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Abstract For the quadratic reversible centers of genus one (r7), its all pe-
riodic orbits are quartic curves. Using the method of Picard-Fuchs equation
and Riccati equation, we study that the upper bound of the number of zeros
for Abelian integrals of system (r7) under arbitrary polynomial perturbations
of degree n, and obtain that the upper bound of the number is 45n− 72 when
n ≥ 2, 5 when n = 1, and 0 when n = 0, which depends linearly on n.
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1. Introduction and Main Result
Consider nearly integrable system

ẋ =
Hy(x, y)

M(x, y)
+εf(x, y), ẏ = −Hx(x, y)

M(x, y)
+εg(x, y), (1.1)ε

where ε (0 < ε ≪ 1) is a real parameter, Hy(x, y)/M(x, y), Hx(x, y)/M(x, y),
f(x, y), g(x, y) are all polynomials of x and y, with max {deg(f(x, y)),deg(g(x, y))}
= n and max {deg (Hy(x, y)/M(x, y)) ,deg (Hx(x, y)/M(x, y))} = m. For system
(1.1)0, we suppose that it is an integrable system, function H(x, y) is its a first
integral with an integrating factor M(x, y). And it has at least one center, that is,
we can define a continuous family of periodic orbits

{Γh} ⊂
{
(x, y) ∈ R2 : H(x, y) = h, h ∈ ∆

}
,

which are defined on a maximal open interval ∆ = (h1, h2). The problem to be
studied in this paper is: for any small number ε, how many limit cycles in system
(1.1)ε can be bifurcated from periodic orbits {Γh}. It is well known that in any
compact region of periodic annulus, the number of limit cycles of system (1.1)ε is
no more than the number of isolated zeros for the following Abelian integrals A(h),

A(h) =

∮
Γh

M(x, y) [g(x, y) dx− f(x, y) dy] , h ∈ ∆. (1.2)
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A) If (1.1)0 is a Hamiltonian system, i.e., M(x, y) is a constant, then H(x, y) is
a polynomial of x and y with deg(H(x, y)) = m+1. Finding the least upper bound
Z(m,n) of the number of isolated zeros for Abelian integrals A(h) is a significative
and difficult problem, where Z(m,n) only depends on m, n, and does not depend
on the specific forms of H(x, y), f(x, y), and g(x, y). This problem is called the
weakened Hilbert’s 16th problem [1], it is also called the Hilbert-Arnold problem,
for some specially planar systems, researchers obtain plentiful important results
[2, 3, 5, 15, 18–20, 22, 24–26], and more specific situations can be found in the books
[4, 8], the review article [16], and the references therein.

B) If (1.1)0 is an integrable non-Hamiltonian system, i.e., M(x, y) is not a con-
stant. When H(x, y) or M(x, y) are not polynomials, the research work of the
associated Abelian integrals A(h) becomes much more difficult. Thus, researchers
consider this problem by starting from the simplest case, namely m is low. For
the specific case of m = 2, people conjecture that the upper bound Z(2, n) of the
number of zeros for associated Abelian integrals A(h) depends linearly on n, and
it is positive correlation to the degree of the periodic orbital curves. Researchers
studied some special systems and got some very good results [6,21,23,27]. Horozov
and Iliev [14] first used the method of Picard-Fuchs equation and Riccati equation
to study the upper bound of the number of zeros, and obtained an upper bound
Z(3, n) ≤ 5n + 15, References [21, 27] also used this method. Unfortunately, this
conjecture is still far from being solved. For quadratic reversible centers of genus
one, in reference [7], Gautier et al showed that there are essentially 22 types in the
classification, divided into (r1)–(r22) specifically. For the linear dependence of the
upper bound of the number of zeros, three special cases of system (r1) was studied
in [28]; (r2) is a Hamiltonian system; some special cases of systems (r3)–(r6) were
studied in [17]; systems (r9), (r13), (r17), and (r19) were studied in [13]; systems
(r11), (r16), (r18), and (r20) were studied in [12]; systems (r12) and (r21) were
studied in [11]; system (r10) was studied in [10]; system (r22) was studied in [9].
All of these upper bounds depend linearly on n. In this paper, we also study system
(r7) using the method of Picard-Fuchs equation and Riccati equation, and obtain
that the upper bound is 45n − 72 when n ≥ 2, 5 when n = 1, and 0 when n = 0.
Our result shows that the upper bound depends linearly on n.

