mk

rmk
· · ·

m(Dyif
nq|Ek−d+1

)−mk−d+1

rmk−d+1

≤ C1 ·
∑
i∈Q

Bk (yi, nq)
mk

Bk−d (yi, nq)
mk

· · · Bk−d+1 (yi, nq)
mk−d+1

Bk−d (yi, nq)
mk−d+1

= C1 ·
∑
i∈Q

Bk (yi, nq)
mk · · ·Bk−d+1 (yi, nq)

mk−d+1 Bk−d (yi, nq)
−ℓd

= C1 ·
∑
i∈Q

Bk (yi, nq)
mk · · ·Bk−d+1 (yi, nq)

mk−d+1 Bk−d (yi, nq)
s−ℓd Bk−d (yi, nq)

−s

≤ C1 · 1 · b−sr−senεs

≤ C1 · b−sr−s · (br)
εs

log b1+ε ,

where N(Λ, r) denotes the smallest number of balls of radius r required to cover Λ.
Here the penultimate inequality is by (3.6) and (3.7), and the last inequality is by
(3.8). Therefore

lim sup
r→0

logN(Λ, r)

− log r
≤ s+

−εs
log b1 + ε

.

Let ε tend to 0, we have
lim sup

r→0

logN(Λ, r)

− log r
≤ s.

So that dimBΛ ≤ s. By the arbitrariness of s one has dimBΛ ≤ t∗.
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3.2. Proof of Theorem 1.2
To prove Theorem 1.2, we need a coarse upper bound for the Hausdorff dimension
of an ergodic f -invariant expanding probability measure µ first. We now provide
the following useful lemma, which estimates the Hausdorff measure of the image of
a small set under a C1 local diffeomorphism. It is similar to Lemma 3 and Corollary
1 in [41].

Lemma 3.2. Let f :M →M be a C1 local diffeomorphism on the m0-dimensional
compact smooth Riemannian manifold M. Fix t ∈ [0,m0], then for any b0 > 2

√
m0

and C0 > 2tm
t
2
0 , there is ρ0 > 0 such that for all x ∈ M and all A ⊆ B (x, ρ0) we

have
Ht

bρ(A) ≤ CHt
ρ(f(A))

for all 0 < ρ < ρ0, where

b = b0 exp
{
− logαm0−[t](x, f)

}
and C = C0 exp

{
−φt(x, f)

}
.

Proof. For simplicity, we just prove the lemma on the assumption that M is the
Euclid space Rm0 . For the general case, we can use local charts to prove it.

Since f :M →M is a C1 local diffeomorphism on the m0-dimensional compact
smooth Riemannian manifold M , then there is a constant ρ1 > 0, for every x ∈M
such that f |B(x1,ρ1)

: B (x, ρ1) → f (B (x, ρ1)) is a C1 diffeomorphism. Let ε be a
small positive number with (1 + ε)eε < 2. For such ε, there exists 0 < ρ0 < ρ1 such
that for y, z ∈M with d(y, z) ≤ ρ0 the following properties hold:

(a)
∥∥y − z −Dyf

−1(f(y)− f(z))
∥∥ ≤ ε‖y − z‖;

(b) |logαi(y, f)− logαi(z, f)| ≤ ε for i = 1, 2, · · · ,m0.
Assume A ⊆ B (x, ρ0) . Fix any 0 < ρ < ρ0. Let a = Ht

ρ(f(A)) (a is finite). Then
for any η > 0, there are {zj} ⊆ f (B (x, ρ0)) such that f(A) ⊆ ∪jB (zj , rj) and∑

j

rtj < a+ η where rj ≤ ρ.

Let B′
j = {y ∈ B (x, ρ0) : f(y) ∈ B (zj , rj)}. Note that ∪jB

′
j ⊇ A. By (a) we con-

clude B′
j is contained in an ellipse with principal axes

(1 + ε)rj · α1 (yj , f)
−1
, (1 + ε)rj · α2 (yj , f)

−1
, · · · , (1 + ε)rj · αm0

(yj , f)
−1
,

where yj ∈ B (x, ρ0) , f (yj) = zj . Then by (b) we obtain that B′
j is contained in

an ellipse with principal axes

(1 + ε)rj · eεα1(x, f)
−1, (1 + ε)rj · eεα2(x, f)

−1, · · · , (1 + ε)rj · eεαm0
(x, f)−1.

