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1. Introduction
In this paper, we are interested in the existence and multiplicity of periodic solutions
for the 1-dimensional p-Laplacian equation

(|x′|p−2x′)′ + f(t, x) = 0. (1.1)

where p > 1 and f : R × R → R is a continuous function, 2π-least periodic in its
first variable, p-superlinear in the sense

(fp
s ) lim

|x|→∞

f(t, x)

|x|p−2x
= +∞, uniformly in t ∈ R.

Notice that, when p = 2, we have a second order equation x′′ + f(t, x) = 0.
Superlinear differential equation is one of the typical models both in ODE and

forced vibrations. There are many interesting results on the existence and multiplic-
ity of periodic solutions of superlinear second order differential equations. The used
methods range from the Poincaré-Birkhoff twist theorem [6, 9, 10, 12, 17–19, 21, 25],
variational method [1,2,20], to Leray-Schauder continuation method of topological
degree [3, 4].

The case with superlinear nonlinearity appears to be the most delicate to treat.
In the application of topological degree, it is not easy to find a priori estimate
for possible periodic solutions. In the application of the Poincaré-Birkhoff twist
theorem, the Poincaré map may not be well defined. In fact, Coffmann and Ulrich [5]
gave an example of a positive q(t) ∈ C0([0, 2π]) such that x′′ + q(t)x3 = 0 has a
solution which does not exist on [0, 2π]. To avoid this problem, Jacobowitz [18]
and Hartman [17] gave a priori estimates for possible periodic solutions with given
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zeros based on the application of Sturm comparison theorem. Then They applied
Poincaré-Birkhoff twist theorem on the corresponding truncation equations and
obtained the existence of infinitely many periodic solutions for superlinear second
order equations.

In case superlinear second order equations is nonconservative, Capietto, Mawhin,
and Zanolin [3, 4] proved a continuation theorem where the new ingredient is the
use of a functional which is proper on the set of possible periodic solutions of
the homotopic family of equations. The property of proper is, roughly speaking,
the elastic property of the solution which associated to the global existence of the
solution.

In [6], Ding and Zanolin considered the case of forced type, that is f(t, x) =
g(x) − p(t), where f(t, x) can be considered as a global time perturbation of g(x).
In this case, the behavior of the perturbed system can be estimated by the energy
function of the autonomous system, so that the global existence of the solution of
the equation can be easily obtained. Therefore, the Poincaré map of the equation is
defined. We refer to [21–23,26] and the references therein for the related research.

Recently, Fonda and Sfecci [13] use so-called admissible spiral method to prove
the existence of infinitely many periodic solutions for weakly coupled superlinear
second order systems by using a higher dimensional version of the Poincaré-Birkhoff
theorem recently obtained by Fonda and Ureña [14]. In [13], superlinear condition
(f2

s ) is also used to construct admissible spiral curves.
This paper is the further research on the above topic. We consider the partial

p-superlinear Laplacian equation. We assume

(fp
p ) sgn(x)f(t, x) ≥ 0 for |x| � 1, lim

|x|→∞

f(t, x)

|x|p−2x
= +∞ uniformly in t ∈ I,

where I ⊂ [0, 2π] is a set of positive measure. Motivated by [10, 12, 13] and the
early papers [7,11], we use phase-plane analysis to show the rapidly spiral property
of the solution in time interval [0, 2π] under partial p-superlinear condition. So we
can consider the suitable truncation of the equation instead such that all solutions
of the new equation exist globally. It allows us to apply the Poincaré-Birkhoff twist
theorem on an annulus using rapidly spiral properties of solutions. Finally, the
nodal properties of periodic solutions corresponding to fixed points of the Poincaré-
Birkhoff twist theorem ensure that these 2π-periodic solutions are exactly the 2π-
periodic solutions of the original equation.

To use the Poincaré-Birkhoff twist theorem, we transform the p-Laplacian equa-
tion (1.1) into an equivalent Hamiltonian system of the form

x′ = |y|q−2y =
∂H

∂y
(t, x, y),

y′ = −f(t, x) = −∂H

∂x
(t, x, y)

(1.2)

where q is a positive integer conjugate to p, that is, 1/p+1/q = 1, and H(t, x, y) =
1
q |y|

q +
∫ x

0
f(t, s)ds.

