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PULLBACK EXPONENTIAL ATTRACTORS
FOR NON-AUTONOMOUS ABSTRACT
RETARDED EVOLUTION EQUATIONS∗

Jinying Wei1,† and Yongjun Li1

Abstract In this paper, we consider an abstract non-autonomous evolution
equation with multiple delays in a Hilbert space H:

u′(t) +Au(t) = F (t, u(t), u(t− r1), . . . , u(t− rn)),

where A : D(A) ⊂ H → H is a positive definite selfadjoint operator with
compact resolvent, and F : R × D(Aα)n+1 → H(α ∈ [0, 1/2]) is a locally
Lipschitz continuous mapping. We slightly generalize a theoretical existence
result for pullback exponential attractors. Based on our abstract theorem, we
prove some existence results of pullback exponential attractor for this delay
differential equations and derive estimates on the fractal dimension of the
attractors.
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1. Introduction
In this paper we consider the following non-autonomous abstract evolution equation
with multiple delays in a Hilbert space H:

u′(t) +Au(t) = F (t, u(t), u(t− r1), . . . , u(t− rn)) , (1.1)

where A : D(A) ⊂ H → H is a positive definite selfadjoint operator,r1, . . . , rn are
positive constants.

Our aim is to investigate the existence of pullback exponential attractor of ab-
stract evolution equation (1.1), which represents a class of parabolic equations aris-
ing in mathematical biology, (see, [11, 12, 17] and the references therein). For non-
retarded evolution equations, there have appeared many nice results on pullback
exponential attractor,(see, [3–7,13,14] ). In contrast, the situation in the case of re-
tarded equations seems to be more complicated. Recently, the existence of pullback
exponential attractors for evolution processes generated by non-autonomous delayed
ordinary differential equations has been obtained in [8]. They showed how existence
results for pullback exponential attractors can be applied to non-autonomous delay
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differential equations with time-varying delays. In 2021, Yang, Wang and Kloe-
den [20] presented some sufficient conditions for the existence of pullback exponen-
tial attractors for non-autonomous delayed dynamical systems in the phase space
C([−r, 0], X), where X is an infinite dimensional Banach space. The proofs in [8]
and [20] were based on the general existence theorems for pullback exponential at-
tractors in [3]. This method is grounded in the compact embedding of an auxiliary
space into the phase space. They have used the compactness of the embedding
C1 ↪→↪→ C and C1([−r, 0], XN ) ↪→↪→ C([−r, 0], X), respectively .

For applications with our delay problem, we slightly generalize the theoretical
existence result in [3,8]. First, We define an evolution process in a Banach space X.
Let W and V be two auxiliary normed spaces such that the embedding V ↪→↪→W
is compact and assume that the embedding V ↪→ X ↪→W is continuous. Motivated
by [3,8,20], we obtain the existence result of pullback exponential attractor in phase
space X. Obviously, if X = W , the result is Theorem 4.1 in [8]; if X = V , the
result is Corollary 2 in [3]. For non-retarded evolution equations, this modification
is unnecessary. But it provide more convenience for the situation in the case of
retarded equation. Since our process is generated by PDE with delays, the phase
space is W = C([−r, 0], D(Aα)). If α < β, the imbedding D(Aβ) ↪→↪→ D(Aα)
is compact. But C([−r, 0], D(Aβ)) ↪→ C([−r, 0], D(Aα)) is not compact. Only
V = C0, γ([−r, 0], D(Aβ)) that ensure the embedding V ↪→↪→ W is compact by
Ascoli-Arzela Theorem. If we can’t obtain the process {U(t, s), t ≥ s} is Lipschitz in
V , then we have to choose phase space is C([−r, 0], D(Aα)). Using our method, we
can choose X = C([−r, 0], D(Aβ)) as phase space and obtain pullback exponential
attractors. So we establish some new results in more regular spaces under weaker
assumptions.

Then, we apply our theoretical existence result to the abstract equation (1.1).
We present essential conditions on the nonlinearity F to guarantee the dissipation
of the equation, and construct absorbing sets, which the corresponding absorbing
times are bounded in the past. Then we prove the existence of pullback exponential
attractors for evolution processes generated by problem (4.1) and derive explicit
estimates for their fractal dimension.

The rest of the paper is organized as follows. In section 2, we provide some
preliminaries; In section 3, we slightly generalize previous existence results for pull-
back exponential attractors for application with delay equation; In section 4, we
consider the dissipation of the Eq. (1.1) and establish the existence of pullback
exponential attractor for the system; Section 5 is devoted to some examples that
show the applicability of our results.

2. Preliminaries
For convenience we use the following notation throughout this paper. We denote
by ‖ · ‖E the norm of a Banach space E, by ‖ · ‖ the operator norm . Let

BE(a, ρ) = {x ∈ E | ‖x− a‖E < ρ},

which is the ball of radius ρ > 0 and center a ∈ E in Banach space E .
We recall some basic facts on analytic semigroups of linear operator and frac-

tional powers space, which are needed to prove our main results.
Throughout this paper, we assume that H be a Hilbert space with inner product

(·, ·) and with norm ‖ · ‖, A : D(A) ⊂ H → H be a positive definite selfadjoint
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operator and with compact resolvent. If A has compact resolvent, by the spec-
tral resolution theorem of selfadjoint operator, the spectrum σ(A) consists of real
eigenvalues and it can be arrayed in sequences as

λ1 ≤ λ2 ≤ . . . ≤ λk → ∞ (k → ∞).