The form of quadratic reversible centers of genus one as follows:

ẋ = −xy, ẏ = −a+ b+ 2

2(a− b)
y2 +

a+ b− 2

8(a− b)3
x2 − b− 1

2(a− b)3
x− a− 3b+ 2

8(a− b)3
. (1.3)

From (1.3), when (a, b) = (5/2,−1/2), we can get system (r7) as follows:

(r7) ẋ = −xy, ẏ = −2

3
y2 +

1

36
x− 1

36
. (1.4)

(r7) is an integrable non-Hamiltonian quadratic system. It has a center (1, 0), an
integral curve x = 0, a periodic orbital family {Γh} (−1/16<h<0) (see Figure 1),
the value range of x for the {Γh} is (1/4,+∞), and all of the periodic orbits are
formed by quartic curve. A first integral of system (1.4) as follows:

H(x, y) = x−
4
3

(
1

2
y2 − 1

12
x+

1

48

)
= h, h ∈

(
− 1

16
, 0

)
, (1.5)

with an integrating factor M(x, y) = x−7/3 and almost all of the orbits are formed
by quartic curve.
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Figure 1. Periodic orbital images of system (r7).

In this paper, our main result is the following theorem.

Theorem 1.1. If f(x, y) and g(x, y) are any polynomials of x and y, and the
maximum value of deg(f(x, y)) and deg(g(x, y)) is n, then the upper bound of the
number of zeros of Abelian integrals A(h) for system (r7) depends linearly on n.
Concretely, the upper bound is 45n− 72 for n ≥ 2; the upper bound is 5 for n = 1;
and the upper bound is 0 for n = 0.

The rest part of this paper is structured as follows. In Section 2, we seek a
simple expression of equivalent function K(h) for Abelian integrals A(h), prove
Proposition 2.1. In Section 3, we study relation among functions Jm(h) and their
derivatives J ′

m(h) for m = −1/3, 0, 1/3, 2/3; relation among functions J ′
m(h) and

their derivatives J ′′
m(h) for m = −1/3, 0, 1/3; relation between J ′

−1/3(h) and J ′
1/3(h),

obtain two Picard-Fuchs equations and a Riccati equation. In Section 4, we obtain
three variable coefficient first order linear ordinary differential equations. For the
relation between V (h) and J ′

1/3(h), obtain a Riccati equation. Finally, we prove
Theorem 1.1 using the method of Picard-Fuchs equation and Riccati equation. In
Section 5, we give a short conclusion.

2. Simple Expression of Equivalent Function for A(h)

In this section, we give an equivalent function K(h) of Abelian integral A(h) and
its simple expression, obtaining Proposition 2.1.

We suppose f(x, y) =
∑

0≤i+j≤n ai,jx
iyj and g(x, y) =

∑
0≤i+j≤n bi,jx

iyj . From
(1.2), Abelian integrals A(h) in Theorem 1.1 have the form

A(h) =

∮
Γh

x−
7
3

 ∑
0≤i+j≤n

bi,jx
iyjdx−

∑
0≤i+j≤n

ai,jx
iyjdy

 , h ∈
(
− 1

16
, 0

)
,

where x−7/3 is an integrating factor.
For conciseness, we introduce functions Ii,j(h) as follows:

Ii,j(h) =

∮
Γh

xi−
7
3 yjdx,
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where i = t/3, t = −3,−2, · · · , 3n−1, 3n; j = 0, 1, 2, · · · , n, n+1, and 0 ≤ i+j ≤ n.
When j = 1, we write Ii,1(h) as Ji(h).

