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DARBOUX TRANSFORMATION, EXACT
SOLUTIONS OF THE VARIABLE

COEFFICIENT NONLOCAL FOKAS-LENELLS
EQUATION∗
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Abstract In this paper, a (1+1)-dimensional integrable variable coefficient
nonlocal Fokas-Lenells (NFL) equation is studied. On the basis of the Lax
pair, the Darboux transformation of the variable coefficient NFL equation
is constructed at the first time and an explicit form of the N-fold Darboux
transformation is given. The exact solutions of the variable coefficient NFL
equation are derived using the zero seed solution and the nonzero seed solution
according to the Darboux transformation. Subsequently, one-soliton solution,
two-soliton solution, and kink solution with periodic waves are obtained by
choosing the proper parameters and plotting the corresponding figures. With
the help of figures, the behaviors of the obtained solutions are revealed and it
is possible to find that the interaction between solitons is elastic no matter the
coefficient function is constant or arbitrary variable. In addition, this paper
also indicates that the exact solutions of the variable coefficient NFL equation
are more general than its constant coefficient form.

Keywords Lax pair, soliton solutions, nonlocal equation, Darboux transfor-
mation method.
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1. Introduction
Nonlinear evolution equations have received much attention because of their indis-
pensable role in the study of nonlinear phenomena in nature, especially in the fields
of nonlinear optics, plasma physics and fluid mechanics [8,11,12,17]. However, these
nonlinear evolution equations are local and the development of their solutions are
only depend on time and space [2, 22,28].

Ablowitz and Musslimani gave the nonlocal nonlinear Schrödinger equation [1],

iqt (x, t) + qxx (x, t) + 2q2 (x, t) q∗ (−x, t) = 0, (1.1)
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which was derived from the AKNS system in 2013. The nonlocal equations have
attracted the attention of more and more scientists and become one of the impor-
tant topics of research. The nonlocal nonlinear term of Eq. (1.1) depends not only
on the value of q at x but also at −x. After studying , it is found that the nonlocal
nonlinear Schrödinger equation is integrable in the sense of Lax pair. It also has an
infinite number of conservation laws and the exact solutions are obtained using the
inverse scattering method, while some properties exist that are not present in the
classical Schrödinger equation. These motivated scholars to study other nonlocal
equations and their exact solutions as well as related properties with some remark-
able results in the recent past. In [29], the authors proposed the localized wave
solutions of the nonlocal integrable Lakshmanan-Porsezian-Daniel equation and an-
alyzed their wave structures and dynamic properties. In [5], the authors studied a
(2+1)-dimensional nonautonomous coupled nonlinear Schrödinger equation, which
includes partial nonlocal nonlinearity under the linear and harmonic potentials, and
derived diversified exact solutions using the Darboux transformation method and
the bilinear method. In [13], the authors derived the soliton and rational solutions
of the nonlocal Mel’nikov equation on the periodic background. Furthermore, the
Darboux transformation method is extended to find one-soliton solutions, breather
solutions, rogue-wave solutions and other types of interaction solutions for non-
local equations [3, 30–32]. The nonlocal equations with variable coefficients have
attracted little attention, but it is a very valuable direction for research [4, 26]. As
the generalization of the coefficient aspect of the constant coefficient equations, the
variable coefficient equations can be used not only to describe more detailed natural
phenomena but also contain richer physical meanings [14, 18, 21, 27]. The study of
nonlocal equations with variable coefficients has contributed to the development of
integrable system.

In this paper, we study a nonlocal Fokas-Lenells equation with time-partial
variable coefficient,

q(x, t)xt + δ(t)q (x, t)− 2iδ(t)q(x, t)xq (x, t) q (−x,−t) = 0, (1.2)