By the positive definite property of A, the first eigenvalue λ1 > 0. It is well known
in [9, 19] −A generates an analytic operator semigroup T (t)(t ≥ 0) in H, which
satisfies

‖T (t)‖ ≤ e−λ1t, ∀t ≥ 0.

We recall some concepts and conclusions on the fractional powers of A in [9,19].
The fractional power Aα of the operator A is defined to be Aα = (A−α)−1 and the
domain D(Aα) := Hα is a Hilbert space with inner product (·, ·)α = (Aα·, Aα·)
and associated norm | · |α. Especially, H0 = H and H1 = D(A).

For 0 ≤ α ≤ β, one has Hβ is continuous embedded into Hα and

‖v‖2α ≤ λ
2(α−β)
1 ‖v‖2β , for all v ∈ Hβ . (2.1)

See [19], Page.93. From Theorem 37.5 in [19], the following statements hold:
For any α ≥ 0, there exist constants Mα > 0, a > 0 such that

‖AαT (t)‖ ≤Mαt
−αe−at, for all t > 0. (2.2)

For 0 < α ≤ 1 , there exists a constant Kα > 0 such that

‖(T (t)− I)x‖ ≤ Kαt
α‖Aαx‖, for all t ≥ 0 and x ∈ Hα. (2.3)

3. General existence theorems for pullback expo-
nential attractors

We recall some basic definitions and facts in the theory of non-autonomous dynam-
ical systems for evolution process on a Banach space (X, ‖ · ‖X). Given any subsets
A,B of X, define the Hausdorff semi-distance distH(A,B) of A and B as

distH(A,B) = sup
x∈A

inf
y∈B

‖x− y‖X ,

Definition 3.1. Let t, s, τ ∈ R. The two-parameter family of operators U(t, s) :
X → X, t ≥ s, is called an evolution process in X if it satisfies the following
properties:

(1) U(t, s) ◦ U(s, τ) = U(t, τ), ∀t ≥ s ≥ τ ;
(2) U(t, t) = Id, ∀t ∈ R ;
(3) (t, s, x) 7→ U(t, s)x is continuous.

Evolution processes extend the definition of semigroups.There are different ap-
proaches to generalize the notion of global attractors of semigroups to non-autonom-
ous evolution processes (cf. [1, 2, 10, 12, 15, 16, 18]). In this paper we use the notion
of so-called pullback attractors.
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Definition 3.2. The family of nonempty subsets {A(t)|t ∈ R} of X is called a
pullback attractor for the process {U(t, s)|t ≥ s} if A(t) is compact for all t ∈ R,
the family {A(t)|t ∈ R} is strictly invariant, that is

U(t, s)A(s) = A(t) for all t ≥ s,

it pullback attracts all bounded subsets of X, that is for every bounded D ⊂ X and
t ∈ R,

lim
s→∞

distH(U(t, t− s)D,A(t)) = 0,

and the family is minimal within the families of closed subsets that pullback attract
all bounded subsets of X.

Applying the pullback approach and generalizing the concept of exponential
attractors for evolution processes, we obtain the following definition (cf. [6]).

Definition 3.3. Let {U(t, s)| t ≥ s} be an evolution process in X. The family of
non-empty compact subsets M = {M(t)|t ∈ R} is called a pullback exponential
attractor for the evolution process U if

(1) M is positively invariant, i.e.,

U(t, s)M(s) ⊂ M(t), ∀t ≥ s;

(2) the fractal dimension of the sections M(t), t ∈ R, is uniformly bounded,

sup
t∈R

{dimX
f (M(t))} <∞;

(3) M exponentially pullback attracts all bounded sets, i.e., there exists a con-
stant ω > 0 such that for every bounded subset D ⊂ X and every t ∈ R

lim
s→∞

eωsdistH(U(t, t− s)D, M(t)) = 0.

We recall that the fractal dimension of a pre-compact subset A ⊂ X is defined
as

dimX
f (A) = lim sup

ϵ→0+

ln (NX
ϵ (A))

ln ( 1ϵ )
,

where NX
ϵ (A) denotes the minimal number of ε-balls in X with centers in A needed

to cover A.

Definition 3.4. A family of nonautonomous sets B = {B(t) ⊂ X|t ∈ R} is said to
be bounded if B(t) is bounded in X for all t ∈ R. We say that {B(t)} grows at most
sub-exponentially in the past if

lim
t→−∞

diam(B(t))eγt = 0, ∀γ > 0,

where diam(A) denotes the diameter of a subset A ⊂ X.

We slightly generalize the theoretical existence results in [3, 8], where the con-
struction of the exponential attractor was based on the compact embedding of the
phase space and an auxiliary normed space. To include the two cases in [3, 8], we
require two auxiliary normed spaces satisfying the following property:
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(A0) Let W and V be two auxiliary normed spaces such that the embedding
V ↪→↪→ W is dense and compact and assume that the embedding V ↪→
X ↪→W is continuous.

Then we don’t have to prove that the evolution process satisfies the Lipschitz prop-
erty in V , which is difficult to verify in some delay problems. The Lipschitz prop-
erty is only required for the weaker space X, (but which is a more regular space in
comparison with W ). This generalization is essential when we apply the following
abstract result to prove the existence of pullback exponential attractors for some
non-autonomous retarded differential equations.