The main result of this paper is the following.

Theorem 1.1. Assume f(t, x) is a continuous function, 2π-least periodic to t and
there is uniqueness for the solutions of the Cauchy problems associated with (1.1).
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Moreover, assume (fp
p ) and

(f0) There are c0, α > 0 such that |f(t, x)| ≤ α|x|p−1, for |x| ≤ c0, ∀t ∈ R.

Then the p-Laplacian equation (1.1) has a sequence {xk(t)} of 2π-periodic solutions,
such that xk(t) has exactly 2k simple zeros in the interval [0, 2π) and satisfying

lim
k→+∞

sup
t∈[0,2π]

{|xk(t)|+ |yk(t)|} = +∞.

Moreover, for any given m ∈ N, equation (1.1) has a sequence {xm,k(t)} of m-th
subharmonic solutions, such that

lim
k→+∞

sup
t∈[0,2mπ]

{|xm,k(t)|+ |ym,k(t)|} = +∞.

Remark 1.1. When p = 2 the assumption (f0) is just the local Lipschitz condition
of f at x = 0. In [17,18], Jacobowitz and Hartman considered the second equation
x′′ + f(t, x) = 0, where f ∈ C1, f(t, 0) ≡ 0 and satisfies the superlinear condition
(f2

s ). They applied Poincaré-Birkhoff twist theorem and obtained the existence of
infinitely many periodic solutions for superlinear second order equations. So our
result generalizes the classical results of Jacobowitz and Hartman.

Remark 1.2. Our theorem is valid to typical equation x′′+a(t)x3 = 0, where a(t)

is a 2π-periodic continuous function, a(t) ≥ 0 and
∫ 2π

0
a(t)ds > 0.

The rest of the paper is organized as follows. Section 2 is devoted to study
rapidly spiral property of the solutions by using phase-plane analysis for the solu-
tion. In section 3, existence and multiplicity of periodic solutions are obtained via
a generalized version of the Poincaré-Birkhoff twist theorem.

2. Rapidly spiral property of the solutions with
large amplitude

In what follows, we perform a phase-plane analysis for the first order Hamilton
system (1.2). Notice that for p > 2(q < 2) the term |y|q−2y is only Hölder con-
tinuous, so a theorem of existence, uniqueness and continuous dependence on the
initial data for the initial value problem is required. Using analogous arguments to
Lemma 2.2 [26], we can prove the above conclusion.

From the uniqueness of the initial value problem associated to system (1.2) and
condition (f0) , we know that the solution starting form (x0, y0) 6= (0, 0) does not
attain the origin. So, we can use polar coordinates to express system (1.2) as the
form of 

r′ = R(t, r, θ) =
x|y|q−2y − yf(t, x)

r
,

θ′ = Θ(t, r, θ) = −xf(t, x) + |y|p

r2
.

(2.1)

We can describe the twist properties of solutions by polar coordinates system
(2.1) in the phase-plane.

For the superlinear equations, the large amplitude solutions have the rapid oscil-
latory property. In other words, the solutions passing through points in the phase
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plane which are farther from the origin, oscillate more in a fixed time interval. We
consider the Poincaré map

Ψ : (x(t0), y(t0)) 7→ (x(t0 + 2π), y(t0 + 2π)),

where (x(t), y(t)) is a solution of (1.2). From the rapidly oscillating property,
Poincaré map Ψ and its m−th iterates associated to system (1.2) have strong twist
property. We show that if the amplitude of the solution is large enough, then its ro-
tation angle of the corresponding trajectory is quite large. Moreover, such rotation
has some monotonicity of the time.

To simplify the notation, we denote (x(t; t0, x0, y0), y(t; t0, x0, y0)) by (x(t), y(t))
and its polar form (r(t; t0, r0, θ0), θ(t; t0, r0, θ0)) by (r(t), θ(t)). Let A[ρ, ρ′] = {(r, θ) :
ρ ≤ r ≤ ρ′}, A(ρ, ρ′) = {(r, θ) : ρ < r < ρ′}, A(Γ,Γ′) and A[Γ,Γ′] expresses an
open annulus and a closed annulus bounded by two star-shaped closed curves Γ and
Γ′, respectively.