where δ (t) is an any function with respect to t and the Eq. (1.2) is the constant
coefficient NFL equation when δ (t) = 1. The nonlocal equations generally include
four types of inverse time (x,−t), inverse space (−x, t), inverse time-space (−x,−t)
and PT symmetry, which are used to describe the relationship between intercon-
nected/entangled events at different times and places. The well-known FL equation
was proposed by Fokas to describe the propagation of femtosecond pulse in single
mode optical silica fiber [7,9,23]. Furthermore, the corresponding nonlocal FL model
can be used to predict the characteristics at point (−x,−t) from the pulse data that
are measured at point (x, t), and combine the experimental data to study the prop-
agation features of laser pulse in different materials. Several scholars already made
some studies on the NFL equation. In the literature [33], the authors derived two-
bright soliton solution, kink and soliton mixed type solution and some other mixed
type solutions for the NFL equation, but did not give the specific expressions for the
exact solutions that were obtained using the 2-fold Darboux transformation. In the
literature [24], the authors analyzed the breather positions as well as the rogue-wave
solution of the NFL equation, however, the dynamic properties of the breather posi-
tion solutions were not further studied and the trajectories of the breather positions
were not found. In the literature [15], the authors derived the N-soliton solution of
the NFL equation based on the scattering relationship using the Riemann-Hilbert
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method, provided a new method for solving the nonlocal integrable systems, but did
not investigate the mathematical structure and physical properties of the nonlocal
systems in depth. We will use the Darboux transformation method to study the
variable coefficient nonlocal Fokas-Lenells equation, and the novelty of this paper
shows two aspects. First, the variable coefficient NFL equation is presented for the
first time. Second, we give the N-fold Darboux transformation and some exact an-
alytical solutions of the variable coefficient NFL equation, including the one-soliton
solution, the two-soliton interaction solution, the kink solution with periodic waves,
and analyze the behavior of these solutions with the help of figures. The results of
the variable coefficient NFL equation contribute to the development of femtosecond
pulse spectroscopy and ultrafast optical communication.

The outline of this paper is as follows: In Section 2, the variable coefficient NFL
equation is derived using Lax pair. In Section 3, the Darboux transformation of
variable coefficient NFL is constructed and an explicit form of the multi-parameters
N-fold Darboux transformation is given. In Section 4, based on the Darboux trans-
formation in the previous section, the exact solutions of the variable coefficient NFL
equation are determined using the zero seed solution and the nonzero seed solution.
These exact solutions contain the one-soliton solution, the two-soliton solution, and
the kink solution with periodic waves solution. The conclusions of this paper can
be found in Section 5.

2. Variable coefficient NFL equation
First, we construct the variable coefficient NFL equation based on the Lax pair of
the traditional FL equation [25]. The Lax pair of Eq. (1.2) is the following

ϕx = Uϕ, ϕt = V ϕ, (2.1)

where ϕ = (ϕ1 (x, t) , ϕ2 (x, t))
T and U, V are the two matrices determined by

q (x, t) , r(x, t) and the spectral parameter λ,

U =

 i

2
λ2 λqx

λrx − i

2
λ2

 , V =

 δ(t)

(
i

2λ2
+ iqr

)
−δ(t)

i

λ
q

δ(t)
i

λ
r −δ(t)

(
i

2λ2
+ iqr

)
 , (2.2)

with δ (t) is an arbitrary function about t.
By the compatibility condition Ut − Vx + [U, V ] = 0 of Eq. (1.2) to get the

coupled variable coefficient FL equation are

q(x, t)xt + δ(t) (q (x, t)− 2iq(x, t)xq (x, t) r (x, t)) = 0,

r(x, t)xt + δ(t) (r (x, t) + 2ir(x, t)xr (x, t) q (x, t)) = 0,
(2.3)

and in order to obtain the Eq. (1.2), we assume that a symmetry reduction is

r (x, t) = q (−x,−t) , (2.4)

using this reduction we are able to get

q(x, t)xt + δ(t) (q (x, t)− 2iq(x, t)xq (x, t) q (−x,−t)) = 0,

q(x, t)xt + δ(−t) (q (x, t)− 2iq(x, t)xq (x, t) q (−x,−t)) = 0.
(2.5)
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By observing Eqs. (2.5) we can easily find that δ (t) is an even function is a
necessary condition for the above two equations to be equal, i.e. δ(t) = δ(−t).
Under this condition, we are able to derive the variable coefficient NFL equation
on the basis of the Eq. (2.5) and it is integrable in the sense of Lax pair.

