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ON A SUPERLINEAR SECOND ORDER
ELLIPTIC PROBLEM AT RESONANCE*

Ruyun Mal?T, Zhongzi Zhao? and Mantang Ma!

Abstract We show the existence of solutions of the superlinear problem

—Au=Mu+ f(u")+h(z), inQ,

u =0, on 05,
where @ C RY be a bounded domain whose boundary is a C*® manifold,
f satisfies some superlinear growth conditions and h satisfies a one-sided
Landesman-Lazer condition. A priori bounds for the solutions of the equation

is obtained by using Hardy-Sobolev type inequalities. Existence of solutions
is then obtained by using topological degree arguments.

Keywords Elliptic equations, superlinear nonlinearity, a priori bounds, topo-
logical degree.
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1. Introduction

Let © C RY be a bounded domain whose boundary is a C%® manifold. Denote by
A1 the first eigenvalue of (—A, H}(9)). Existence of solutions for semilinear elliptic
Dirichlet problems

— Au = g(z,u), in Q,

u =0, on Of)

with distinct behaviours of @ as s — oo has been difficult to establish in the
case when

(i) g(z,0) #0;
(ii) there is resonance in one direction;

(iii) the problem is superlinear in the other.

This work is dedicated to present results for a class of nonlinear elliptic problem
with superlinear asymmetric nonlinearities and resonant in the first eigenvalue
—Au= M u+ f(u") + h(z), in Q,

1.1
u =0, on 0f) (L.1)
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where u™ = max{u, 0}, f and h satisfy the following

(H1) There are nonnegative constants A, B, A1, B; and p with B > A, 1 < p < ¥+1
for N > 3 such that

AsP — Ay < f(s) < Bs?+B; Vse€0,00).
(H2) There exists so > 0, such that f € C1[0, so] and f € C[0, 00),

f(s)>0 for s> 0,
li "(5) =0
S (5 =0

fl(s) >0 for s (0,sq].

(H3) h € L™ with some r > N, and

/ hoda < 0,
Q

where ¢, is the positive eigenfunction associated to A; and normalized to have
L?-norm equal to 1.

The motivation for this work is the paper M. Cuesta, D. G. De Figueiredo and
P. N. Srikanth [4], in which the authors showed the following resonant Dirichlet
problems

— Au = \u+ (uh)? + h(x), in Q, (1.2)
u =0, on Of) '

has at least one solution in W27 (Q) N H}(Q) under the assumptions h € L"(£),

1<p<f* and

h(xz)p1(x)dx < 0. (1.3)
Q
The proof of the main result in [4] uses the technique introduced in [2]. The method
consists in getting a priori bounds, using Hardy-Sobolev type inequalities, with
topological degree arguments. Similar problems, under Dirichlet and Neumann
boundary condition, can be found in D. Arcoya and S. Villegas [1], M. Cuesta and
C. De Coster [3], F. M. Ferreira, F. O. de Paiva [6], R. Kannan and R. Ortega
[7,8], S. Kyritsi and N. S. Papageorgiou [9], D. Motreanu, V. Motreanu, N. S.
Papageorgiou [10], K. Perera [12], N. S. Papageorgiou and V. D. Radulescu [11], F.
O. de Paiva and A. E. Presoto [5], L. Recova and A. Rumbos [13], J. R. Ward [14].
Denote the natural norm of L"(2) by || - ||, that is,

ally = ([ Julr o)
Q
Denote the natural norm of HJ(2) by || - ||, that is,

ul| = ( / V) 2.
Q
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The space X is defined as X = {u € C1(Q) : uw = 0 on 9Q} which is a Banach space
with norm

||ul|x = max|u(z)| + max|Vu(z)|.
e z€EQ

The main results of this paper is the following

Theorem 1.1. Assume that 1 < p < YL Under assumptions (H1)-(H3) the

Dirichlet problem (1.1) has a weak solution uw € W27 (Q) N HL(Q).