Theorem 3.1. Let {U(t, s)| t ≥ s} be an evolution process in X and (A0) be
satisfied. We assume that for some t0 ∈ R the following properties are satisfied:

(A1) For the process {U(t, s)| t ≥ s} there exists a family of bounded pullback
absorbing sets B = {B(t)}t∈R , i.e., for every bounded set D ⊂ X and t ≤ t0,
there exists TD ≥ 0 such that

U(t, t− τ)D ⊂ B(t), ∀τ ≥ TD.

Moreover, there exists t̃ > 0 such that

U(t, t− t̃)B(t− t̃) ⊂ B(t) ∀ t ≥ t0,

and the diameter of the family of absorbing sets B = {B(t)}t∈R grows at most
sub-exponentially in the past.

(A2) The evolution process {U(t, s)| t ≥ s} satisfies the smoothing property in B,
i.e., there exist positive constants t̃ and κ such that

‖U(t, t− t̃)u− U(t, t− t̃)v‖V ≤ κ‖u− v‖W ∀u, v ∈ B(t− t̃), t ≤ t0.

(A3) The evolution process {U(t, s)| t ≥ s} is Lipschitz continuous in B, i.e., for
all t ∈ R, t ≤ s ≤ t+ t̃, there exists Lt, s ≥ 0 such that

‖U(s, t)u− U(s, t)v‖X ≤ Lt, s‖u− v‖X ∀u, v ∈ B(t).

Then, for every ν ∈ (0, 1/2) there exists a pullback exponential attractor Mν =
{Mν(t)} in X, and the fractal dimension of its section is bounded by

dimX
f (Mν(t)) ≤ log 1

2ν
(NW

ν
κ
(BV (0, 1))), ∀t ∈ R.

Proof. See Theorem 3.2 and Theorem 3.3 in [3]. Our conditions (A0), (A1) and
(A2) immediately imply hypothesis (H0),(H1),(H2),(H3), (A1) and (A2) in [3] for
all t ≤ t0. In this case, the construction of the pullback exponential attractor is valid
for all t ≤ t0. Firstly, let {U(nt̃,mt̃)|n ≥ m,n,m ∈ Z} be the discrete evolution
process in X. We can obtain a pullback attractor {Mν(kt̃)|t ∈ Z}, and the fractal
dimension of its sections can be estimated by

dimX
f (Mν(kt̃)) ≤ log 1

2ν
(NW

ν
κ
(BV (0, 1))), for all k ∈ Z.

Next, using the Lipschitz continuity of the prooerty (A3), we can construct
pullback exponential attractor {Mν(t)|t ≤ t0} for time continuous processes in X.
The proof of above result is similar to that of [3, Theorem 3.2 and Theorem 3.3],
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and we omit the details here. Finally, thanks to Lipschitz continuity of the prooerty
(A3), using similar arguments (see Theorem 4.1 in [8]), the section Mν(t) for t > t0
can be defined as

Mν(t) = U(t, t0)Mν(t0).

This ends the proof.

Remark 3.1. Theorem 3.1 includes the two cases of [3, 8]. Obviously, if X = V ,
the result is Corollary 2 in [3]; if X =W , the result is Theorem 4.1. in [8].

An immediate consequence is the existence and finite dimensionality of the pull-
back attractor.

Corollary 3.1. Let {U(t, s)| t ≥ s} be an evolution process in a Banach space X.
If the hypotheses (A0),(A1),(A2) and (A3) are satisfied, then the evolution process
{U(t, s)| t ≥ s} possesses a global pullback attractor A = {A(t)|t ∈ R}, and the
fractal dimension of its sections is bounded by

dimX
f (A(t)) ≤ inf

ν∈(0, 1
2 )
{log 1

2ν
(NW

ν
κ
(BV (0, 1)))}, ∀t ∈ R.

4. Dissipative and pullback exponential attractor
In this section, we present essential conditions on the nonlinearity F to guarantee the
dissipation of the equation. Then we consider the existence of pullback exponential
attractor. For convenience, we list the following assumption:

(H1) ‖F (t, v0, v1, . . . , vn)‖ ≤
∑n

i=0 βi|vi|α +K, t ∈ R, (v0, . . . , vn) ∈ Hn+1
α ;

(H2)
∑n

i=0 βi < λ1−α
1 ;

(H3) F is a locally Lipschitz continuous mapping from R × Hn+1
α → H for some

0 ≤ α < 1, i.e., ∀M > 0, ∃LM,i ≥ 0 such that for all t ∈ R and vi, wi ∈
BHα

(0, M),

‖F (t, v0, . . . , vn)− F (t, w0, . . . , wn)‖ ≤
n∑

i=0

LM,i|vi − wi|α.

4.1. well-posedness of the initial value problem
We first discuss the well-posedness of the initial value problem of the nonlinear
delay evolution (1.1). Let r = max{r1, . . . , rn} and CHα

= C([−r, 0], Hα) denote
the Banach space of continuous functions from [−r, 0] into Hα equipped with the
maximum norm

‖u‖CHα
= max

t∈[−r, 0]
|u(t)|α.

For u ∈ C([−r, T ), Hα) and t ∈ [0, T ), we define ut ∈ CHα by

ut(s) = u(t+ s), s ∈ [−r, 0].