Hypothesis(fp
p ) implies sign condition

(fs) sgn(x)f(t, x) ≥ 0, provided |x| large enough, ∀t ∈ R.
Then, taking into account the expression of θ′(t) and condition (fs), we have

θ′(t) ≤ 0 when r(t) sufficiently large. In other words, large solutions will rotate
clockwise. Moreover, θ′ = 0 ⇐⇒ r′(t) = 0.

The following lemma considers the time and scope of the solution passing through
the vertical strip Ea = {(x, y) ∈ R2 : |x| ≤ a} for any parameter a > 0, provided
y0 large enough.

Lemma 2.1. For any given a > 0, δ > 0, there is λ = λ(a, δ) > 0, such that if the
solution z(t) = (x(t), y(t)) with initial value x0 = 0, y0 ≥ λ satisfies x(t1) = a and
0 ≤ x(t) ≤ a, ∀t ∈ [t0, t1], then t1 − t0 < δ. In this manner, the time ∆t in which
the solution z(t;x0, y0) with x0 = 0 or |x0| = a passes through Ea satisfies ∆t < δ
if |y0| ≥ λ.

Proof. We choose

λ = max{4πM0,

(
2q−1a

δ

) 1
q−1

, 2
( a

2π

) 1
q−1 },

where M0 = maxt∈[0,2π],x∈[−a,a]{|f(t, x)|}.
Assume y0 ≥ λ. Then for t ∈ (t0, t1], it follows from |y′| = |−f(t, x)| ≤ M0 that

|y(t)− y0| ≤ M0(t− t0) ≤ 2πM0 ≤ λ

2M0
M0 =

1

2
λ.

Thus,
λ

2
≤ y0

2
≤ y(t) ≤ 3y0

2
, for t ∈ [t0, t1].

Since x′ = |y|q−2y, an integration from t0 to t yields

a =

∫ t1

t0

x′(t)dt ≥
(
λ

2

)q−1

(t1 − t0).

Therefore,

t1 − t0 ≤ 2q−1a

λq−1
≤ δ < 2π.

The lemma is proved.
Next, we will discuss the rapid spiral property of those large solutions.
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Lemma 2.2 (spiral property). For ∀k ∈ N, there exist rk, r′k, r′′k , with r′k < rk <
r′′k , such that the solution (x(t), y(t)) starting from r0 = |(x0, y0)| = rk, we have :
either (x(t), y(t)) ∈ A(r′k, r

′′
k) for t ∈ [t0, t0 + 2π] and its polar angle satisfies

θ(t0 + 2π)− θ0 < −2kπ;

or there exists t′0 ∈ [t0, t0 + 2π), such that (x(t), y(t)) ⊂ A(r′k, r
′′
k) for t ∈ [t0, t

′
0),

intersects the boundary of A(r′k, r
′′
k) at the time of t′0, and

θ(t′0)− θ0 < −(2k + 1)π.

Moreover, rk → +∞ ⇐⇒ r′k, r
′′
k → +∞.

Proof. Let us define

D1 = {(x, y) ∈ R2 : 0 ≤ x < a, y > 0}, D2 = {(x, y) ∈ R2 : a ≤ x, y > 0},
D3 = {(x, y) ∈ R2 : x > a, y ≤ 0}, D4 = {(x, y) ∈ R2 : 0 < x ≤ a, y < 0},
D5 = {(x, y) ∈ R2 : −a < x < 0, y < 0}, D6 = {(x, y) ∈ R2 : x ≤ −a, y < 0},
D7 = {(x, y) ∈ R2 : x ≤ −a, y ≥ 0}, D8 = {(x, y) ∈ R2 : −a < x ≤ 0, y > 0}.

We consider the solution z(t) = (x(t), y(t)) starting from (x0, y0). Without loss
of generality, assume (x0, y0) = (0, y0), its polar form is (r0, θ0 = π/2). For r0 is
sufficiently large, we will prove that there exist r′0, r′′0 , with r′0 < r0 < r′′0 and

r0 → +∞ ⇐⇒ r′0, r
′′
0 → +∞,

such that, either (x(t), y(t)) ∈ A(r′0, r
′′
0 ), t ∈ [t0, t0 + 2π], or there exists t′0 ∈

[t0, t0+2π), such that (x(t), y(t)) ⊂ A(r′0, r
′′
0 ) for t ∈ [t0, t

′
0), intersects the boundary

of A(r′0, r
′′
0 ) at the time of t′0, and satisfies

θ(t′0)− θ0 < −2π.