Therefore B′
j is covered by

exp
{
−
∑m0

i=m0−[t]+1 logαi(x, f)
}

exp
{
−[t] logαm0−[t](x, f)

}
balls with radius (1 + ε)eε

√
m0rj exp

{
− logαm0−[t](x, f)

}
. In fact the radius

(1 + ε)eε
√
m0rj exp

{
− logαm0−[t](x, f)

}
≤ 2

√
m0 exp

{
− logαm0−[t](x, f)

}
· ρ

≤ bρ.
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Therefore

Ht
bρ

(
B′

j

)
≤ exp

{ m0∑
i=m0−[t]+1

(− logαi(x, f)) + [t] logαm0−[t](x, f)
}
·

[(1 + ε)eε
√
m0]

t · rtj exp
{
−t logαm0−[t](x, f)

}
≤ (2

√
m0)

t exp
[
−φt(x, f)

]
· rtj .

Summing up over all j we get

Ht
bρ(A) ≤

∑
j

Ht
bρ

(
B′

j

)
≤ 2t(

√
m0)

t exp
[
−φt(x, f)

]∑
j

rtj

≤ 2t(
√
m0)

t · exp
[
−φt(x, f)

]
· (a+ η).

Since η > 0 is arbitrary, this proves the lemma.
The following lemma gives a coarse upper bound for the Hausdorff dimension

of an ergodic f -invariant expanding probability measure µ, which is the zero point
of the additive measure-theoretic pressure. The method of proof involves applying
Lemma 2.1. We initially define a suitable sequence of sets {An}n≥1. We utilize
Lemma 3.2 to estimate how one iteration of a C1 local diffeomorphism f effects the
Hausdorff measure of some dynamical balls, which cover An.

Lemma 3.3. Let f :M →M be a C1 local diffeomorphism on the m0-dimensional
compact smooth Riemannian manifold M. Let µ be an ergodic f -invariant expanding
probability measure with the corresponding Lyapunov exponents

λ1(µ) ≥ λ2(µ) ≥ · · · ≥ λm0
(µ) > 0.

Then we have
dimH µ ≤ t1,

where t1 is the unique root of the equation Pµ (f,−φt(·, f)) = 0.

Proof. Fix any ε > 0 such that −λm0
(µ) + 2ε < 0. We choose s > t1 such that

hµ(f)−
∫
φs(x, f) dµ = −3ε.

Recall the definition of φs(x, f) in (1.6). By Lemma 2.2 in [38] we conclude that for
the above ε > 0, there exists an integer N1 = N1(ε) such that, for µ-almost every
points x ∈M and any L ≥ N1,

λm0(µ)− ε ≤ lim
n→∞

1

nL

n−1∑
i=0

logm
(
DfiLxf

L
)
≤ λm0(µ) + ε.

Let ρ0 be as in Lemma 3.2. Fix δ ∈ (0, ρ0) and consider a finite measurable partition
ξ with diam ξ = max {diamCξ : Cξ ∈ ξ} ≤ δ

2 . Let Cξn(x) be the element of the
partition

ξn = ξ ∨ f−1(ξ) ∨ · · · ∨ f−(n−1)(ξ)
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containing x. It is easy to see Cξn(x) ⊆ Bn

(
x, δ2

)
. By the Shannon-McMillan-

Breiman theorem in [37], we obtain that for µ almost every x ∈M,

lim
n→∞

− logµ (Cξn(x))

n
= hµ(f, ξ),

where hµ(f, ξ) is the measure-theoretic entropy of f with respect to ξ. Therefore

lim sup
n→∞

− logµ
(
Bn

(
x, δ2

))
n

≤ lim
n→∞

− logµ (Cξn(x))

n
= hµ(f, ξ) ≤ hµ(f).

Let b0 > 2
√
m0, C0 > 2sm

s
2
0 and choose N > N1 large enough such that

C0e
−Nε < 1 and e[λm0

(µ)−2ε]N > b0. (3.9)

Since the measure µ is ergodic, the Birkhoff Ergodic Theory says that for µ almost
every x ∈M,

lim
n→∞

1

nN

nN−1∑
i=0

φs
(
f ix, f

)
=

∫
φs(x, f) dµ.

We would like to choose sets An ⊆M such that any x ∈ An satisfies

(a) exp {−nN [hµ(f) + ε]} ≤ µ

(
BnN (x,

δ

2
)

)
,

(b) nN
[
−
∫
φs(x, f) dµ− ε

]
≤−

∑nN−1
i=0 φs

(
f ix, f

)
≤nN

[
−
∫
φs(x, f) dµ+ε

]
;

(c) nN [λm0(µ)− 2ε] ≤
n−1∑
i=0

logm
(
DfiNxf

N
)
≤ nN [λm0(µ) + 2ε].

Let E be a maximal (nN, δ)-separated subset of An, then An ⊆
⋃

xj∈E BnN (xj , δ) .

