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ON A SUPERLINEAR SECOND ORDER
ELLIPTIC PROBLEM AT RESONANCE∗
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Abstract We show the existence of solutions of the superlinear problem

−∆u = λ1u+ f(u+) + h(x), in Ω,

u = 0, on ∂Ω,

where Ω ⊂ RN be a bounded domain whose boundary is a C2,α manifold,
f satisfies some superlinear growth conditions and h satisfies a one-sided
Landesman-Lazer condition. A priori bounds for the solutions of the equation
is obtained by using Hardy-Sobolev type inequalities. Existence of solutions
is then obtained by using topological degree arguments.
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logical degree.
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1. Introduction
Let Ω ⊂ RN be a bounded domain whose boundary is a C2,α manifold. Denote by
λ1 the first eigenvalue of (−∆,H1

0 (Ω)). Existence of solutions for semilinear elliptic
Dirichlet problems

−∆u = g(x, u), in Ω,

u = 0, on ∂Ω

with distinct behaviours of g(x,s)
s as s → ∞ has been difficult to establish in the

case when

(i) g(x, 0) ̸= 0;
(ii) there is resonance in one direction;
(iii) the problem is superlinear in the other.

This work is dedicated to present results for a class of nonlinear elliptic problem
with superlinear asymmetric nonlinearities and resonant in the first eigenvalue

−∆u = λ1u+ f(u+) + h(x), in Ω,

u = 0, on ∂Ω
(1.1)
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where u+ = max{u, 0}, f and h satisfy the following

(H1) There are nonnegative constants A,B,A1, B1 and p with B > A, 1 ≤ p < N+1
N−1

for N ≥ 3 such that

Asp −A1 ≤ f(s) ≤ Bsp +B1 ∀ s ∈ [0,∞).

(H2) There exists s0 > 0, such that f ∈ C1[0, s0] and f ∈ C[0,∞),

f(s) > 0 for s > 0,

lim
s→0+

f ′(s) = 0,

f ′(s) > 0 for s ∈ (0, s0].

(H3) h ∈ Lr with some r > N , and∫
Ω

hϕ1dx < 0,

where ϕ1 is the positive eigenfunction associated to λ1 and normalized to have
L2-norm equal to 1.

The motivation for this work is the paper M. Cuesta, D. G. De Figueiredo and
P. N. Srikanth [4], in which the authors showed the following resonant Dirichlet
problems

−∆u = λ1u+ (u+)p + h(x), in Ω,

u = 0, on ∂Ω
(1.2)

has at least one solution in W 2,r(Ω) ∩ H1
0 (Ω) under the assumptions h ∈ Lr(Ω),

1 < p < N+1
N−1 and ∫

Ω

h(x)ϕ1(x)dx < 0. (1.3)

The proof of the main result in [4] uses the technique introduced in [2]. The method
consists in getting a priori bounds, using Hardy-Sobolev type inequalities, with
topological degree arguments. Similar problems, under Dirichlet and Neumann
boundary condition, can be found in D. Arcoya and S. Villegas [1], M. Cuesta and
C. De Coster [3], F. M. Ferreira, F. O. de Paiva [6], R. Kannan and R. Ortega
[7, 8], S. Kyritsi and N. S. Papageorgiou [9], D. Motreanu, V. Motreanu, N. S.
Papageorgiou [10], K. Perera [12], N. S. Papageorgiou and V. D. Radulescu [11], F.
O. de Paiva and A. E. Presoto [5], L. Recova and A. Rumbos [13], J. R. Ward [14].

Denote the natural norm of Lr(Ω) by || · ||r, that is,

||u||r = (

∫
Ω

|u|rdx)1/r.

Denote the natural norm of H1
0 (Ω) by || · ||, that is,

||u|| = (

∫
Ω

|∇u|2dx)1/2.
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The space X is defined as X = {u ∈ C1(Ω̄) : u = 0 on ∂Ω} which is a Banach space
with norm

||u||X = max
x∈Ω̄

|u(x)|+max
x∈Ω̄

|∇u(x)|.

The main results of this paper is the following

Theorem 1.1. Assume that 1 < p < N+1
N−1 . Under assumptions (H1)-(H3) the

Dirichlet problem (1.1) has a weak solution u ∈ W 2,r(Ω) ∩H1
0 (Ω).

Since we will use topological arguments to prove Theorem 1.1, we shall need
a priori bounds on the solutions of (1.1). This is the content of the next result.
Notice that from regularity theory all weak solutions of (1.1) belong to W 2,r(Ω),
and recall that W 2,r(Ω) ⊂ C1(Ω̄) because r > N .