For convenience in statement, the function ut will be referred to as the lifting of u
in CHα

.
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Consider the initial value problem of the evolution equation with delays
d

dt
u(t) +Au(t) = F (t, u(t), u(t− r1), . . . , u(t− rn)), t ∈ R,

uτ = ϕ,
(4.1)

where ϕ ∈ CHα .

Theorem 4.1. Suppose that F : R×Hn+1
α → H be continuous and satisfy condition

(H3). Then for any ϕ ∈ CHα
and τ ∈ R, the problem (4.1) has a unique mild

solution u(t) = u(t; τ, ϕ) on a maximal interval [−r, Tφ), and that is

u(t) ∈ C([−r + τ, Tφ); Hα) ∩ L2
loc(τ, Tφ; H1) ∩ C0, γ(τ, Tφ; Hβ),

for all 0 ≤ β < 1, 0 < γ < 1, which can be expressed by

u(t) = T (t− τ)uτ +

∫ t

τ

T (t− s)F (s, u(s), u(s− r1), . . . , u(s− rn))ds. (4.2)

Proof. This result can be obtained by combining the proofs of Theorem 3.1 in [17],
Lemma 47.1 in [19] and Theorem 42.12 in [19]. Here we omit the proof details and
the interested readers can be referred to Theorem 5 in [11].

4.2. Decay estimate
Then, we can obtain the following estimate about the problem (4.1) under dissipa-
tive conditions (H1) and (H2).

Lemma 4.1. Assume that 0 ≤ α ≤ 1/2 . Let F : R × Hn+1
α → H be continuous

and satisfy (H1)-(H3). Let u(t) ∈ C([−r + τ, +∞); Hα) ∩ L2
loc(τ, +∞; H1) be a

solution of (4.1), then for all t ≥ τ , the following estimate holds:

|u(t)|2α ≤ C1e
−δ(t−τ)‖uτ‖2CHα

+ C2, (4.3)

where δ, C1 and C2 are positive constants.

Proof. By assumption (H2), we can take δ > 0 small enough such that

λ1−α
1 − β0 −

n∑
i=1

e
δri
2 βi −

λα1 + λ−α
1

2
δ > 0. (4.4)

For convenience, denote li = λ−α
1 e

δri
2 (i = 1, . . . , n). Then we take the inner prod-

uct in H of the equation (1.1) with A2αu, we have

1

2

d

dt
|u(t)|2α + |u(t)|21

2+α = (F (t, u(t), u(t− r1), . . . , u(t− rn)), A
2αu(t)).

By Hölder’s inequality, we obtain

1

2

d

dt
|u(t)|2α + |u(t)|21

2+α ≤ ‖F (t, u(t), u(t− r1), . . . , u(t− rn))‖ · ‖A2αu(t)‖.
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Using Poincáre’s inequality, (H1) and Young inequality, we have

d

dt
|u(t)|2α + (2− 2λα−1

1 β0 −
n∑

i=1

βiliλ
2α−1
1 − δλ2α−1

1 )|u(t)|21
2+α

≤
n∑

i=1

βi
li
|u(t− ri)|2α +

K2

δ
,

d

dt
|u(t)|2α + λ1(2− 2λα−1

1 β0 −
n∑

i=1

βiliλ
2α−1
1 − δλ2α−1

1 )|u(t)|2α

≤
n∑

i=1

βi
li
|u(t− ri)|2α +

K2

δ
,

that is

d

dt
|u(t)|2α + δ|u(t)|2α ≤− (2λ1 − 2λα1 β0 −

n∑
i=1

βiliλ
2α
1 − δλ2α1 − δ)|u(t)|2α

+

n∑
i=1

βi
li
|u(t− ri)|2α +

K2

δ
.

Then

d

dt
(eδt|u(t)|2α) ≤− (2λ1 − 2λα1 β0 −

n∑
i=1

βiliλ
2α
1 − δλ2α1 − δ)|u(t)|2αeδt

+

n∑
i=1

βi
li
|u(t− ri)|2αeδt +

K2

δ
eδt.

Integrating from τ to t, we obtain

|u(t)|2α ≤− 2(λ1 − λα1 β0 −
n∑

i=1

βili
2
λ2α1 − 1 + λ2α1

2
δ)

∫ t

τ

|u(s)|2αe−δ(t−s)ds

+ e−δ(t−τ)|uτ (0)|2α +

n∑
i=1

βi
li

∫ t

τ

|u(s− ri)|2αe−δ(t−s)ds+
K2

δ2
.

As∫ t

τ

|u(s− ri)|2αe−δ(t−s)ds =

∫ t−ri

τ−ri

|u(s)|2αe−δ(t−s−ri)ds

≤ eδri
∫ t

τ

|u(s)|2αe−δ(t−s)ds+ eδri
∫ τ

τ−ri

|u(s)|2αe−δ(t−s)ds,

we have

|u(t)|2α ≤− 2λα1 (λ
1−α
1 − β0 −

n∑
i=1

e
δri
2 βi −

λα1 + λ−α
1

2
δ)

∫ t

τ

|u(s)|2αe−δ(t−s)ds

+ e−δ(t−τ)|uτ (0)|2α +

n∑
i=1

βi
li
eδri

∫ τ

τ−ri

|u(s)|2αe−δ(t−s)ds+
K2

δ2
.
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which, jointly with (4.4), yields that

|u(t)|2α ≤ e−δ(t−τ)(1 +

n∑
i=1

1

δ
βiλ

α
1 e

δri
2 )‖uτ‖2CHα

+
K2

δ2
.

