ON A SUPERLINEAR SECOND ORDER ELLIPTIC PROBLEM AT RESONANCE*

Ruyun Ma^{1,2,†}, Zhongzi Zhao² and Mantang Ma¹

Abstract We show the existence of solutions of the superlinear problem

 $-\Delta u = \lambda_1 u + f(u^+) + h(x), \quad \text{in } \Omega,$ $u = 0, \qquad \qquad \text{on } \partial\Omega,$

where $\Omega \subset \mathbb{R}^N$ be a bounded domain whose boundary is a $C^{2,\alpha}$ manifold, f satisfies some superlinear growth conditions and h satisfies a one-sided Landesman-Lazer condition. A priori bounds for the solutions of the equation is obtained by using Hardy-Sobolev type inequalities. Existence of solutions is then obtained by using topological degree arguments.

Keywords Elliptic equations, superlinear nonlinearity, a priori bounds, topological degree.

MSC(2010) 35A16, 35B45, 35B34.

1. Introduction

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain whose boundary is a $C^{2,\alpha}$ manifold. Denote by λ_1 the first eigenvalue of $(-\Delta, H_0^1(\Omega))$. Existence of solutions for semilinear elliptic Dirichlet problems

$$-\Delta u = g(x, u), \quad \text{in } \Omega,$$

$$u = 0, \quad \text{on } \partial \Omega$$

with distinct behaviours of $\frac{g(x,s)}{s}$ as $s\to\infty$ has been difficult to establish in the case when

- (i) $g(x, 0) \neq 0;$
- (ii) there is resonance in one direction;
- (iii) the problem is superlinear in the other.

This work is dedicated to present results for a class of nonlinear elliptic problem with superlinear asymmetric nonlinearities and resonant in the first eigenvalue

$$-\Delta u = \lambda_1 u + f(u^+) + h(x), \qquad \text{in } \Omega, u = 0, \qquad \qquad \text{on } \partial\Omega$$
(1.1)

[†]The corresponding author. Email: mary@nwnu.edu.cn(R. Ma)

¹Department of Mathematics, Northwest Normal University, Lanzhou 730070, China

²School of Mathematics and Statistics, Xidian University, Xi'an, 710071, China

^{*}The authors were supported by National Natural Science Foundation of China (12061064).

where $u^+ = \max\{u, 0\}$, f and h satisfy the following

(H1) There are nonnegative constants A, B, A_1, B_1 and p with $B > A, 1 \le p < \frac{N+1}{N-1}$ for $N \ge 3$ such that

$$As^p - A_1 \le f(s) \le Bs^p + B_1 \quad \forall \ s \in [0, \infty).$$

(H2) There exists $s_0 > 0$, such that $f \in C^1[0, s_0]$ and $f \in C[0, \infty)$,

$$\begin{split} f(s) &> 0 \quad \text{for } s > 0, \\ \lim_{s \to 0^+} f'(s) &= 0, \\ f'(s) &> 0 \quad \text{for } s \in (0, s_0]. \end{split}$$

(H3) $h \in L^r$ with some r > N, and

$$\int_{\Omega} h\phi_1 dx < 0,$$

where ϕ_1 is the positive eigenfunction associated to λ_1 and normalized to have L^2 -norm equal to 1.

The motivation for this work is the paper M. Cuesta, D. G. De Figueiredo and P. N. Srikanth [4], in which the authors showed the following resonant Dirichlet problems

$$-\Delta u = \lambda_1 u + (u^+)^p + h(x), \qquad \text{in } \Omega, u = 0, \qquad \text{on } \partial\Omega$$
(1.2)

has at least one solution in $W^{2,r}(\Omega) \cap H^1_0(\Omega)$ under the assumptions $h \in L^r(\Omega)$, 1 and

$$\int_{\Omega} h(x)\phi_1(x)dx < 0.$$
(1.3)