Theorem 1.2. Assume that 1 < p < N+1
N−1 . Let (H1)-(H3) hold. Let u ∈ H1

0 (Ω) be
a solution of problem (1.1). Then there exists a constant C > 0 such that

||u||X ≤ C. (1.4)

Remark 1.1. For the special nonlinearity (u+)p, M. Cuesta, D. G. De Figueiredo
and P. N. Srikanth [4, Theorem 1.2] obtained a priori estimates of form

||u||X ≤ ρ(||h||r) (1.5)

for all solutions of (1.2), where ρ : R+ → R+ is an increasing continuous function,
depending only on p and Ω, such that

ρ(0) = 0.

Our a priori estimates (1.4) for (1.1) is weaker than (1.5) and is not enough to
guarantee that all solution are non-degenerate solution of Morse index equal to 1.
To overcome this difficulty, we need to introduce hypothesis (H2) in order to prove
the following

For any ϵ ∈ (0, s0), there exists δ > 0 such that any solution u of (1.1) with
||h||r < δ satisfies

||u+||X < ϵ.

See Proposition 3.1 below.

Remark 1.2. It is worth remarking that, if (H2) holds, the necessary condition for
the existence of solutions of (1.1) is (H3). In fact, if u is a solution of (1.1), then∫

Ω

(−∆u− λ1u)ϕ1dx =

∫
Ω

f(u+)ϕ1dx+

∫
Ω

hϕ1dx.

2. Proof of Theorem 1.2
Let us first introduce the following lemma based on the Hardy-Sobolev inequality
(c.f. for instance [2, 4]).
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Lemma 2.1 ( [4]). Let 1 < p < N+1
N−1 . Then there exists a constant C = C(p,Ω)

such that, for all u, v ∈ H1
0 (Ω) with |u| ≤ v a.e., it holds∫

Ω

|u|pvdx ≤ C
( ∫

Ω

|u|pϕ1dx
)α( ∫

Ω

|∇v|2dx
)δ/2

, (2.1)

where

α = 1− N

2 + 2N − (N − 2)p
∈ (0, 1), (2.2)

δ = 1 +
Np

2 + 2N − (N − 2)p
∈ (1, 2). (2.3)

Throughout the rest of this section, we use the same letter C to denote distinct
constants. In addition, we remark that all of them are independent of u.
Proof of Theorem 1.2. Let u ∈ H1

0 (Ω) be a weak solution of (1.1). Let us write
u = tϕ1 + u1 with

∫
Ω
u1ϕ1dx = 0. By multiplying (1.1) by ϕ1 we find∫

Ω

f(u+)ϕ1dx = −
∫
Ω

hϕ1dx ≤ C||h||r. (2.4)

This together with the first inequality in (H1) imply that∫
Ω

|u+|pϕ1dx ≤ C||h||r +
A1

A

∫
Ω

ϕ1dx, (2.5)

and therefore

t =

∫
Ω

u+ϕ1dx−
∫
Ω

u−ϕ1dx

≤ C
( ∫

Ω

|u+|pϕ1dx
)1/p ≤

(
C||h||r +

A1

A
||ϕ1||1

)1/p
.

(2.6)

We break the proof into two parts, according to t < 0 or t ≥ 0.
Case 1. t ≥ 0.
From the previous inequality we obtain a bound on |t|. In order to get an

estimate on u1 we multiply (1.1) by u1 to obtain∫
Ω

|∇u1|2dx− λ1

∫
Ω

u2
1dx =

∫
Ω

f(u+)u1dx+

∫
Ω

hu1dx, (2.7)

and using that
∫
Ω
u1ϕ1dx = 0 and the variational characterization of the second

eigenvalue λ2 of (−∆,H1
0 (Ω)) we have(

1− λ1

λ2

)
||u1||2 ≤

∫
Ω

f(u+)u1dx+

∫
Ω

hu1dx

≤
∫
Ω

(B|u+|p +B1)u1dx+

∫
Ω

hu1dx

≤
∫
Ω

B|u+|pu1dx+

∫
Ω

(h+B1)u1dx

≤ C||h+B1||r||u1||+ |
∫
Ω

B(u+)pu1dx|.

(2.8)
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Next we use the fact that u+
1 ≤ u+, and that u+ ≤ tϕ1 on {u1 ≤ 0} to obtain

|
∫
Ω

(u+)pu1dx| ≤
∫
Ω

(u+)pu+
1 dx+

∫
Ω

(u+)pu−
1 dx

≤
∫
Ω

(u+)p+1dx+ tp
∫
Ω

(ϕ1)
pu−

1 dx.

(2.9)

By a simple calculation,

tp
∫
Ω

(ϕ1)
pu−

1 dx ≤ C
(
∥h∥r +

A1

A
∥ϕ1∥1

)
∥u1∥.