Thus, inequality (4.3) is proved.

4.3. Existence of pullback exponential attractor
By Definition 3.1 and Theorem 4.1, we can define an evolution process U(t, s) :
CHα

→ CHα
, t ≥ s,i.e.,

U(t, s)ϕ = ut, ∀ (s, ϕ) ∈ R× CHα
,

where ut(θ) = u(t+ θ; s, ϕ), θ ∈ [−r, 0], and u(· ; s, ϕ) is the solution of (4.1).

Lemma 4.2. Let 0 ≤ α ≤ 1/2. Assume that (H1)-(H3) hold. Then there exists a
bounded uniformly pullback absorbing set B1 ⊂ CHα

.

Proof. From Lemma 4.1, we can take

ρ2α = 1 + C2. (4.5)

Given any bounded D ∈ CHα
, by (4.3), there exists THα

(D) > 0 such that for any
s ∈ R, ϕ ∈ D,

|u(s; s− τ, ϕ)|2α ≤ ρ2α, for all τ > r + THα(D).

Then for any t ∈ R and τ > THα(D) + r, we have that for all ϕ ∈ D,

‖U(t, t− τ)ϕ‖2CHα
= max

θ∈[−r, 0]
|ut(θ)|2α ≤ max

θ∈[−r, 0]
|u(t+ θ; t− τ, ϕ)|2α ≤ ρ2α. (4.6)

This means that the closed ball B1 = BCHα
(0, ρα) forms an uniformly absorbing

set in CHα
.

Theorem 4.2. Let 0 ≤ α ≤ 1/2. Assume that α < β < 1 . If F satisfies
conditions (H1)-(H3). Then, for every ν ∈ (0, 1

2 ) and η ∈ [α, β], there exists a
pullback exponential attractor M = {Mν(t)} for process {U(t, s)|t ≥ s} in X and
the fractal dimension of its section is bounded by

dimX
f (Mν(t)) ≤ log 1

2ν
(NW

ν
κ
(BV (0, 1))), ∀t ∈ R,

where W = CHα , X = CHη and V = C0, γ
Hβ

.

Proof. Assume that W = CHα
, X = CHη

and V = C0, γ([−r, 0], Hβ) := C0, γ
Hβ

.

For any u ∈ C0, γ
Hβ

, define its norm by

‖u‖C0, γ
Hβ

= ‖u‖CHβ
+ [u]C0, γ

Hβ

,

where [u]C0, γ
Hβ

is γth− Hölder seminorm of u. Since α < β and α ≤ η ≤ β, (A0) is
satisfied due to the compact embedding

V ↪→↪→W,
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and the continuously embedding

V ↪→ X ↪→W.

(i) Constructing pullback absorbing set (A1): let t0 ∈ R be arbitrary
and B1 forms an uniformly absorbing set in W in Lemma 4.2. A family of bounded
pullback absorbing sets is given by

B(t) :=


∪

τ≥THα (B1)+3r U(t, t− τ)(B1), for t ≤ t0,

U(t, t0)B(t0), for t ≥ t0.
(4.7)

Moreover, the family B = {B(t)|t ∈ R} is positively semi-invariant for the evolution
process {U(t, s)|t ≥ s}. For any ut ∈ B(t), there exist τ ≥ THα

(B1)+3r and ϕ ∈ B1

such that
ut = U(t, t− τ)ϕ.

We denote by u(s) = u(s; t− τ, ϕ) the solution of (4.1) with initial value ϕ, then

u(s) = T (s− (t− τ))ϕ+

∫ s

t−τ

T (s− σ)F (σ, u(σ), u(σ − r1), . . . , u(σ − rn))dσ.

If s− (t− τ) ≥ THα
(B1), by Lemma 4.2 we have

|u(s)|α ≤ ρα,

then
B(t) ⊂ B1. (4.8)

Jointly with condition (H1) and (H2), for any s ∈ [t− 2r, t] we have

‖F (s, u(s), u(s− r1), . . . , u(s− rn))‖ ≤ β0|u(s)|α +

n∑
i=1

βi|u(s− ri)|α +K

≤

(
n∑

i=0

βi

)
ρα +K = λ1−α

1 ρα +K.

Let ut−2r(0) = u(t− 2r) be initial value, we have

u(s) = T (s−(t−2r))ut−2r(0)+

∫ s

t−2r

T (s−σ)F (σ, u(σ), u(σ−r1), . . . , u(σ−rn))dσ.

Using (2.2) and (2.3), we can obtain, for any s ∈ [t− r, t],

|u(s)|β
≤‖Aβ−αT (s− t+ 2r)‖ |ut−2r(0)|α

+

∫ s

t−2r

‖AβT (s− σ)‖‖F (σ, u(σ, u(σ), u(σ − r1), . . . , u(σ − rn))‖dσ

≤Mβ−α(s− t+ 2r)−(β−α)e−a(s−t+2r)ρα + (λ1−α
1 ρα +K)

∫ s

t−2r

Mβ(s− σ)−βdσ

≤Mβ−αρα sup
h∈[r, 2r]

{h−(β−α)e−ah}+ (λ1−α
1 ρα +K)Mβ(1− β)−1(2r)1−β := ρβ .
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Hence, ‖ut‖CHβ
≤ ρβ , for all t ∈ R.