The proof of the main result in [4] uses the technique introduced in [2]. The method consists in getting *a priori* bounds, using Hardy-Sobolev type inequalities, with topological degree arguments. Similar problems, under Dirichlet and Neumann boundary condition, can be found in D. Arcoya and S. Villegas [1], M. Cuesta and C. De Coster [3], F. M. Ferreira, F. O. de Paiva [6], R. Kannan and R. Ortega [7,8], S. Kyritsi and N. S. Papageorgiou [9], D. Motreanu, V. Motreanu, N. S. Papageorgiou [10], K. Perera [12], N. S. Papageorgiou and V. D. Radulescu [11], F. O. de Paiva and A. E. Presoto [5], L. Recova and A. Rumbos [13], J. R. Ward [14].

Denote the natural norm of $L^r(\Omega)$ by $|| \cdot ||_r$, that is,

$$||u||_r = (\int_{\Omega} |u|^r dx)^{1/r}.$$

Denote the natural norm of $H_0^1(\Omega)$ by $|| \cdot ||$, that is,

$$||u|| = (\int_{\Omega} |\nabla u|^2 dx)^{1/2}$$

The space X is defined as $X = \{u \in C^1(\overline{\Omega}) : u = 0 \text{ on } \partial\Omega\}$ which is a Banach space with norm

$$||u||_X = \max_{x \in \bar{\Omega}} |u(x)| + \max_{x \in \bar{\Omega}} |\nabla u(x)|.$$

The main results of this paper is the following

Theorem 1.1. Assume that $1 . Under assumptions (H1)-(H3) the Dirichlet problem (1.1) has a weak solution <math>u \in W^{2,r}(\Omega) \cap H_0^1(\Omega)$.

Since we will use topological arguments to prove Theorem 1.1, we shall need a priori bounds on the solutions of (1.1). This is the content of the next result. Notice that from regularity theory all weak solutions of (1.1) belong to $W^{2,r}(\Omega)$, and recall that $W^{2,r}(\Omega) \subset C^1(\overline{\Omega})$ because r > N.

Theorem 1.2. Assume that $1 . Let (H1)-(H3) hold. Let <math>u \in H_0^1(\Omega)$ be a solution of problem (1.1). Then there exists a constant C > 0 such that

$$||u||_X \le C. \tag{1.4}$$

Remark 1.1. For the special nonlinearity $(u^+)^p$, M. Cuesta, D. G. De Figueiredo and P. N. Srikanth [4, Theorem 1.2] obtained *a priori* estimates of form

$$||u||_{X} \le \rho(||h||_{r}) \tag{1.5}$$

for all solutions of (1.2), where $\rho : \mathbb{R}^+ \to \mathbb{R}^+$ is an increasing continuous function, depending only on p and Ω , such that

$$\rho(0) = 0.$$

Our *a priori* estimates (1.4) for (1.1) is weaker than (1.5) and is not enough to guarantee that all solution are non-degenerate solution of Morse index equal to 1. To overcome this difficulty, we need to introduce hypothesis (H2) in order to prove the following

For any $\epsilon \in (0, s_0)$, there exists $\delta > 0$ such that any solution u of (1.1) with $||h||_r < \delta$ satisfies

$$||u^+||_X < \epsilon.$$

See Proposition 3.1 below.

Remark 1.2. It is worth remarking that, if (H2) holds, the necessary condition for the existence of solutions of (1.1) is (H3). In fact, if u is a solution of (1.1), then

$$\int_{\Omega} (-\Delta u - \lambda_1 u) \phi_1 dx = \int_{\Omega} f(u^+) \phi_1 dx + \int_{\Omega} h \phi_1 dx.$$

2. Proof of Theorem 1.2

Let us first introduce the following lemma based on the Hardy-Sobolev inequality (c.f. for instance [2,4]).