Since we will use topological arguments to prove Theorem 1.1, we shall need
a priori bounds on the solutions of (1.1). This is the content of the next result.
Notice that from regularity theory all weak solutions of (1.1) belong to W27 (),
and recall that W27 (Q) C C*(Q) because r > N.

Theorem 1.2. Assume that 1 < p < 3+, Let (H1)-(H3) hold. Let u € HE (%) be
a solution of problem (1.1). Then there exists a constant C' > 0 such that

|ullx < C. (1.4)

Remark 1.1. For the special nonlinearity (u*)?, M. Cuesta, D. G. De Figueiredo
and P. N. Srikanth [4, Theorem 1.2] obtained a priori estimates of form

lullx < p(l[R]) (1.5)

for all solutions of (1.2), where p : Rt — R™ is an increasing continuous function,
depending only on p and €2, such that

p(0) =0.

Our a priori estimates (1.4) for (1.1) is weaker than (1.5) and is not enough to
guarantee that all solution are non-degenerate solution of Morse index equal to 1.
To overcome this difficulty, we need to introduce hypothesis (H2) in order to prove
the following

For any € € (0,s0), there exists 6 > 0 such that any solution u of (1.1) with
||R||, < & satisfies

H’U,+HX < €.

See Proposition 3.1 below.

Remark 1.2. It is worth remarking that, if (H2) holds, the necessary condition for
the existence of solutions of (1.1) is (H3). In fact, if u is a solution of (1.1), then

/Q(—Au—Alu)qbldx:/Qf(qu)qﬁldx—i—/thﬁldx.

2. Proof of Theorem 1.2

Let us first introduce the following lemma based on the Hardy-Sobolev inequality
(c.f. for instance [2,4]).
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Lemma 2.1 ( [4]). Let 1 < p < . Then there exists a constant C = C(p,<)

such that, for all u,v € H}(Q) with |u| < v a.e., it holds
/ |u|Podz < C’(/ |u\p¢1dm)a(/ |VU|2da:)6/2, (2.1)
Q Q Q
where
N
=1- 1 2.2
“ SN (v _o)p < D (2:2)
N
=1+ b € (1,2). (2.3)

242N - (N -2)p

Throughout the rest of this section, we use the same letter C' to denote distinct
constants. In addition, we remark that all of them are independent of w.

Proof of Theorem 1.2. Let u € H () be a weak solution of (1.1). Let us write
u = tpy + uy with fQ u1¢p1de = 0. By multiplying (1.1) by ¢; we find

/ Flut)prde = f/ hrdz < C||h|],. (2.4)
Q Q

This together with the first inequality in (H1) imply that

A
[ 1w ponds <clipll, + 5 [ onde 25)
Q Q

t:/qud)ld:cf/u*d)ldx
Q Q

A
<o( [ [wtorda)"” < (©lnll + SHllenl) 7.

and therefore
(2.6)

We break the proof into two parts, according to ¢t < 0 or ¢t > 0.

Case 1. t > 0.

From the previous inequality we obtain a bound on |t|. In order to get an
estimate on u; we multiply (1.1) by u; to obtain

/|Vu1|2dac—)\1/u%dac:/f(u"')uldx—i—/hulalx7 (2.7)
Q Q Q Q

and using that fQ uy¢p1dr = 0 and the variational characterization of the second
eigenvalue Ay of (—A, H}(2)) we have