3. Darboux transformation of variable coefficient
NFL equation

In soliton theory, the Darboux transformation is one of the more effective methods
to find exact solutions of partial differential equations (PDEs) [6, 10, 16]. It can be
used to construct the soliton solutions of local PDEs as well as nonlocal PDEs. In
this section, we are going to construct the Darboux transformation with variable
coefficients NFL equation, and the procedures are analogous to those of the con-
struction for FL equation. The first step, we take the gauge transformation which
is

ϕ[1] = T [1]ϕ. (3.1)

Subsequently, Eqs. (2.1) are transformed into

ϕ
[1]
x = U [1]ϕ[1], ϕ

[1]
t = V [1]ϕ[1], (3.2)

with
U [1] =

(
T

[1]
x + T [1]U

) (
T [1]

)−1
,

V [1] =
(
T

[1]
t + T [1]V

) (
T [1]

)−1
.

(3.3)

In the following, we construct the matrix T [1] which is used to ensure U [1], V [1]

have the same form with U, V , at the same time mapping the old potentials q, r to
the new potentials q[1], r[1] respectively. We assume

T [1] =

 1

λ
+ λb11 (x, t) b12 (x, t)

b21 (x, t)
1

λ
+ λb22 (x, t)

 , (3.4)

with bij , (i, j = 1, 2) are arbitrary functions with respect to x, t.
By substituting the above matrix T [1] into Eq. (3.3) and balancing the order of

λ, the relationship between q, r and q[1], r[1] can be derived as

q[1] (x, t) = b12 (x, t) + q (x, t) ,

r[1] (x, t) = b21 (x, t) + r (x, t) ,
(3.5)

and the symmetry reduction (2.4) is applied to Eqs. (3.5) to obtain a new constraint
as

b12 (x, t) = b21 (−x,−t) . (3.6)

Here, we assume that there are two basic solutions to the spectral problem (2.1)
are f (λj) = (f1 (λj) , f2 (λj))

T
, g (λj) = (g1 (λj) , g2 (λj))

T in order to determine



1548 F. Zhang, Y. Hu, X. Xin & H. Liu

the specific expression of b12 (x, t). Based on the gauge transformation, it exists
arbitrary numbers γj , (j = 1, 2) that make

1

λj
+ λjb11 (x, t) + αjb12 (x, t) = 0,

(
1

λj
+ λjb22 (x, t)

)
αj + b21 (x, t) = 0, (3.7)

where
αj =

γjg2 (λj) + f2 (λj)

γjg1 (λj) + f1 (λj)
, (j = 1, 2) . (3.8)

Let’s choose the appropriate values of γj , λj (j = 1, 2, λ1 ̸= λ2) to make the de-
terminant for the coefficients of Eqs. (3.7) not equal to 0. Then solve the values
of bij , (i, j = 1, 2) and substitute them into the matrix T [1]. The Eq. (3.4) can be
rewritten as

T [1] =

 1

λ
0

0
1

λ

−


λ (α1λ1 − α2λ2)

λ1λ2 (α1λ2 − α2λ1)
− λ2

1 − λ2
2

λ1λ2(α1λ2 − α2λ1)
α1α2(λ

2
1 − λ2

2)

λ1λ2(α1λ1 − α2λ2)

λ(α1λ2 − α2λ1)

λ1λ2(α1λ1 − α2λ2)

 , (3.9)

and αj , (j = 1, 2) satisfy

αjx = −iαjλ
2
j +

(
rx − α2

jqx
)
λj , (3.10)

αjt = iδ (t) (qαj + r)λ−1
j − iδ (t)

(
2qrλ2

j + 1
)
αjλ

−2
j . (3.11)

Here, we will use above Eq. (3.10) and Eq. (3.11) to proof the following two
propositions.

Proposition 3.1. The matrix U [1] which is determined by U [1]=
(
T

[1]
x + T [1]U

)(
T [1]

)−1

has the same form as U , i.e. the expression for U [1] is

U [1] =

 i

2
λ2 λq

[1]
x

λr
[1]
x − i

2
λ2

 , (3.12)

with Eq. (3.5) maps q, r to q[1], r[1].