There remains to show that ut is Hölder continuous. Let 0 < γ ≤ min{β −
α, 1− β}. Assume that s, s+ δ ∈ [t− r, t], by (4.2), we obtain

|u(s+ δ)− u(s)|β
≤|(T (δ)− I)T (s− t+ 2r)ut−2r(0)|β

+

∫ s

t−2r

|(T (δ)− I)T (s− σ)F (σ, u(σ, u(σ), u(σ − r1), . . . , u(σ − rn))|βdσ

+

∫ s+δ

s

|T (s+ δ − σ)F (σ, u(σ, u(σ), u(σ − r1), . . . , u(σ − rn))|βds

:=J1 + J2 + J3.

Next we estimate the three terms on the right hand of inequality. we have

J1 ≤ ‖(T (δ)− I)T (s− t+ 2r)Aβut−2r‖
≤ Kγδ

γ‖Aβ−α+γT (s− t+ 2r)‖|ut−2r(0)|α
≤ Kγδ

γMβ−α+γ(s− t+ 2r)−(β−α+γ)e−a(s−t+2r)ρα ≤ CJ1
δγ ,

J2 ≤
∫ s

t−2r

Kγδ
γ‖Aγ+βT (s− σ)‖dσ(

(
n∑

i=0

βi

)
ρα +K)

≤ Kγδ
γMβ+γ

∫ s

t−2r

(s− σ)−(γ+β)e−a(s−σ)dσ(

(
n∑

i=0

βi

)
ρα +K)

≤ CJ2δ
γ ,

and

J3 ≤
∫ s+δ

s

‖AβT (s+ δ − σ)‖dσ(

(
n∑

i=0

βi

)
ρα +K)

≤Mβ(1− β)−1(

(
n∑

i=0

βi

)
ρα +K)δ1−β ≤ CJ3

δγ .

Comprehensively,

|u(t+ δ)− u(t)|β ≤ (CJ1
+ CJ2

+ CJ3
)δγ , (4.9)

which implies ut is γth−Hölder continuous and

[ut]C0, γ
Hβ

≤ (CJ1
+ CJ2

+ CJ3
) := ργ .

Then
‖ut‖V ≤ ρβ + ργ .

For any t ∈ R, we obtain

B(t) ⊂ BV (0, ρβ + ργ) ⊂ V.

(ii) Smoothing property (A2): We show the smoothing property with re-
spect to the space W and V for t̃ = 2r. Let t ≤ t0, for any ϕ, ψ ∈ B(t− 2r), denote
by

u(s) = u(s; t− 2r, ϕ), v(s) = v(s; t− 2r, ψ)
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the solutions of (4.1)with initial value ϕ, ψ ∈ B(t− 2r).
Let w(s) = u(s)− v(s), we have

w′(s)+Aw(s) = F (s, u(s), u(s−r1), . . . , u(s−rn))−F (s, v(s), v(s−r1), . . . , v(s−rn)).

Taking inner product with A2αw(s) and using Hölder’s inequality, (H3), Poincáre’s
inequality and Young’s inequality, we have

1

2

d

ds
|w(s)|2α + |w(s)|21

2+α

≤(L0|w(s)|α +

n∑
i=1

Li|w(s− ri)|α) · |w(s)|2α

≤λ
α
1

2
L0|w(s)|2α +

λα1
2

n∑
i=1

Li|w(s− ri)|2α +
λ−α
1

2

n∑
i=0

Li|w(s)|22α,

where Li is the Lipschitz coefficients of F in the set B1, which yields that

d

ds
|w(s)|2α ≤ λα1 (−2λ1−α

1 + 2L0 +

n∑
i=1

Li)|w(s)|2α +

n∑
i=1

λα1Li|w(s− ri)|2α.

Integrating from t− 2r to s, we obtain

|w(s)|2α − |w(t− 2r)|2α

≤− 2λα1 (λ
1−α
1 −

n∑
i=0

Li)

∫ s

t−2r

|w(σ)|2αdσ +

n∑
i=1

λα1Li

∫ t−2r

t−2r−ri

|w(σ)|2αdσ,

that is

|w(s)|2α + 2λα1 (λ
1−α
1 −

n∑
i=0

Li)

∫ s

t−2r

|w(σ)|2αdσ ≤ (1 +

n∑
i=1

λα1Liri)‖ϕ− ψ‖2CHα
.

Then by Gronwall’s lemma we have

|u(s)− v(s)|α ≤ γ1e
−β′(s−(t−2r))‖ϕ− ψ‖CHα

(4.10)

where
γ1 = (1 +

n∑
i=1

λα1Liri)
1
2 , β′ = λα1 (λ

1−α
1 −

n∑
i=0

Li).