Moreover, we suppose that θ′(t) ≤ 0 for r(t) = |z(t)| ≥ r⋆. In this case, the solution
(x(t), y(t)) will rotates as follows

D1 → D2 → D3 → D4 → D5 → D6 → D7 → D8.

Let [ti−1, ti] ⊂ [t0, t0+2π), such that (x(t), y(t)) ∈ Di, for ti−1 ≤ t ≤ ti, i = 1, · · · , 8.
We divide our proof into four steps.
Step 1 Assume (x(t), y(t)) ∈ D1. From Lemma 2.1 we have y0/2 ≤ y(t) ≤

3y0/2. Then

η1(r0) =
r0
2

≤ r(t) ≤
√
9r20/4 + a2 = ζ1(r0), for t ∈ [t0, t1].

Moreover, x′(t1) > 0 which implies that (x(t), y(t)) ∈ D2 for t > t1.
Step 2 Assume (x(t), y(t)) ∈ D2. Define g+(x) = maxt∈[0,2π]{|f(t, x)|, 1}.

Then
G+(x) =

∫ x

a

g+(s)ds → +∞ ⇐⇒ x → +∞.

Let H+(t) =
|y(t)|q

q +G+(x(t)). We have

H ′
+(t) = |y|q−2y(g+(x)− f(t, x)) ≥ 0, for (x(t), y(t)) ∈ D2,
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which follows that

H+(t) ≥ H+(t1) =
|y(t1)|q

q
+G+(a), for t ∈ [t1, t2].

Denote

η2(r0) = min{
√
x2 + y2 :

|y|q

q
+G+(x) =

|y(t1)|q

q
+G+(a)}.

We have
η2(r0) ≤ r(t), for t ∈ [t1, t2].

On the other hand, set H−(t) =
yq(t)
q + xp(t)

p , then for t ∈ [t1, t2],

H ′
−(t) = yq−1(t)(−f(t, x(t))) + xp−1(t)yq−1(t) ≤ xp−1(t)yq−1(t) ≤ H−(t)

which follows that

H−(t) ≤ e2πH−(t1), for t ∈ [t1, t2] ⊂ [t0, t0 + 2π].

Thus
r(t) ≤ ζ2(r0), for t ∈ [t1, t2],

where ζ2(r0) = max{
√

x2 + y2 : yq

q + xp

p = e2πH−(t1)}.

Step 3 Assume (x(t), y(t)) ∈ D3. In this case we have

H ′
+(t) = |y|q−2y(g+(x)− f(t, x)) ≤ 0, for (x(t), y(t)) ∈ D3, (2.2)

which follows that

H+(t) ≤ H+(t2) = G+(x(t2)), for t ∈ [t2, t3].

On the other hand, for t ∈ [t2, t3], we get

H ′
−(t) = |y(t)|q−2y(t)(−f(t, x(t))) + xp−1(t)|y(t)|q−2y(t)

≥ xp−1(t)|y(t)|q−2y(t) ≥ −H−(t)

which follows that

H−(t) ≥ e−2πH−(t2), for t ∈ [t2, t3] ⊂ [t0, t0 + 2π].

Denote

ζ3(r0) = max{
√

x2 + y2 :
|y|q

q
+G+(x) = G+(x(t2))}

and
η3(r0) = min{

√
x2 + y2 :

yq

q
+

xp

p
= e−2πH−(t2)}.

We obtain
η3(r0) ≤ r(t) ≤ ζ3(r0), for t ∈ [t2, t3].
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Step 4 The same argument, with minor changes, can be repeated in the re-
maining cases (x(t), y(t)) ∈ Di, i = 4, 5, 6, 7, 8. Therefore, there exists ηi(r0), ζi(r0),
such that

ηi(r0) ≤ r(t) ≤ ζi(r0), for t ∈ [ti−1, ti], i = 4, 5, 6, 7, 8.