Proof. First, we note that T−1 = (detT )
−1

T ∗, with

(Tx + TU)T ∗ =

 f11 (λ) f12 (λ)

f21 (λ) f22 (λ)

 , (3.13)

it is not difficult to verify that f12 (λ) , f21 (λ) are polynomials of λ3 and f11 (λ) , f22 (λ)
are polynomials of λ4. Also, since αj , (j = 1, 2) satisfy Eq. (3.10), we can know
that λj , (j = 1, 2) are the roots of fij (λ) , (i, j = 1, 2) by direct calculation, thus Eq.
(3.13) can be rewritten as

(Tx + TU)T ∗ = (detT )P (λ) , (3.14)

where

P (λ) =

P 2
11λ

2 + P 1
11λ+ P 0

11 P 1
12λ+ P 0

12

P 1
21λ+ P 0

21 P 2
22λ

2 + P 1
22λ+ P 0

22

 , (3.15)
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with plij , (i, j = 1, 2, l = 0, 1, 2) are not related to λ, so Eq. (3.14) is equivalent to

Tx + TU = P (λ)T. (3.16)

Substituting the expressions of T,U, P (λ) into the above equation and compar-
ing the coefficients of λk, (k = 0, 1, 2, 3), we can obtain the system as

λ3 :
i

2
− P 2

11 = 0,− i

2
− P 2

22 = 0,

λ2 : P 1
11 = 0, P 1

22 = 0,

qxb11 (x, t)−
i

2
b12 (x, t)− P 2

11b12 (x, t)− P 1
12b22 (x, t) = 0,

i

2
b21 (x, t) + rxb22 (x, t)− P 1

21b11 (x, t)− P 2
22b21 (x, t) = 0,

λ1 :
∂b11 (x, t)

∂x
+

i

2
+ rxb12 (x, t)− P 0

11b11 (x, t)− P 2
11 − P 1

12b21 (x, t) = 0,

∂b22 (x, t)

∂x
+ qxb21 (x, t)−

i

2
− P 1

21b12 (x, t)− P 0
22b22 (x, t)− P 2

22 = 0,

− P 1
11b12 (x, t)− P 0

12b22 (x, t) = 0,−P 1
22b21 (x, t)− P 0

21b11 (x, t) = 0,

λ0 :
∂b12 (x, t)

∂x
− P 0

11b12 (x, t) + qx − P 1
12 = 0,

∂b21 (x, t)

∂x
− P 0

22b21 (x, t) + rx − P 1
21 = 0,

− P 0
12b21 (x, t)− P 1

11 = 0,−P 0
21b12 (x, t)− P 1

22 = 0,

λ−1 : P 0
11 = 0, P 0

12 = 0, P 0
21 = 0, P 0

22 = 0.

Solving this system and applying the Eq. (3.5), we get the results as

P 0
11 = P 1

11 = P 0
12 = P 0

21 = P 0
22 = P 1

22 = 0,

P 2
11 = 1

2 i, P
1
12 = q

[1]
x , P 1

21 = r
[1]
x , P 2

22 = − 1
2 i.

(3.17)

It is easy to find that U [1] = P (λ), and the proof is complete.

Proposition 3.2. The matrix V [1] which is determined by V [1]=(T
[1]
x +T [1]V )(T [1])−1

has the same form as V , i.e. the expression for V [1] is

V [1] =

 δ(t)

(
i

2λ2
+ iq[1]r[1]

)
−δ(t)

i

λ
q[1]

δ(t)
i

λ
r[1] −δ(t)

(
i

2λ2
+ iq[1]r[1]

)
 , (3.18)

with Eq. (3.5) maps q, r to q[1], r[1].

The details of the proof of this proposition are the same as those of Proposition
3.1, and we do not show them here anymore.