(1—ﬁ)||u1|\2S/f(u"‘)mdm—&-/huld:lc
A Q Q

2
g/(B|u+\p+Bl)u1da:+/ hu;dz
Q Q
S/B\uﬂpuldx—i-/(h—l-Bl)uldx
Q Q

<Cllb+ Ball ]|+ | | Ba*undal.
Q



1562 R. Ma, Z. Zhao & M. Ma

Next we use the fact that u]” < u*, and that u* < t¢; on {u; < 0} to obtain

|/Q(u+)pu1dx| S/Q( YPut dz+/ﬂ( NPul dx

(2.9)
ut)Pde + P [ (p1)Puy da.
S/Q( it /Q( Furd

By a simple calculation,

_ Ay
tp/ Puidz < C(||h||, + — uyl].
[ (@07 (Mall + =l ) e

To estimate the integral in the right side of (2.9) we use (2.4) and Lemma 2.1
with u = v =u™. Hence

|/(u+)p+1dx\§C(/ |u+|p¢>1dx>a</ |Vu+|2dx)6/2
Q

o Ay 5 o
<C(Ilhll +‘S“’Jr(A)‘S“’IIhH o137 + 1B ]12lua |
A [e% @ A [e% a+d @ [e%
DI I+ P74 (EL N g 7).

(2.10)
Replacing (2.9) and (2.10) in (2.8) we obtain

s ? < /Q ) unde + /Q hosda

<Cllh+ il + | | B Purdsl
Q

A
<Cllh+ Bull sl + B (Inle o7 + (5

A « [e% A @ (e [e% @
+ DRIl + Gl 4+ (G 115 )

A
+BO(Ihll + gl -

R T I e T T

(2.11)
By Young’s inequality we deduce that
2a
leall? < € (1A + Ball2 + I + RIS + [BI + [RIEP + [Bl)2 +1).
This imply that there exists a constant C' > 0 such that
[[ul| < C. (2.12)
Case 2. t < 0.
First, we find an a-priori bound of ||u1]|x.
Similarly to the previous case we have also (2.8). But in this case | [, (u")Pu;dz|

can be estimated directly by using Lemma 2.1. Indeed, notice that we have u™ < u;,
since t < 0. Hence, by Lemma 2.1 and (2.5), we have

A
I/Q(qu)”uldwl < C([[Allr + jll%lll)“llmll‘;, (2.13)
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and replacing this estimate in (2.8) we find

|12 < C’(/Qf(qu)uld:ch/Qhuldx)

§C’(/Q|f(u+)u1|dx+/ﬂhu1dx)

(2.14)
< Cllh+ Bull ] + | / B(ut)Puyde|
Q

« Al (o7 «
< C (Il + Bl sl |+ 1B el + (S @15 e [7)-

By Young’s inequality we deduce that

2—-9
2

<C(|lh+ B[+ [[nll7~ +1).

1 2o 2§ 2
[lual[* <C([[h + Bill7 + 5 lluall® + 1R[1777 + == lloalli™ + dlluall®)

Then o
[ur]] < C(||h + Bil[ + [|All7 =" + 1). (2.15)

In order to get an estimate for ||uj||x from the estimate of ||u;|| we now use the
fact that u; solves the problem

— Auy = Muy + f(u) + h, in Q,

2.16
u; =0, on 0. ( )

Since vt < wy and f(ut) < B(u™)? 4+ By, (2.14) and (2.16) and a bootstrap
argument yield that
lJurl|x < C, (2.17)

where C' > 0 is a constant.

By Hopf’s Maximum Principle the first eigenfunction of (—A, H}(Q2)), ¢1 > 0
lies in the interior of the cone of positive functions in the space X.
Assume on the contrary that there exist {u,} with

Un =ty + Uin (2.18)

and
t,, — —00. (2.19)

Then it follows from (2.19), (2.18) and (2.17) that
up(x) > —00  for z € D,

where D be any compact subset of (2. We have from the fact

/Q [t (@) + h(x)|frda = 0 (2.20)

that
/ hordz = 0. (2.21)
Q

However, this contradicts (H3). O
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3. Proof of Theorem 1.1

In this proof we use the propositions below. For that matter, let us introduce the
following fixed point formulation of problem (1.1). Let 7} : X — X be the map

Tn(u) = (=A) Y (Au + f(u™) +h). (3.1)
Ty, is a compact continuous map and
Th(u) =u < wusolves (1.1).
In what follows d(-, -, -) denotes the Leray-Schauder degree.