Note that∮
Γh

xi−
7
3 yjdy =

∮
Γh
xi−

7
3 dyj+1

j + 1
=

7
3 − i

j + 1

∮
Γh

xi−
7
3−1yj+1dx =

7
3 − i

j + 1
Ii−1,j+1(h).

Thus, A(h) can be written as

A(h) =
∑

0≤i+j≤n

bi,jIi,j(h) +
∑

0≤i+j≤n

i− 7
3

j + 1
ai,jIi−1,j+1(h)

=
∑

0≤i+j≤n,−1≤i≤n,0≤j≤n+1

b̃i,jIi,j(h),

(2.1)

where b̃i,j = bi,j + (i + 1 − 7/3)ai+1,j−1/j (j ̸= 0), b̃i,0 = bi,0(i = −1, 0, 1, · · · , n),
b−1,j = 0(j = 0, 1, · · · , n+ 1).

The following Proposition 2.1 gives an equivalent function K(h) of Abelian in-
tegral A(h) and its simple expression.

Proposition 2.1. Abelian integrals A(h) can be expressed as

h3n−5A(h) = K(h) = α(h)J− 1
3
(h) + β(h)J0(h) + γ(h)J 1

3
(h) + δ(h)J 2

3
(h), (n ≥ 2),

(2.2)
A(h) = β(h)J0(h) + γ(h)J 1

3
(h), (n = 1), (2.3)

A(h) = ζ(h)J−1(h), (n = 0), (2.4)

where 0 ≤ deg(α(h)) ≤ 3n − 6, 1 ≤ deg(β(h)) ≤ 3n − 5, 2 ≤ deg(γ(h)) ≤ 3n − 4,
0 ≤ deg(δ(h)) ≤ 3n − 6, when n ≥ 2; deg(β(h)) = 0, deg(γ(h)) = 1, when n = 1;
deg(ζ(h)) = 0, when n = 0.

Proof. Since periodic orbits Γh are symmetric about x-axis, thus, Ii,j(h) = 0 as
j is even, so, we only need to consider the case of j is odd.

From (1.5), we obtain

− 2

3
x−

7
3 y2 + x−

4
3 y
∂y

∂x
+

1

36
x−

4
3 − 1

36
x−

7
3 = 0. (2.5)

Multiplied equality (2.5) by xiyj−2dx and integrated it over Γh, we can get

2j + 3m− 4

j
Im,j(h) =

1

12
[Im+1,j−2(h)− Im,j−2(h)] , (2.6)

where j = 1, 3, 5, · · · , 2[n/2]+1. We restrict m = i/3, i = −3,−2,−1, 0, · · · , 3n−3,
and 0 ≤ m+ j ≤ n.
(i) When 2j + 3m − 4 = 0, that is, (m, j) = (2/3, 1), (−2/3, 3), when (m, j) =
(−2/3, 3), from (2.6), we obtain

J 1
3
(h) = J− 2

3
(h). (2.7)

(ii) When 2j +3m− 4 ̸= 0, that is, (m, j) ̸= (2/3, 1), (−2/3, 3), from (2.6), we have

Im,j(h) =
j

12(2j + 3m− 4)
[Im+1,j−2(h)− Im,j−2(h)] , (2.8)
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which indicates that Im,j(h) can be expressed in terms of Im,j−2(h) and Im+1,j−2(h).
Then step by step, since j is a positive odd number, we use (j−1)/2 times (2.8) and
obtain that Im,j(h) can be written as a linear combination of Jk(h)(k = −1, 0, · · · )
with the form

Im,j(h) =

j−1
2∑

k=0

cm,kJm+k(h).