Based on the above facts, we are able to construct the n-fold Darboux transfor-
mation of the variable coefficient NFL equation,

ϕ[n] = Tn (λ)ϕ = T [n] (λ)T [n−1] (λ) · · · T [k] (λ) · · · T [1] (λ)ϕ, (3.19)
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where

T [k]=

 1
λ 0

0 1
λ


−


λ (α2k−1λ2k−1−α2kλ2k)

λ2k−1λ2k (α2k−1λ2k−α2kλ2k−1)
−

λ2
2k−1−λ2

2k

λ2k−1λ2k(α2k−1λ2k−α2kλ2k−1)
α2k−1α2k(λ

2
2k−1 − λ2

2k)

λ2k−1λ2k(α2k−1λ2k−1−α2kλ2k)

λ(α2k−1λ2k − α2kλ2k−1)

λ2k−1λ2k(α2k−1λ2k−1−α2kλ2k)

 ,

(3.20)
with

αj =
γjg

[k−1]
2 (λj) + f

[k−1]
2 (λj)

γjg
[k−1]
1 (λj) + f

[k−1]
1 (λj)

, (j = 2k − 1, 2k, k = 1, 2, · · ·, n) ,

f [k] (λ) =
(
f
[k]
1 (λ) , f

[k]
2 (λ)

)T

= T [k] (λ) f [k−1] (λ1, λ2, · · ·, λ2k) ,

g[k] (λ) =
(
g
[k]
1 (λ) , g

[k]
2 (λ)

)T

= T [k] (λ) g[k−1] (λ1, λ2, · · ·, λ2k) ,

(3.21)

and the matrix T [k] also has to satisfy a constraint that is

b
[k]
12 (x, t) = b

[k]
21 (−x,−t) . (3.22)

By the above analysis, the relationship between the new solution q[n] and the
old solution q is obtained to be expressed through

q[n] (x, t) = q (x, t) +

n∑
k=1

b
[k]
12 (x, t). (3.23)

The presence of the constraint (3.22) makes the Darboux transformation of the
variable coefficient NFL equation have a significant difference from its local form.

4. Exact solutions of variable coefficient NFL equa-
tion

In this section, we work on the basis of the Darboux transformation in the previ-
ous section to compute the exact solutions of the variable coefficient NFL equation
with the zero seed solution q = r = 0 and the nonzero seed solution q (x, t) =

aeibx+i(2a2b+1)b−1
∫
δ(t)dt, r (x, t) = ae−ibx−i(2a2b+1)b−1

∫
δ(t)dt, (a, b ∈ C), respec-

tively.

4.1. Exact solutions from zero seed
First, substituting the trivial solution q = r = 0 into the Eq. (2.1) and solving for
it yields

f (x, t;λ) =
(
e

i
2λ

2x+ i
2λ

−2
∫
δ(t)dt, 0

)T

,

g (x, t;λ) =
(
0, e−

i
2λ

2x− i
2λ

−2
∫
δ(t)dt

)T

.
(4.1)
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Following, substituting the above results into Eq. (3.8) one gets

αj = γje
−iλ2

jx−iλ−2
j

∫
δ(t)dt, j = 1, 2, (4.2)

and

b12 (x, t) =
λ2
1 − λ2

2

λ1λ2
· ei(a1+a2)

γ1λ2ei(a2−a1) − γ2λ1ei(a1−a2)
,

b21 (x, t) =
γ1γ2

(
λ2
1 − λ2

2

)
λ1λ2

· e−i(a1+a2)

γ1λ1ei(a2−a1) − γ2λ2ei(a1−a2)
,

(4.3)

where

a1 = −1

2

(
λ2
1x+ λ−2

1

∫
δ (t)dt

)
, a2 = −1

2

(
λ2
2x+ λ−2

2

∫
δ (t)dt

)
. (4.4)

Here, under the action of constraint b12 (x, t) = b21 (−x,−t), we can find that
the values of γj , (j = 1, 2) satisfy the following form as

γ2
1 = 1, γ2

2 = 1. (4.5)

Thus, we obtain a new solution of the variable coefficient NFL equation as

q[1] =
λ2
1 − λ2

2

λ1λ2
· ei(a1+a2)

γ1λ2ei(a2−a1) − γ2λ1ei(a1−a2)
. (4.6)

When δ (t) = 1, γ1 = 1, γ2 = 1 the solution (4.6) becomes

q[1] =
λ2
1 − λ2

2

λ1λ2
· ei(a1+a2)

λ2ei(a2−a1) − λ1ei(a1−a2)
, (4.7)

where a1 = − 1
2

(
λ2
1x+ λ−2

1 t
)
, a2 = − 1

2

(
λ2
2x+ λ−2

2 t
)
.