Proposition 3.1. Assume that 1 < p < {EL. Let (H1)-(H3) hold. For any
e € (0,s0), there exists & > 0 such that any solution u of (1.1) with ||h|l, < 0
satisfies

lu]lx <e.

Proof. Assume on the contrary that there exist ¢ € (0,s9) and {h,} with
||hn]r < L, such that (1.1) with h = hj, has solution {u,} satisfying

[lug x> €o. (3.2)
Then
— Auy = My, + fF(uh) + by (2), in £,
U, = 0, on 9f).
By a simple calculation,
/Qf(uf{)gbldx = /Q —hp(x)prde — 0  asn — oo. (3.3)

On the other hand, Theorem 1.2 yields that there exists a constant M > 0 such
that
[lunllx < M,

there exists a subsequence of u,, that is still denoted by u,, such that
ul =l in O(Q).

Obviously, (3.2) implies

where & is a constant that depends on ¢y. Combining (3.4) and (H2), it deduces
that

/ fufgrdr > 0.
Q

However, this contradicts (3.3) if n is large enough. O

Proposition 3.2. Assume that 1 < p < Y. Let (H1)-(H2) hold. There exist
0 > 0 and Ry > 0 such that for all functions h satisfying condition (H3) with

|h]l» < &, and for which problem (1.1) possesses at least one solution, it follows that

d(I —T,,Bg(0,R),0) #0, V¥ R> Ry. (3.5)
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Proof. Choosing a suitable 6 > 0. By Proposition 3.1 and (H2), there exists
€ € (0, sg) is small enough such that any solution ug of (1.1) satisfies

() < Pl llx) <A — A forany s € [0.q] (36)

Obviously, there exists Ry € (¢, so] such that ||ug||x < Rp.
The linearized problem of (1.1) at ug is the following
—Av=X\v+ f(ud)v, in Q,

(3.7)
v =0, on 0f).

Denote by pi(a) < pz(a) < --- denote the eigenvalues of the following eigenvalue
problem of weight a, i.e.,

— Av = pa(z)v, in Q,
v =0, on Of).

By (3.6)
A <a(z) =M+ fud) <X ae.,
so then
pi(a) <1< pz(a).

Hence v = 0 is the unique solution of (3.7) and therefore ug is a non-degenerate
solution of (1.1) of Morse index equal to 1.

By estimate (3.6) the degree above is well defined for all R > Rj. Moreover,
since all possible solutions of u = T} (u) are non-degenerated, it follows that they
are isolated and that there is only a finite number m of them in Bx (0, R). We recall
that the index of each solution is equal to (—1)? where /3 is the Morse index. So

m

d(I — Ty, Bx(0,R),0) = » (~1) #0.

j=1
O
Proof of Theorem 1.1. There exists tg > 0 such that for 0 < t < tg, hy :=

—f(tpy) satisfies
[hallr = [| = f(td)]lr <6,

where ¢ is given by Proposition 3.2. We can verify that u = t¢; is the solution of
problem (1.1) for h; and then Proposition 3.2 applies. Thus
d(I = Th,,Bx(0,R),0) #0
for R large enough. Consider the following homotopy
—Av=X v+ fo1)+ (1 —7)h(z) + Thi(z), in €,
(3.8)
v =0, on 01,

where 0 < 7 < 1. From the a-priori estimates of Theorem 1.2, all the solutions of
problem (3.8) are uniformly bounded in X by, say, R; := max{C, e}, where C' and
€ are defined in Theorem 1.2 and the proof of Proposition 3.2 respectively. Hence,
if R > maX{Ro, Rl},

d(I = Ty, Bx(0,R),0) = d(I — Ty, Bx (0, R),0) # 0

and the conclusion of the theorem follows. O
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