To estimate the integral in the right side of (2.9) we use (2.4) and Lemma 2.1
with u = v = u+. Hence

|
∫
Ω

(u+)p+1dx|≤C
(∫

Ω

|u+|pϕ1dx
)α(∫

Ω

|∇u+|2dx
)δ/2

≤C
(
∥h∥α+δ/p

r + (
A1

A
)δ/p∥h∥αr ∥ϕ1∥δ/p1 + ∥h∥αr ∥u1∥δ

+(
A1

A
)α∥h∥δ/pr ∥ϕ1∥α1 +(

A1

A
)α+δ/p∥ϕ1∥α+δ/p

1 +(
A1

A
)α∥ϕ1∥α1 ∥u1∥δ

)
.

(2.10)

Replacing (2.9) and (2.10) in (2.8) we obtain

||u1||2 ≤
∫
Ω

f(u+)u1dx+

∫
Ω

hu1dx

≤C||h+B1||r||u1||+ |
∫
Ω

B(u+)pu1dx|

≤C∥h+B1∥r∥u1∥+BC
(
∥h∥α+δ/p

r + (
A1

A
)δ/p∥h∥αr ∥ϕ1∥δ/p1 + ∥h∥αr ∥u1∥δ

+ (
A1

A
)α∥h∥δ/pr ∥ϕ1∥α1 + (

A1

A
)α+δ/p∥ϕ1∥α+δ/p

1 + (
A1

A
)α∥ϕ1∥α1 ∥u1∥δ

)
+BC(∥h∥r +

A1

A
∥ϕ1∥1)∥u1∥.

(2.11)

By Young’s inequality we deduce that

∥u1∥2 ≤ C
(
∥h+B1∥2r + ∥h∥α+δ/p

r + ∥h∥αr + ∥h∥
2α
2−δ
r + ∥h∥δ/pr + ∥h∥2r + 1

)
.

This imply that there exists a constant C > 0 such that

||u|| ≤ C. (2.12)

Case 2. t < 0.
First, we find an a-priori bound of ||u1||X .
Similarly to the previous case we have also (2.8). But in this case |

∫
Ω
(u+)pu1dx|

can be estimated directly by using Lemma 2.1. Indeed, notice that we have u+ ≤ u1,
since t < 0. Hence, by Lemma 2.1 and (2.5), we have

|
∫
Ω

(u+)pu1dx| ≤ C(||h||r +
A1

A
∥ϕ1∥1)α||u1||δ, (2.13)
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and replacing this estimate in (2.8) we find

||u1||2 ≤ C
(∫

Ω

f(u+)u1dx+

∫
Ω

hu1dx
)

≤ C
(∫

Ω

|f(u+)u1|dx+

∫
Ω

hu1dx
)

≤ C||h+B1||r||u1||+ |
∫
Ω

B(u+)pu1dx|

≤ C
(
||h+B1||r||u1||+ ||h||αr ∥u1∥δ + (

A1

A
)α∥ϕ1∥α1 ||u1||δ

)
.

(2.14)

By Young’s inequality we deduce that

||u1||2 ≤C(||h+B1||2r +
1

2
∥u1∥2 +

2− δ

2
||h||

2α
2−δ
r +

2− δ

2
∥ϕ1∥

2α
2−δ

1 + δ∥u1∥2)

≤C(||h+B1||2r + ||h||
2α
2−δ
r + 1).

Then
||u1|| ≤ C(||h+B1||r + ||h||

α
2−δ
r + 1). (2.15)

In order to get an estimate for ||u1||X from the estimate of ∥u1∥ we now use the
fact that u1 solves the problem

−∆u1 = λ1u1 + f(u+) + h, in Ω,

u1 = 0, on ∂Ω.
(2.16)

Since u+ ≤ u1 and f(u+) ≤ B(u+)p + B1, (2.14) and (2.16) and a bootstrap
argument yield that

||u1||X ≤ C, (2.17)
where C > 0 is a constant.

By Hopf’s Maximum Principle the first eigenfunction of (−∆,H1
0 (Ω)), ϕ1 > 0

lies in the interior of the cone of positive functions in the space X.
Assume on the contrary that there exist {un} with

un = tnϕ1 + u1n (2.18)

and
tn → −∞. (2.19)

Then it follows from (2.19), (2.18) and (2.17) that

un(x) → −∞ for x ∈ D,

where D be any compact subset of Ω. We have from the fact∫
Ω

[f(u+
n (x)) + h(x)]ϕ1dx = 0 (2.20)

that ∫
Ω

hϕ1dx = 0. (2.21)

However, this contradicts (H3). □
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3. Proof of Theorem 1.1
In this proof we use the propositions below. For that matter, let us introduce the
following fixed point formulation of problem (1.1). Let Th : X → X be the map

Th(u) = (−∆)−1(λ1u+ f(u+) + h). (3.1)

Th is a compact continuous map and

Th(u) = u ⇔ u solves (1.1).