Eq. (4.7) is an exact solution of the constant coefficient NFL equation and we
can find this solution in the literature [33]. This also illustrates that the solutions of
the variable coefficient NFL equation are more general than its constant coefficient
form. To study the properties of the solution (4.6) for the NFL equation with
variable coefficient, we plot corresponding figures as follows with δ (t) taking values
of 1 and t2.

Figures 1 (a)-(b) show the 3-D plots of the absolute values of the wave solution
q when δ (t) is different values. We can find that it is a bright soliton, and this
wave propagates steadily along the x-axis. For the coefficient function δ (t), it only
changes the shape of the wave during the propagation and has no effect on the
amplitude and velocity [19].

4.2. Exact solutions from nonzero seed
In the following, we compute the exact solution of the variable coefficient NFL
equation by the nonzero seed solution

q (x, t) = aeibx+i(2a2b+1)b−1
∫
δ(t)dt, r (x, t) = ae−ibx−i(2a2b+1)b−1

∫
δ(t)dt. (4.8)
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(a) (b)

Figure 1. One-soliton solution (4.6) with parameters that are λ1 = 0.4+2i, λ2 = 0.4− 2i, γ1 = γ2 = 1.
(a) δ (t) = 1. (b) δ (t) = t2.

The calculation process is similar to the above. Substituting the trivial solution
(4.8) into the Eq. (2.1) and solving it we get

f (x, t;λ) =

− iR+ λ2 − b

2abλ
· e

iθ −Rx+Rb−1λ−2
∫
δ (t)dt

2

e
−
iθ +Rx−Rb−1λ−2

∫
δ (t)dt

2

 ,

g (x, t;λ) =

 e

iθ +Rx−Rb−1λ−2
∫
δ (t)dt

2

− iR+ λ2 − b

2abλ
· e

−
iθ −Rx+Rb−1λ−2

∫
δ (t)dt

2

 ,

(4.9)

where

R =
√
4a2b2λ2 + 2bλ2 − λ4 − b2, (4.10)

θ = bx+ 2a2
∫

δ (t) dt+ b−1

∫
δ (t) dt. (4.11)

We can get αj , (j = 1, 2) , bij , (i, j = 1, 2) by substituting Eqs. (4.9) into Eq.
(3.8) and Eq. (3.9), but their expressions are too wordy, so we do not show them
specifically here.

In the same way as the zero seed case, under the constraint b12(x, t)=b21(−x,−t),
γ1 and γ2 still satisfy γ2

1 = 1, γ2
2 = 1.

By applying Eq. (3.23) and Eqs. (4.8), we can obtain the exact solution from
the nonzero seed solution of the variable coefficient NFL equation, the specific
expression is the following

q (x, t) = aeiθ +
F (x, t)

G(x, t)
, (4.12)
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with

F (x, t) =
(
λ2
1 − λ2

2

) ((
iR2 + λ2

2 − b
)
e

3
2∆2 − 2abγ2λ2e

1
2∆2

)
×
((

iR1 + λ2
1 − b

)
e

1
2∆1+iθ − 2abγ1λ1e

− 1
2∆1+iθ

)
,

G (x, t) =
((
−iλ2

2 + ib+R2

)
γ2λ

2
1λ2R1 +

(
−iλ2

1 + ib
)
γ2λ

2
1λ2R2

)
e

1
2 (∆1+∆2)

+
(
4a2b2λ2

2 − λ2
1λ

2
2 + λ2

1b+ λ2
2b− b2

)
γ2λ

2
1λ2e

1
2 (∆1+∆2)