Let
L = max

h∈[0, 2r]
γ1e

−β′h, (4.11)

then
|u(s)− v(s)|α ≤ L|ϕ− ψ|CHα

, ∀ t− 2r ≤ s ≤ t. (4.12)
In view of (4.2), we have

|u(s)− v(s)|β
≤|T (s− t+ 2r)(ϕ(0)− ψ(0))|β

+

∫ s

t−2r

|T (s− σ)(F (σ, u(σ), . . . , u(σ − rn))− F (σ, v(σ), . . . , v(σ − rn)))|βdσ
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:=J4 + J5. (4.13)

Since F is locally Lipshitz, by (4.12),

‖F (σ, u(σ), u(σ − r1), . . . , u(σ − rn))− F (σ, v(σ), v(σ − r1), . . . , v(σ − rn)))‖

≤(

n∑
i=0

Li)|u(σ)− v(σ)|α ≤ (

n∑
i=0

Li)L‖ϕ− ψ‖CHα
.

Next we estimate the two terms on the right hand of inequality. Jointly with
(2.2) and (2.3), we have

J4 ≤ ‖Aβ−αT (s− t+ 2r)‖ ‖ϕ− ψ‖CHα
,

≤Mβ−α(s− t+ 2r)−(β−α)e−a(s−t+2r)‖ϕ− ψ‖CHα
,

(4.14)

J5 ≤ (

n∑
i=0

Li)L

∫ s

t−2r

‖AβT (s− σ)‖dσ‖ϕ− ψ‖CHα

≤ (

n∑
i=0

Li)L

∫ s−t+2r

0

Mβσ
−βdσ‖ϕ− ψ‖CHα

.

(4.15)

Let

κ1 = max
h∈[r, 2r]

Mβ−αh
−(β−α)e−ah + (

n∑
i=0

Li)L max
h∈[r, 2r]

∫ h

0

Mβσ
−βdσ, (4.16)

then
‖ut − vt‖CHβ

≤ κ1‖ϕ− ψ‖CHα
(4.17)

There remains to show that [ut−vt]C0, γ
Hβ

Hölder semi-norm is bounded. Assume
that s, s+ δ ∈ [t− r, t], we have

|(u(s+ δ)− v(s+ δ))− (u(s)− v(s)))|β
≤|(T (δ)− I)T (s− t+ 2r)(ϕ(0)− ψ(0)|β

+

∫ s

t−2r

|(T (δ)− I)T (s− σ)(F (σ, . . . , u(σ − rn))− F (σ, . . . , v(σ − rn)))|βdσ

+

∫ s+δ

s

|T (s+ δ − σ)(F (σ, u(σ), . . . , u(σ − rn))−F (σ, v(σ), . . . , v(σ−rn)))|βdσ

:=J6 + J7 + J8.

Next we estimate the three terms on the right hand of inequality. Using (2.2) and
(2.3), we have

J6 ≤ ‖(T (δ)− I)Aβ−α+γT (s− t+ 2r)‖ ‖ϕ− ψ‖CHα

≤ Kγδ
γMβ−α+γ(s− t+ 2r)−(β−α+γ)e−a(s−t+2r)‖ϕ− ψ‖CHα

,

J7 ≤ (

n∑
i=0

Li)L

∫ s

t−2r

‖(T (δ)− I)AβT (s− σ)‖dσ‖ϕ− ψ‖CHα
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≤ KγMβ+γ(

n∑
i=0

Li)L

∫ s

t−2r

(s− σ)−(β+γ)e−a(s−σ)dσδγ‖ϕ− ψ‖CHα
,

J8 ≤ (

n∑
i=0

Li)L

∫ s+δ

s

‖AβT (s+ δ − σ)‖dσ‖ϕ− ψ‖CHα

≤Mβ(

n∑
i=0

Li)L(1− β)−1r1−β−γδγ‖ϕ− ψ‖CHα
.

Let

κ2 = KγMβ−α+γr
−(β−α+γ) +KγMβ(

n∑
i=0

Li)L(2r)
1−β +Mβ(

n∑
i=0

Li)Lr
1−β−γ ,

then

sup
θ, θ+δ∈[−r,0], δ>0

|(ut(θ + δ)− vt(θ + δ))− (ut(θ)− vt(θ))|β
δγ

≤ κ2‖ϕ− ψ‖CHα
.

Let κ = κ1 + κ2, we have the smoothing property, i.e.,

‖U(t, t− 2r)ϕ− U(t, t− 2r)ψ‖V ≤ κ‖ϕ− ψ‖W , ∀ϕ, ψ ∈ B(t− 2r), t ≤ t0.

(iii) Lipschitz continuity (A3): By Theorem 4.1 and the proof of (i),
{U(t, s)|t ≥ s} is an evolution process in CHη , too. For any bounded setD ⊂ CHη ,
D is bounded in CHα

. Consequently, B is absorbing set for {U(t, s), t ≥ s} in CHη

from the proof of (i). For any t ∈ R and s ∈ [t, t+ 2r], denote by

u(s) = u(s; t, ut), v(s) = v(s; t, vt)

the solutions of (4.1)with initial value ut, vt ∈ B(t).
The rest of the proof follows from the estimate in (ii) by replacing β with η and

t− 2r with t. In fact, by (4.13),(4.14) and (4.15), we obtain

|u(s)− v(s)|η
≤|T (s− t)(ut(0)− vt(0))|η

+

∫ s

t

|T (s− σ)(F (σ, u(σ), . . . , u(σ − rn))− F (σ, v(σ), . . . , v(σ − rn)))|ηdσ

:=J ′
4 + J ′

5,

J ′
4 ≤ ‖T (s− t)‖ ‖ut − vt‖CHη

,

≤ e−λ1(s−t)‖ut − vt‖CHη
,

and

J ′
5 ≤ (

n∑
i=0

Li)L

∫ s

t

‖AηT (s− σ)‖dσ‖ut − vt‖CHα

≤ (

n∑
i=0

Li)Lλ
α−η
1

∫ s

t

Mη(s− σ)−ηe−a(s−σ)dσ‖ut − vt‖CHη
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≤ (

n∑
i=0

Li)Lλ
α−η
1 Mη(1− η)−1(s− t)1−η‖ut − vt‖CHη

.