Furthermore the balls BnN

(
xj ,

δ
2

)
less than or equal to exp {nN [hµ(f) + ε]} . For

x ∈ An, let

bk(x) = (b0)
k
exp

{
−

n−1∑
i=n−k

logαm0−[s]

(
f iNx, fN

)}

for k = 1, 2, · · · , n and βn =
{
b0e

[−λm0
(µ)+2ε]N

}n
ρ where 0 < ρ < ρ0. For x ∈ An,

by (c) we have

bn(x)ρ ≤ (b0)
n · exp

{
−

n−1∑
i=0

logm
(
DfiNxf

N
)}

· ρ

≤ (b0)
n · exp {−nN [λm0

(µ)− 2ε]} · ρ
= βn.
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Using Lemma 3.2 n times, we conclude

Hs
βn

(BnN (x, δ)) ≤ Hs
bn(x)ρ

(BnN (x, δ))

≤ C0 exp
{
−φs

(
x, fN

)}
· Hs

bn−1(x)ρ

(
fN (BnN (x, δ))

)
≤ C0 exp

{
−φs

(
x, fN

)}
· Hs

bn−1(x)ρ

(
B(n−1)N

(
fN (x), δ

))
≤ C2

0 exp
{
−φs

(
x, fN

)}
· exp

{
−φs

(
fN (x), fN

)}
·

Hs
bn−2(x)ρ

(
fN
(
B(n−1)N

(
fN (x), δ

)))
≤ · · ·

≤ Cn
0 exp

[
−

n−1∑
i=0

φs
(
f iN (x), fN

)]
· Hs

ρ

(
B
(
fnN (x), δ

))
≤ Cn

0 C1 · exp

[
−

n−1∑
i=0

φs
(
f iN (x), fN

)]
,

where C1 = supx∈M Hs
ρ(B(x, δ)). It yields that

Hs
βn

(An) ≤
∑
xj∈E

Hs
βn

(BnN (xj , δ))

≤
∑
xj∈E

Cn
0 C1 · exp

[
−

n−1∑
i=0

φs
(
f iN (xj) , f

N
)]

≤ Cn
0 C1 ·

∑
xj∈E

exp

[
−

nN−1∑
i=0

φs
(
f i (xj) , f

)]

≤ Cn
0 C1 · exp [nN (hµ(f) + ε)] · exp

{
nN

[
−
∫
φs(x, f) dµ+ ε

]}
= Cn

0 C1 · exp
{
nN

[
hµ(f)−

∫
φs(x, f) dµ+ 2ε

]}
= Cn

0 C1 · e−nNε

=
(
C0e

−Nε
)n · C1.

Since N satisfies C0e
−Nε < 1, we have that

lim
n→∞

Hs
βn

(An) = 0.

The definition of βn and (3.9) tell us that βn → 0 if n → ∞. Combining with
Lemma 2.1, we obtain dimH µ ≤ s. Thus dimH µ ≤ t1.

Now we are ready to present the proof of Theorem 1.2.
Proof of Theorem 1.2. For any n > 1, the measure µ is f -invariant ergodic, but
it may be not ergodic for fn although µ is still fn-invariant. It is well known that
there exists an fn-ergodic probability measure ν such that

µ =
1

m

[
ν + f∗(ν) + · · ·+ fm−1

∗ (ν)
]
,

where m ∈ N\{0} divides n (see Theorem 2.1 in [18] for proofs). By Proposition
2.7 and Lemma 3.5 in [22], we have dimH ν = dimH µ. Since ν is expanding and
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ergodic for fn, then we apply Lemma 3.3 to get

dimH µ = dimH ν ≤ tn,

where tn is the unique root of the equation Pµ (f
n,−φs (·, fn)) = 0. By the sub-

additivity of {−φs(·, fn)}n≥1, we obtain

1

2k+1

[
hµ(f

2k+1

)−
∫
φs(x, f2

k+1

) dµ

]
≤ 1

2k

[
hµ(f

2k)−
∫
φs(x, f2

k

) dµ

]
.

Hence
1

2k+1
Pµ

(
f2

k+1

,−φs(·, f2
k+1

)
)
≤ 1

2k
Pµ

(
f2

k

,−φs(·, f2
k

)
)
.

Then we have t2k+1 ≤ t2k and hence the limit t∗ = lim
k→∞

t2k exists. Therefore
dimH µ ≤ t∗. Combining with

Pµ

(
f,
{
−φt (·, fn)

})
= hµ(f)− lim

n→∞

∫
1

n
φt (x, fn) dµ

= hµ(f)− lim
k→∞

1

2k

∫
φt(x, f2

k

) dµ

= lim
k→∞

1

2k
Pµ

(
f2

k

,−φt(·, f2
k

)
)
,

we conclude Pµ

(
f,
{
−φt∗ (·, fn)

})
= 0. The proof of Theorem 1.2 is completed.
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