Moreover,
ηi(r0), ζi(r0) → +∞ ⇐⇒ r0 → +∞, i = 1, · · · , 8.

Let

r′0 = min{ηi(r0), i = 1, · · · , 8} − 1, r′′0 = max{ζi(r0), i = 1, · · · , 8}+ 1,

we have: either (x(t), y(t)) ∈ A(r′0, r
′′
0 ), for t ∈ [t0, t0 + 2π], or there exists t′0 ∈

(t8, t0+2π), such that (x(t), y(t)) ⊂ A(r′0, r
′′
0 ) for t ∈ [t0, t

′
0), intersects the boundary

of A(r′0, r
′′
0 ) at the time of t′0, and satisfies

θ(t′0)− θ0 < −2π.

Repeating above arguments k times we can obtain the conclusion of Lemma 2.2.

The next lemma says that the length of a time interval in which a solution
(x(t), y(t)) of (1.2), for t ∈ I, completes one clockwise turn around the origin, tends
to zero as r(t) → +∞.

Lemma 2.3 (rapid rotation). For any δ > 0, there exists r = rδ > 0, such that,
for r(t) ≥ rδ, t ∈ [t1, t2] ⊂ I, and θ(t2)− θ(t1) ≥ −2π, we have t2 − t1 < cδ, where
c is a positive constant independent of δ.

Proof. Let δ > 0 be an arbitrary but fixed constant. According to the hypothesis
(fp

p ), there exists a = a(δ) > 0, such that

f(t, x)

|x|p−2x
> δ−p, ∀t ∈ I, |x| > a. (2.3)

Set rδ =
√
λ2 + a2, where λ = λ(a, δ) is defined in Lemma 2.1. For r(t) ≥ rδ, we

have the following two cases:
(i) |x(t)| ≤ a, |y(t)| ≥ λ for t ∈ [t′1, t

′
2]. Using Lemma 2.1 we obtain

|t′2 − t′1| ≤ δ. (2.4)

(ii) |x| ≥ a for t ∈ [t′1, t
′
2] and θ(t′2) − θ(t′1) ≥ −π. It is convenient to introduce

another angle variable θ̂ by

cos θ̂ =
M

1
2 |x|

p
2−1x

(M |x|p + |y|q) 1
2

, sin θ̂ =
|y|

q
2−1y

(M |x|p + |y|q) 1
2

, (2.5)

where M = δ−p. (2.5) admits that cos θ̂ and cos θ, respectively, sin θ̂ and sin θ, have
the same sign. Hence the two angles θ̂ and θ always lie in the same quarter. Using
(2.1) and (2.3) we have

dθ̂

dt
= M

1
2
|x|

p
2−1x d

dt (|y|
q
2−1y)− |y|

q
2−1y d

dt (|x|
p
2−1x)

M |x|p + |y|q
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= −1

2
M

1
2
q|y|

q
2−1|x|

p
2−1xf(t, x) + p|y|

q
2+q−1|x|

p
2−1

M |x|p + |y|q

= −1

2
M

1
2
|y|

q
2−1|x|

p
2−1(qxf(t, x) + p|y|q)
M |x|p + |y|q

≤ −1

2
M

1
2
|y|

q
2−1|x|

p
2−1(qM |x|p + p|y|q)
M |x|p + |y|q

≤ −c1M
1
2 |y|

q
2−1|x|

p
2−1 = −c1M

1
p | tan θ̂|−

p−2
p ,

where c1 is a positive constant independent of M . Moreover, |t′2 − t′1| is less than
the time for θ̂ passing through half phase-plane which can be estimated by

T (δ) ≤ 1

c1
M− 1

p

∫ π

0

| tan θ̂|
p−2
p dθ̂

.
= cpM

− 1
p = cpδ, (2.6)

where cp = 1
c1

∫ π

0
| tan θ̂|

p−2
p dθ̂ is finite because of |p−2

p | < 1.
Combining (2.4) and (2.6) we complete the proof of the lemma.