−
((
−iλ2

2 + ib+R2

)
R1γ1λ1λ

2
2 +

(
−iλ2

1 + ib
)
R2γ1λ1λ

2
2

)
e−

1
2∆1− 3

2∆2

+
(
4a2b2λ2

1 − λ2
1λ

2
2 + bλ2

1 + bλ2
2 − b2

)
γ1λ1λ

2
2e

− 1
2∆1− 3

2∆2

+ 2abγ1γ2λ1λ2

(
iR1λ

2
2 − iR2λ

2
1 + bλ2

1 − bλ2
2

)
e

1
2 (∆2−∆1)

+ 2abλ2
1λ

2
2

(
iR1 − iR2 + λ2

1 − λ2
2

)
e

1
2∆1+

3
2∆2 ,

(4.13)
where

∆1 = −R1x+R1b
−1λ−2

1

∫
δ (t) dt,

∆2 = −R2x+R2b
−1λ−2

2

∫
δ (t) dt,

R1 =
√
4a2b2λ2

1 + 2bλ2
1 − λ4

1 − b2,

R2 =
√
4a2b2λ2

2 + 2bλ2
2 − λ4

2 − b2.

(4.14)

Next, we put some restrictions on the parameters of the solution (4.12) to obtain
interesting two-soliton solution and kink solution with periodic waves.

To obtain the two-soliton solution, we let λ1R = λ2R = 0, λ1I → −λ2I , a is an
arbitrary complex number and b is an arbitrary real number and ab ̸= 0.

(a) (b)

Figure 2. Two-soliton solution with parameters that are λ1 = i, λ2 = −1.0001i, a = −1.5i, b = 1, γ1 =

−1, γ2 = 1. (a) δ (t) = 1. (b) δ (t) = cos2t.

Figure 2 (a)-(b) show the interaction between two soliton waves (a bright soli-
ton and a dark soliton) with different velocities. In addition, the collision is elastic
because soliton waves do not affect each other before and after the collision. Obvi-
ously, the value of the coefficient function δ (t) does not affect the amplitude and
velocities of the waves during the propagation, but only the shape of the waves [20].
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We can also obtain the kink solution with periodic waves by restricting the
parameters to λ1R = 0, λ1I + λ2I = 0 and a, b are real numbers that are not equal
to zero.

(a) (b)

Figure 3. Kink solution with parameters that are λ1 = 3i, λ2 = 1− 3i, a = 5, b = 4, γ1 = −1, γ2 = −1.
(a) δ (t) = 1. (b) δ (t) = cost.

Figures 3 (a)-(b) demonstrate the interaction of the kink wave with the periodic
waves. This solution is composed of two periodic line waves with different back-
ground heights. We can observe that the value of the coefficient function δ (t) can
affect the period of the solution in this case. The other discussions are the same as
the case of the two-soliton interaction solution, and we do not repeat them again.

Looking at the above figures, it is easy to find that there are huge differences in
the exact solutions of the variable coefficient NFL equation for choosing different
functions of δ (t). In other words, there are various choices of δ (t), for example,
exponential functions, trigonometric functions, power functions, etc. Therefore, we
can derive more general exact solutions for Eq. (1.2).

5. Conclusions
In this paper, we studied the variable coefficient NFL equation using the Darboux
transformation method, and derived the one-soliton solution, the two-soliton in-
teraction solution, and the kink solution with period waves through the zero seed
solution and the nonzero seed solution. Subsequently, the behaviors of the solutions
were analyzed with the help of figures. The results show that the coefficient func-
tion δ (t) has significant effects on the behaviors of the waves, which can lead to a
deeper understanding of physical phenomena in the different scientific fields. The
solutions obtained in this paper can contribute to the development of femtosecond
pulse spectroscopy and ultrafast optical communication.

There is still a lot of work to be done in the future. First, constructing the non-
local equation which contains several different variable coefficients, and studying
its mathematical structure and physical properties in depth. Second, using other
methods to study the new exact solutions of the nonlocal equations. For exam-
ple, extending the Lie group method to nonlocal equations and constructing group
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invariant solutions of nonlocal equations. Furthermore, rogue wave solution has
gradually developed into one of the hot spots of today’s research, using the Dar-
boux transformation method to construct rogue wave solution of variable coefficient
nonlocal equations, and then exploring the generating mechanism for deriving the
construction of rogue waves, which are valuable for the development of integrable
system.
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