Lemma 2.1 ([4]). Let $1 . Then there exists a constant <math>C = C(p, \Omega)$ such that, for all $u, v \in H_0^1(\Omega)$ with $|u| \le v$ a.e., it holds

$$\int_{\Omega} |u|^p v dx \le C \Big(\int_{\Omega} |u|^p \phi_1 dx \Big)^{\alpha} \Big(\int_{\Omega} |\nabla v|^2 dx \Big)^{\delta/2}, \tag{2.1}$$

where

$$\alpha = 1 - \frac{N}{2 + 2N - (N - 2)p} \in (0, 1), \tag{2.2}$$

$$\delta = 1 + \frac{Np}{2 + 2N - (N - 2)p} \in (1, 2).$$
(2.3)

Throughout the rest of this section, we use the same letter C to denote distinct constants. In addition, we remark that all of them are independent of u.

Proof of Theorem 1.2. Let $u \in H_0^1(\Omega)$ be a weak solution of (1.1). Let us write $u = t\phi_1 + u_1$ with $\int_{\Omega} u_1\phi_1 dx = 0$. By multiplying (1.1) by ϕ_1 we find

$$\int_{\Omega} f(u^+)\phi_1 dx = -\int_{\Omega} h\phi_1 dx \le C||h||_r.$$
(2.4)

This together with the first inequality in (H1) imply that

$$\int_{\Omega} |u^+|^p \phi_1 dx \le C ||h||_r + \frac{A_1}{A} \int_{\Omega} \phi_1 dx, \qquad (2.5)$$

and therefore

$$t = \int_{\Omega} u^{+} \phi_{1} dx - \int_{\Omega} u^{-} \phi_{1} dx$$

$$\leq C \Big(\int_{\Omega} |u^{+}|^{p} \phi_{1} dx \Big)^{1/p} \leq \Big(C ||h||_{r} + \frac{A_{1}}{A} ||\phi_{1}||_{1} \Big)^{1/p}.$$
(2.6)

We break the proof into two parts, according to t < 0 or $t \ge 0$.

Case 1. $t \ge 0$.

From the previous inequality we obtain a bound on |t|. In order to get an estimate on u_1 we multiply (1.1) by u_1 to obtain

$$\int_{\Omega} |\nabla u_1|^2 dx - \lambda_1 \int_{\Omega} u_1^2 dx = \int_{\Omega} f(u^+) u_1 dx + \int_{\Omega} h u_1 dx, \qquad (2.7)$$

and using that $\int_{\Omega} u_1 \phi_1 dx = 0$ and the variational characterization of the second eigenvalue λ_2 of $(-\Delta, H_0^1(\Omega))$ we have

$$(1 - \frac{\lambda_1}{\lambda_2})||u_1||^2 \leq \int_{\Omega} f(u^+)u_1 dx + \int_{\Omega} hu_1 dx \leq \int_{\Omega} (B|u^+|^p + B_1)u_1 dx + \int_{\Omega} hu_1 dx \leq \int_{\Omega} B|u^+|^p u_1 dx + \int_{\Omega} (h + B_1)u_1 dx \leq C||h + B_1||_r||u_1|| + |\int_{\Omega} B(u^+)^p u_1 dx|.$$
(2.8)

Next we use the fact that $u_1^+ \leq u^+$, and that $u^+ \leq t\phi_1$ on $\{u_1 \leq 0\}$ to obtain

$$\begin{aligned} |\int_{\Omega} (u^{+})^{p} u_{1} dx| &\leq \int_{\Omega} (u^{+})^{p} u_{1}^{+} dx + \int_{\Omega} (u^{+})^{p} u_{1}^{-} dx \\ &\leq \int_{\Omega} (u^{+})^{p+1} dx + t^{p} \int_{\Omega} (\phi_{1})^{p} u_{1}^{-} dx. \end{aligned}$$
(2.9)