In what follows d(·, ·, ·) denotes the Leray-Schauder degree.

Proposition 3.1. Assume that 1 < p < N+1
N−1 . Let (H1)-(H3) hold. For any

ϵ ∈ (0, s0), there exists δ > 0 such that any solution u of (1.1) with ||h||r < δ
satisfies

||u+||X < ϵ.

Proof. Assume on the contrary that there exist ϵ0 ∈ (0, s0) and {hn} with
||hn||r < 1

n , such that (1.1) with h = hn has solution {un} satisfying

||u+
n ||X ≥ ϵ0. (3.2)

Then

−∆un = λ1un + f(u+
n ) + hn(x), in Ω,

un = 0, on ∂Ω.

By a simple calculation,∫
Ω

f(u+
n )ϕ1dx =

∫
Ω

−hn(x)ϕ1dx → 0 as n → ∞. (3.3)

On the other hand, Theorem 1.2 yields that there exists a constant M > 0 such
that

||u+
n ||X ≤ M,

there exists a subsequence of un that is still denoted by un such that

u+
n → u+

∗ in C(Ω̄).

Obviously, (3.2) implies
||u+

∗ ||∞ ≥ ϵ̃0, (3.4)
where ϵ̃0 is a constant that depends on ϵ0. Combining (3.4) and (H2), it deduces
that ∫

Ω

f(u+
∗ )ϕ1dx > 0.

However, this contradicts (3.3) if n is large enough.

Proposition 3.2. Assume that 1 < p < N+1
N−1 . Let (H1)-(H2) hold. There exist

δ > 0 and R0 > 0 such that for all functions h satisfying condition (H3) with
∥h∥r < δ, and for which problem (1.1) possesses at least one solution, it follows that

d(I − Th, BE(0, R), 0) ̸= 0, ∀ R ≥ R0. (3.5)
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Proof. Choosing a suitable δ > 0. By Proposition 3.1 and (H2), there exists
ϵ ∈ (0, s0) is small enough such that any solution u0 of (1.1) satisfies

f ′(s) ≤ f ′(||u+
0 ||X) < λ2 − λ1 for any s ∈ [0, ϵ]. (3.6)

Obviously, there exists R0 ∈ (ϵ, s0] such that ||u0||X < R0.
The linearized problem of (1.1) at u0 is the following

−∆v = λ1v + f ′(u+
0 )v, in Ω,

v = 0, on ∂Ω.
(3.7)

Denote by µ1(a) < µ2(a) < · · · denote the eigenvalues of the following eigenvalue
problem of weight a, i.e.,

−∆v = µa(x)v, in Ω,

v = 0, on ∂Ω.

By (3.6)
λ1 < a(x) := λ1 + f ′(u+

0 ) < λ2 a.e.,
so then

µ1(a) < 1 < µ2(a).

Hence v ≡ 0 is the unique solution of (3.7) and therefore u0 is a non-degenerate
solution of (1.1) of Morse index equal to 1.

By estimate (3.6) the degree above is well defined for all R ≥ R0. Moreover,
since all possible solutions of u = Th(u) are non-degenerated, it follows that they
are isolated and that there is only a finite number m of them in BX(0, R). We recall
that the index of each solution is equal to (−1)β where β is the Morse index. So

d(I − Th, BX(0, R), 0) =

m∑
j=1

(−1) ̸= 0.

Proof of Theorem 1.1. There exists t0 > 0 such that for 0 < t < t0, h1 :=
−f(tϕ1) satisfies

∥h1∥r = ∥ − f(tϕ1)∥r < δ,

where δ is given by Proposition 3.2. We can verify that u = tϕ1 is the solution of
problem (1.1) for h1 and then Proposition 3.2 applies. Thus

d(I − Th1
, BX(0, R), 0) ̸= 0

for R large enough. Consider the following homotopy

−∆v = λ1v + f(v+) + (1− τ)h(x) + τh1(x), in Ω,

v = 0, on ∂Ω,
(3.8)

where 0 ≤ τ ≤ 1. From the a-priori estimates of Theorem 1.2, all the solutions of
problem (3.8) are uniformly bounded in X by, say, R1 := max{C, ϵ}, where C and
ϵ are defined in Theorem 1.2 and the proof of Proposition 3.2 respectively. Hence,
if R > max{R0, R1},

d(I − Th, BX(0, R), 0) = d(I − Th1
, BX(0, R), 0) ̸= 0

and the conclusion of the theorem follows. □
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