Let
Ls,t = 1 + (

n∑
i=0

Li)Lλ
α−η
1 Mη(1− η)−1 max

t≤s≤t+2r
(s− t)1−η.

We have
|u(s)− v(s)|η ≤ Ls, t‖ut − vt‖CHη

, ∀ t ≤ s ≤ t+ 2r, (4.18)
then

‖U(s, t)ut − U(s, t)vt‖X ≤ Ls, t‖ut − vt‖X , ∀ut, vt ∈ B(t).

(iv)Existence of pullback exponential attractor: By Theorem 3.1, we can
obtain the existence of pullback exponential attractor for the process {U(t, s), t ≥
s} in X = CHη

.
Then, for every ν ∈ (0, 1

2 ) there exists a pullback exponential attractor M =
{Mν(t)} for {U(t, s), t ≥ s} in X and the fractal dimension of its section is bounded
by

dimX
f (Mν(t)) ≤ log 1

2ν
(NW

ν
κ
(BV (0, 1))), ∀t ∈ R.

The proof is complete.

5. An Example
We now give an example to demonstrate how the abstract results in previous sections
can be applied to nonautonomous parabolic equations with delays.

Let L be a differential operator on a bounded domain Ω ⊂ RN ,

Lu := −
N∑

i, j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ a0(x)u,

where aij , a0 ∈ L∞(Ω), and aij = aji for all 1 ≤ i, j ≤ N . We assume that there
exists a constant ν > 0 such that for a.e. x ∈ Ω,

N∑
i, j=1

aij(x)ξiξj ≥ ν|ξ|2, ∀ξ = (ξ1, . . . , ξN ) ∈ RN ,

and that
a0(x) ≥ 0, a.e. x ∈ Ω.

Hence L is uniformly elliptic on Ω.
Let f : R2 → R be a locally Lipschitz continuous function. Consider the retarded

parabolic equation on Ω:

∂u

∂t
+ Lu = f (u(x, t− r1),∇u(x, t− r2)) + g(x, t) (5.1)

associated with the homogeneous Dirichlet boundary condition:

u|∂Ω = 0, (5.2)
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where r1, r2 > 0 denote time lags.
Let H = L2(Ω). Define a symmetric bilinear form B(u, v) on H1

0 (Ω) as follows:

B(u, v) =

∫
Ω

(
aij(x)

∂u

∂xj

∂v

∂xj
+ a0(x)uv

)
dx, u, v ∈ H1

0 (Ω).

It is clear that B(u, v) is bounded and coercive. Thanks to the Lax-Milgram Theo-
rem, B(u, v) generates a self-adjoint positive-definite operator A on H with compact
resolvent. Note that

H1
0 (Ω) = D(A1/2) := H1/2.

We assume f satisfies the following linear growth condition:

(F1) There exist positive constants b0, . . . , bN and k , such that

|f(z)| ≤
N∑
i=0

bi|zi|+ k, ∀ z = (z0, . . . , zN ) ∈ RN+1.

Then one easily sees that the mapping F : H1/2
2 → H defined by

F (u, v) = f (u, ∇v) , u, v ∈ H1/2

makes sense and is locally Lipschitz. Setting g(t) = g(·, t), the problem (5.1)-(5.2)
can be reformulated as an abstract equation in H as follows:

du

dt
+Au = F (u(t− r1),∇u(t− r2)) + g(t). (5.3)

Now we are in a situation of the equation (1.1).
If we impose on f appropriate conditions, then one can easily verifies that the

mapping F satisfies (H1) and (H2) in the previous sections, and hence the abstract
results obtained therein apply. In particular, we have

Theorem 5.1. Let 1
2 < β < 1 and γ = min{1− β, β − 1

2}. Assume that f is local
Lipschitz and satisfies the linear growth condition (F1) with the positive constants
bi

′s therein satisfying

b0λ
−1/2
1 +

N∑
i=1

bi < λ
1/2
1 , (5.4)

where λ1 is the first eigenvalue of A. Let g ∈ Cb(R;H).
Then the following assertions hold:

(1) For every ν ∈ (0, 1
2 ) and η ∈ [ 12 , β], the equation (5.1) has pullback exponential

attractor Mν = {Mν(t)}t∈R in X, and the fractal dimension of its section is
bounded by

dimX
f (Mν(t)) ≤ log 1

2ν
(NW

ν
κ
(BV (0, 1))), ∀t ∈ R,

where W = CH1/2
, X = CHη

and V = C0,γ
Hβ

.
(2) The equation (5.1) has pullback attractor A = {A(t)}t∈R, and the fractal

dimension of its sections is bounded by

dimX
f (A(t)) ≤ inf

ν∈(0, 1
2 )
{log 1

2ν
(NW

ν
κ
(BV (0, 1)))}, ∀t ∈ R.
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