3. Proof of theorem 1.1
Proof. we define

H1(t, x, y) = L(t, y) +W (x2 + y2)F (t, x) + (1−W (x2 + y2))
k2x2

2
,

where W (x2 + y2) = W (r2) ∈ C1 is a truncating function satisfying that

W (r2) =


1, r ≤ r′′k ,

smooth connection, r′′k < r < r′′k + 1,

0, r ≥ r′′k + 1,

and L(t, y) = 1
q |y|

q, F (t, x) =
∫ x

0
f(t, s)ds. Hence, the modified system
x′ =

∂H1

∂y
(t, x, y),

y′ = −∂H1

∂x
(t, x, y)

(3.1)

is same as the system (1.2) for r ≤ r′′k . By applying Gronwall inequality, we can
prove that solutions of system (3.1) exist for t ∈ R. The Poincaré map Ψ1 associated
to system (3.1) is well defined. From the assumptions of theorem 1.1 and the fact
that the uniqueness of solution implies continuous dependence on initial values [16],
we know that if Poincaré map Ψ1 associated to the system (3.1) exists, then it will
be an area-preserving homeomorphism.

Furthermore,
y
∂H1

∂y
= y

∂L

∂y
> 0, for x = 0, y 6= 0. (3.2)
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We will construct an annulus A[Γ,Γ+], such that Ψ1 satisfies the assumptions of
Poincaré-Birkhoff twist theorem on A[Γ,Γ+] (see the generalized version in [8,23,24]
and [15]).

According to f(t, 0) ≡ 0, we have (x, y) = (0, 0) is a solution of (3.1). The
continuous dependence on initial data theorem implies that there exists an open
neighborhood of (0, 0), denoted by Uε with ε sufficiently small, such that the solu-
tions starting from the boundary Cε = {(x, y)|x2+ y2 = ε2} exist on whole 2π time
interval and lie in the neighborhood of (0, 0) with radius of 1. From the uniqueness
theorem, any solution starting from Cε cannot meet (0, 0). Hence, let Γ = Cε. We
take Γ as the inner boundary of A.

Consider the polar form (r(t; t0, r0, θ0), θ(t; t0, r0, θ0)) of the solution staring from
Γ. Since θ(2π + t0; t0, r0, θ0) − θ0 is a continuous function on (r0, θ0) ∈ Γ̃ and Γ̃

is compact, θ(2π + t0; t0, r0, θ0) − θ0 is bounded below on Γ̃, where Γ̃ is the polar
lifting of Γ. Namely

inf
(r0,θ0)∈Γ̃

(θ(2π + t0; t0, r0, θ0)− θ0) > −2k0π, (3.3)

for some k0 ∈ N+.
To construct Γ+, outer boundary of A, we need more detailed analysis. From

the continuity of solution for initial value and compactness of Γ̃, we have

sup
t∈[t0,t0+2π],(r0,θ0)∈Γ̃

r(t; t0, r0, θ0) = rΓ < +∞.

For any k ≥ k0, we take rk large enough, such that r′k ≥ rΓ.
Now we choose Γ+ = {(x, y)|x2+y2 = r2k}. Consider the solution (r(t), θ(t)), the

polar lifting of (x(t), y(t)) starting from Γ+. From Lemma 2.2 there exist rk, r′k, r′′k
with r′k < rk < r′′k , for the solution (x(t), y(t)) starting from r0 = |(x0, y0)| = rk, it
probably satisfies (x(t), y(t)) ∈ A(r′k, r

′′
k) for t ∈ [t0, t0+2π]. In this case, we choose

δ <
mes(I)

k + 1
and r′k > rδ, where rδ is defined in Lemma 2.3. Without losing the

generality, let I = [a′, b′] ⊂ [t0, t0 + 2π]. Then for t ∈ [a′, b′], the polar angle θ(t)
gets at least −2kπ-increase, that is θ(b′)− θ(a′) < −2kπ. Notice also θ′(t) ≤ 0 for
t ∈ [t0, t0 + 2π], which implies that

θ(t0 +2π)− θ0 = (θ(t0 +2π)− θ(b′))+ (θ(b′)− θ(a′))+ (θ(a′)− θ0) < −2kπ. (3.4)

Otherwise, there exists t′0 ∈ [t0, t0+2π), such that solution (x(t), y(t)) intersects
the boundary of A(r′k, r