By a simple calculation,

$$t^{p} \int_{\Omega} (\phi_{1})^{p} u_{1}^{-} dx \leq C \Big(\|h\|_{r} + \frac{A_{1}}{A} \|\phi_{1}\|_{1} \Big) \|u_{1}\|.$$

To estimate the integral in the right side of (2.9) we use (2.4) and Lemma 2.1 with $u = v = u^+$. Hence

$$\begin{split} |\int_{\Omega} (u^{+})^{p+1} dx| &\leq C \Big(\int_{\Omega} |u^{+}|^{p} \phi_{1} dx \Big)^{\alpha} \Big(\int_{\Omega} |\nabla u^{+}|^{2} dx \Big)^{\delta/2} \\ &\leq C \Big(\|h\|_{r}^{\alpha+\delta/p} + (\frac{A_{1}}{A})^{\delta/p} \|h\|_{r}^{\alpha} \|\phi_{1}\|_{1}^{\delta/p} + \|h\|_{r}^{\alpha} \|u_{1}\|^{\delta} \\ &+ (\frac{A_{1}}{A})^{\alpha} \|h\|_{r}^{\delta/p} \|\phi_{1}\|_{1}^{\alpha} + (\frac{A_{1}}{A})^{\alpha+\delta/p} \|\phi_{1}\|_{1}^{\alpha+\delta/p} + (\frac{A_{1}}{A})^{\alpha} \|\phi_{1}\|_{1}^{\alpha} \|u_{1}\|^{\delta} \Big). \end{split}$$

$$\tag{2.10}$$

Replacing (2.9) and (2.10) in (2.8) we obtain

$$\begin{aligned} ||u_{1}||^{2} &\leq \int_{\Omega} f(u^{+})u_{1}dx + \int_{\Omega} hu_{1}dx \\ &\leq C||h+B_{1}||_{r}||u_{1}|| + |\int_{\Omega} B(u^{+})^{p}u_{1}dx| \\ &\leq C||h+B_{1}||_{r}||u_{1}|| + BC\Big(||h||_{r}^{\alpha+\delta/p} + (\frac{A_{1}}{A})^{\delta/p}||h||_{1}^{\alpha}||\phi_{1}||_{1}^{\delta/p} + ||h||_{r}^{\alpha}||u_{1}||^{\delta} \\ &+ (\frac{A_{1}}{A})^{\alpha}||h||_{r}^{\delta/p}||\phi_{1}||_{1}^{\alpha} + (\frac{A_{1}}{A})^{\alpha+\delta/p}||\phi_{1}||_{1}^{\alpha+\delta/p} + (\frac{A_{1}}{A})^{\alpha}||\phi_{1}||_{1}^{\alpha}||u_{1}||^{\delta} \Big) \\ &+ BC(||h||_{r} + \frac{A_{1}}{A}||\phi_{1}||_{1})||u_{1}||. \end{aligned}$$

$$(2.11)$$

By Young's inequality we deduce that

$$||u_1||^2 \le C \Big(||h + B_1||_r^2 + ||h||_r^{\alpha + \delta/p} + ||h||_r^{\alpha} + ||h||_r^{\frac{2\alpha}{2-\delta}} + ||h||_r^{\delta/p} + ||h||_r^2 + 1 \Big).$$

This imply that there exists a constant C > 0 such that

$$||u|| \le C. \tag{2.12}$$

Case 2. t < 0.

First, we find an a-*priori* bound of $||u_1||_X$. Similarly to the previous case we have also (2.8). But in this case $|\int_{\Omega} (u^+)^p u_1 dx|$ can be estimated directly by using Lemma 2.1. Indeed, notice that we have $u^+ \leq u_1$, since t < 0. Hence, by Lemma 2.1 and (2.5), we have

$$\left|\int_{\Omega} (u^{+})^{p} u_{1} dx\right| \leq C(||h||_{r} + \frac{A_{1}}{A} ||\phi_{1}||_{1})^{\alpha} ||u_{1}||^{\delta},$$
(2.13)