′′
k) at the time of t′0, then

θ(t′0)− θ0 < −(2k + 1)π. (3.5)

On the other hand, the vector field restriction (3.2) shows that the solutions of the
modified system(3.1) can never perform counterclockwise rotations at y-axis, that
is for any t > t′0, we have θ(t)− θ(t′0) < π. Then, recalling (3.5), we obtain

θ(t0 + 2π)− θ0 = (θ(t0 + 2π)− θ(t′0)) + (θ(t′0)− θ0),

< π − (2k + 1)π = −2kπ ≤ −2k0π.
(3.6)

Now the twist condition for inner and outer boundaries of A[Γ,Γ+] is fulfilled
by (3.3), (3.4) and (3.6). Therefore, we use the Poincaré-Birkhoff twist theorem to
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obtain the existence of at least two (geometrically distinct) fixed points (x
(k)
i , y

(k)
i )

of Ψ1, i = 1, 2. The solutions (x(t; t0, x
(k)
i , y

(k)
i ), y(t; t0, x

(k)
i , y

(k)
i )) of (2.5) are 2π-

periodic, i = 1, 2. Moreover, their polar forms (r(t; t0, r
(k)
i , θ

(k)
i ), θ(t; t0, r

(k)
i , θ

(k)
i ))

satisfy
θ(t0 + 2π; t0, r

(k)
i , θ

(k)
i )− θ

(k)
i = −2kπ, i = 1, 2. (3.7)

We will show that these 2π−periodic solutions lie in the region r < r′′k . Assuming
the contrary, there exists t′′0 ∈ [t0, t0 + 2π] satisfying

r(t′′0) = r′′k

which together with lemma 2.2, we get

θ(t′′0)− θ0 < −(2k + 1)π.

Noting the vector field restriction (3.2), we have

θ(t0 + 2π)− θ0 = (θ(t0 + 2π)− θ(t′′0)) + (θ(t′′0)− θ0) < π − (2k + 1)π = −2kπ.

Thus, we get a contradiction with

θ(t0 + 2π)− θ0 = −2kπ.

Therefore, for any fixed k ∈ N+, k ≥ k0, we obtain the existence of at least two
(geometrically distinct) 2π-periodic solutions (x(t; t0, x

(k)
i , y

(k)
i ), y(t; t0, x

(k)
i , y

(k)
i )),

i = 1, 2, their polar angles satisfying (3.7). Since k can be taken over the positive
integers which is not less than k0 we gain the existence of infinite many periodic
solutions.

Note that θ(t; t0, r
(k)
i , θ

(k)
i ) satisfies (2.1). If r(t; t0, r(k)i , θ

(k)
i ) are defined on the

bounded closed set, then the term on the left hand side of (2.1) is bounded. It
follows that θ′(t; t0, r

(k)
i , θ

(k)
i ) is bounded, which contradicts to (2.1). Therefore, we

have
lim

k→+∞
sup

t∈[0,2π]

{r(t; t0, r(k)i , θ
(k)
i )} = +∞.

From Lemma 2.2 and Lemma 2.3, we can also obtain the rapidly spiral property
on [t0, t0 + 2mπ], that is, ∀k ∈ N, there exist rk, r′k, r′′k , with r′k < rk < r′′k , for the
solution (x(t), y(t)) starting from r0 = |(x0, y0)| = rk, we have:

either (x(t), y(t)) ∈ A(r′k, r
′′
k), t ∈ [t0, t0+2mπ], such that its polar angle satisfies

θ(t0 + 2mπ)− θ0 < −2kπ;

or there exists t′0 ∈ [t0, t0+2mπ), such that (x(t), y(t)) ⊂ A(r′k, r
′′
k) for t ∈ [t0, t

′
0),

intersects the boundary of A at the time of t′0, and

θ(t′0)− θ0 < −(2k + 1)π.

Moreover, rk → +∞ ⇐⇒ r′k, r
′′
k → +∞.

Then we can use a similar argument on the area-preserving map Ψm to obtain
fixed points of Ψm and obtain the infinitely many 2mπ-periodic solutions. Fur-
ther, using the similar argument with [6], we can obtain the infinitely many m-th
subharmonic solutions.

The proof of Theorem 1.1 is thus completed.
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