and replacing this estimate in (2.8) we find

$$||u_{1}||^{2} \leq C \Big(\int_{\Omega} f(u^{+})u_{1}dx + \int_{\Omega} hu_{1}dx \Big)$$

$$\leq C \Big(\int_{\Omega} |f(u^{+})u_{1}|dx + \int_{\Omega} hu_{1}dx \Big)$$

$$\leq C ||h + B_{1}||_{r} ||u_{1}|| + |\int_{\Omega} B(u^{+})^{p}u_{1}dx|$$

$$\leq C \Big(||h + B_{1}||_{r} ||u_{1}|| + ||h||_{r}^{\alpha} ||u_{1}||^{\delta} + (\frac{A_{1}}{A})^{\alpha} ||\phi_{1}||_{1}^{\alpha} ||u_{1}||^{\delta} \Big).$$

$$(2.14)$$

By Young's inequality we deduce that

$$\begin{aligned} ||u_1||^2 \leq C(||h+B_1||_r^2 + \frac{1}{2}||u_1||^2 + \frac{2-\delta}{2}||h||_r^{\frac{2\alpha}{2-\delta}} + \frac{2-\delta}{2}||\phi_1||_1^{\frac{2\alpha}{2-\delta}} + \delta||u_1||^2) \\ \leq C(||h+B_1||_r^2 + ||h||_r^{\frac{2\alpha}{2-\delta}} + 1). \end{aligned}$$

Then

$$||u_1|| \le C(||h + B_1||_r + ||h||_r^{\frac{\alpha}{2-\delta}} + 1).$$
(2.15)

In order to get an estimate for $||u_1||_X$ from the estimate of $||u_1||$ we now use the fact that u_1 solves the problem

$$-\Delta u_1 = \lambda_1 u_1 + f(u^+) + h, \qquad \text{in } \Omega, u_1 = 0, \qquad \qquad \text{on } \partial\Omega.$$
(2.16)

Since $u^+ \leq u_1$ and $f(u^+) \leq B(u^+)^p + B_1$, (2.14) and (2.16) and a bootstrap argument yield that

$$||u_1||_X \le C,$$
 (2.17)

where C > 0 is a constant.

By Hopf's Maximum Principle the first eigenfunction of $(-\Delta, H_0^1(\Omega)), \phi_1 > 0$ lies in the interior of the cone of positive functions in the space X.

Assume on the contrary that there exist $\{u_n\}$ with

$$u_n = t_n \phi_1 + u_{1n} \tag{2.18}$$

and

$$t_n \to -\infty. \tag{2.19}$$

Then it follows from (2.19), (2.18) and (2.17) that

$$u_n(x) \to -\infty$$
 for $x \in \mathcal{D}$,

where \mathcal{D} be any compact subset of Ω . We have from the fact

$$\int_{\Omega} [f(u_n^+(x)) + h(x)]\phi_1 dx = 0$$
(2.20)

that

$$\int_{\Omega} h\phi_1 dx = 0. \tag{2.21}$$

However, this contradicts (H3).

3. Proof of Theorem 1.1

In this proof we use the propositions below. For that matter, let us introduce the following fixed point formulation of problem (1.1). Let $T_h: X \to X$ be the map

$$T_h(u) = (-\Delta)^{-1} (\lambda_1 u + f(u^+) + h).$$
(3.1)

 T_h is a compact continuous map and

$$T_h(u) = u \iff u \text{ solves (1.1)}.$$

In what follows $d(\cdot, \cdot, \cdot)$ denotes the Leray-Schauder degree.

Proposition 3.1. Assume that $1 . Let (H1)-(H3) hold. For any <math>\epsilon \in (0, s_0)$, there exists $\delta > 0$ such that any solution u of (1.1) with $||h||_r < \delta$ satisfies

$$||u^+||_X < \epsilon.$$

Proof. Assume on the contrary that there exist $\epsilon_0 \in (0, s_0)$ and $\{h_n\}$ with $||h_n||_r < \frac{1}{n}$, such that (1.1) with $h = h_n$ has solution $\{u_n\}$ satisfying

$$||u_n^+||_X \ge \epsilon_0. \tag{3.2}$$

Then

$$-\Delta u_n = \lambda_1 u_n + f(u_n^+) + h_n(x), \quad \text{in } \Omega,$$

$$u_n = 0, \quad \text{on } \partial\Omega.$$

By a simple calculation,

$$\int_{\Omega} f(u_n^+)\phi_1 dx = \int_{\Omega} -h_n(x)\phi_1 dx \to 0 \quad \text{as } n \to \infty.$$
(3.3)

On the other hand, Theorem 1.2 yields that there exists a constant M > 0 such that

$$||u_n^+||_X \le M,$$

there exists a subsequence of u_n that is still denoted by u_n such that

$$u_n^+ \to u_*^+$$
 in $C(\bar{\Omega})$.

Obviously, (3.2) implies

$$||u_*^+||_{\infty} \ge \tilde{\epsilon}_0, \tag{3.4}$$

where $\tilde{\epsilon}_0$ is a constant that depends on ϵ_0 . Combining (3.4) and (H2), it deduces that

$$\int_{\Omega} f(u_*^+)\phi_1 dx > 0$$

However, this contradicts (3.3) if n is large enough.

Proposition 3.2. Assume that $1 . Let (H1)-(H2) hold. There exist <math>\delta > 0$ and $R_0 > 0$ such that for all functions h satisfying condition (H3) with $\|h\|_r < \delta$, and for which problem (1.1) possesses at least one solution, it follows that

$$d(I - T_h, B_E(0, R), 0) \neq 0, \quad \forall \ R \ge R_0.$$
(3.5)

Proof. Choosing a suitable $\delta > 0$. By Proposition 3.1 and (H2), there exists $\epsilon \in (0, s_0)$ is small enough such that any solution u_0 of (1.1) satisfies

$$f'(s) \le f'(||u_0^+||_X) < \lambda_2 - \lambda_1 \quad \text{for any} \quad s \in [0, \epsilon].$$
 (3.6)

Obviously, there exists $R_0 \in (\epsilon, s_0]$ such that $||u_0||_X < R_0$.

The linearized problem of (1.1) at u_0 is the following

$$-\Delta v = \lambda_1 v + f'(u_0^+)v, \quad \text{in } \Omega, v = 0, \quad \text{on } \partial\Omega.$$
(3.7)

Denote by $\mu_1(a) < \mu_2(a) < \cdots$ denote the eigenvalues of the following eigenvalue problem of weight *a*, i.e.,

$$-\Delta v = \mu a(x)v, \quad \text{in } \Omega,$$

$$v = 0, \qquad \text{on } \partial\Omega.$$

By (3.6)

$$\lambda_1 < a(x) := \lambda_1 + f'(u_0^+) < \lambda_2 \quad \text{a.e.,}$$

so then

$$\mu_1(a) < 1 < \mu_2(a).$$

Hence $v \equiv 0$ is the unique solution of (3.7) and therefore u_0 is a non-degenerate solution of (1.1) of Morse index equal to 1.

By estimate (3.6) the degree above is well defined for all $R \ge R_0$. Moreover, since all possible solutions of $u = T_h(u)$ are non-degenerated, it follows that they are isolated and that there is only a finite number m of them in $B_X(0, R)$. We recall that the index of each solution is equal to $(-1)^\beta$ where β is the Morse index. So

$$d(I - T_h, B_X(0, R), 0) = \sum_{j=1}^m (-1) \neq 0.$$

Proof of Theorem 1.1. There exists $t_0 > 0$ such that for $0 < t < t_0$, $h_1 := -f(t\phi_1)$ satisfies

$$||h_1||_r = || - f(t\phi_1)||_r < \delta,$$

where δ is given by Proposition 3.2. We can verify that $u = t\phi_1$ is the solution of problem (1.1) for h_1 and then Proposition 3.2 applies. Thus

$$d(I - T_{h_1}, B_X(0, R), 0) \neq 0$$

for R large enough. Consider the following homotopy

$$-\Delta v = \lambda_1 v + f(v^+) + (1 - \tau)h(x) + \tau h_1(x), \quad \text{in } \Omega,$$

$$v = 0, \quad \text{on } \partial\Omega,$$
(3.8)

where $0 \le \tau \le 1$. From the a-*priori* estimates of Theorem 1.2, all the solutions of problem (3.8) are uniformly bounded in X by, say, $R_1 := \max\{C, \epsilon\}$, where C and ϵ are defined in Theorem 1.2 and the proof of Proposition 3.2 respectively. Hence, if $R > \max\{R_0, R_1\}$,

$$d(I - T_h, B_X(0, R), 0) = d(I - T_{h_1}, B_X(0, R), 0) \neq 0$$

and the conclusion of the theorem follows.

Acknowledgements

The authors are grateful to the anonymous referees for their useful comments and suggestions.

References

- D. Arcoya and S. Villegas, Nontrivial solutions for a Neumann problem with a nonlinear term asymptotically linear at -∞ and superlinear at +∞, Math. Z., 1995, 219(4), 499–513.
- [2] H. Brezis and R. Turner, On a class of superlinear elliptic problems, Comm. Partial Differential Equations, 1977, 2(6), 601–614.
- [3] M. Cuesta and C. De Coster, Superlinear critical resonant problems with small forcing term, Cal. Var. Partial Differential Equations, 2015, 54(1), 349–363.
- [4] M. Cuesta, D. G. De Figueiredo and P. N. Srikanth, On a superlinear elliptic problem at resonance, Calc. Var. Partial Differential Equations, 2003, 17(3), 221–233.
- [5] F. O. de Paiva and A. E. Presoto, Semilinear elliptic problems with asymmetric nonlinearities, J. Math. Anal. Appl., 2014, 409(1), 254–262.
- [6] F. M. Ferreira and F. O. de Paiva, On a resonant and superlinear elliptic system, Discrete Contin. Dyn. Syst., 2019, 39(10), 5775–5784.
- [7] R. Kannan and R. Ortega, Superlinear elliptic boundary value problems, Czech. Math. J., 1987, 37(3), 386–399.
- [8] R. Kannan and R. Ortega, Landesman-Lazer conditions for problems with oneside unbounded nonlinearities, Nonlinear. Anal., 1985, 9(12), 1313–1317.
- S. Kyritsi and N. S. Papageorgiou, Multiple solutions for superlinear Dirichlet problems with an indefinite potential, Annali Math. Pura Appl., 2013, 192(2), 297–315.
- [10] D. Motreanu, V. Motreanu and N. S. Papageorgiou, Multiple solutions for Dirichlet problems which are superlinear at +∞ and sublinear at -∞, Commun. Appl. Anal., 2009, 13(3), 341–358.
- [11] N. S. Papageorgiou and V. D. Radulescu, Semilinear Neumann problems with indefinite and unbounded potential and crossing nonlinearity, Contemp. Math., 2013, 595, 293–315.
- [12] K. Perera, Existence and multiplicity results for a Sturm-Liouville equation asymptotically linear at -∞ and superlinear at +∞, Nonlinear Anal., 2000, 39(6), 669–684.
- [13] L. Recova and A. Rumbos, An asymmetric superlinear elliptic problem at resonance, Nonlinear Anal., 2015, 112, 181–198.
- [14] J. R. Ward, Perturbations with some superlinear growth for a class of second order elliptic boundary value problems, Nonlinear Anal., 1982, 6(4), 367–374.