From (2.1), we have

A(h) =
∑

0≤m+j≤n,−1≤m≤n−1,j≡1mod 2

b̃m,j

j−1
2∑

k=0

cm,kJm+k(h).

Because the maximum number of m+k is m+(j−1)/2 = n−1+0 = n−1, and
its the minimum number is −1 + 0 = −1, therefore A(h) is a linear combination of
J−1(h), J0(h), J1(h), · · · , Jn−1(h). So we can suppose that

A(h) =

n∑
k=0

ekJk−1(h), (2.9)

where ek ∈ R (k = 0, 1, · · · , n).
Again, it follows from (1.5) that

1

2
x−

4
3 y2 − 1

12
x−

1
3 +

1

48
x−

4
3 = h.

Multiplying above equality by xm−1yj−2dx and integrated it over Γh, we obtain

Im,j(h) =
1

6
Im+1,j−2(h)−

1

24
Im,j−2(h) + 2hIm+ 4

3 ,j−2(h).

By (2.8), the above equality can be written as

j[Im+1,j−2(h)− Im,j−2(h)]

12(2j + 3m− 4)
=

1

6
Im+1,j−2(h)−

1

24
Im,j−2(h) + 2hIm+ 4

3 ,j−2(h).

When j = 3, the above equality becomes

48h(3m+ 2)Jm+ 4
3
(h) = (3m+ 4)Jm(h)− 2(6m+ 1)Jm+1(h). (2.10)

A) When m ≥ 1, assume that ℏ := 1/h, then we rewrite (2.10) as

ℏJm(h) =
3m− 8

48(3m− 2)
ℏ2Jm− 4

3
(h)− 6m− 7

24(3m− 2)
ℏ2Jm− 1

3
(h),

which indicates that ℏJm(h) can be expressed in terms of ℏ2Jm−4/3(h), ℏ2Jm−1/3(h).
Then step by step, ℏJm(h) can be written as a linear combination of J−1/3(h), J0(h),
J1/3(h) and J2/3(h) with polynomial coefficients of ℏ:

ℏJm(h) = αm,1(ℏ)J− 1
3
(h) + βm,1(ℏ)J0(h) + γm,1(ℏ)J 1

3
(h) + δm,1(ℏ)J 2

3
(h),

where 5 ≤ deg(αm,1(ℏ)) ≤ 3m− 1, 4 ≤ deg(βm,1(ℏ)) ≤ 3m− 2, 3 ≤ deg(γm,1(ℏ)) ≤
3m − 3, 2 ≤ deg(δm,1(ℏ)) ≤ 3m − 1, when m ≥ 2; deg(αm,1(ℏ)) = 2, βm,1(ℏ) = 0,
γm,1(ℏ) = 0, deg(δm,1(ℏ)) = 2, when m = 1.
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B) When m = 0, then ℏJm(h) can also be a linear combination of J−1/3(h),
J0(h), J1/3(h) and J2/3(h) as

ℏJ0(h) = ℏJ0(h).

C) When m < 0, then we rewrite (2.10) as

ℏJm(h) =
2(6m+ 1)

3m− 4
ℏJm+1(h) +

48(3m+ 2)

3m− 4
Jm+ 4

3
(h),

which indicates that ℏJ−1(h) can be expressed in terms of J−1/3(h), J0(h), J1/3(h)
and J2/3(h):

ℏJ−1(h) =
10

7
ℏJ0(h) +

48

7
J 1

3
(h).

As a consequence, all ℏJm(h) can be expressed in terms of J−1/3(h), J0(h),
J1/3(h) and J2/3(h). From (2.9), substituting these formulas to ℏA(h), therefore

ℏA(h) = J(h) = α(ℏ)J− 1
3
(h) + β(ℏ)J0(h) + γ(ℏ)J 1

3
(h) + δ(ℏ)J 2

3
(h),

where 2 ≤ deg(α(ℏ)) ≤ 3n − 4, 1 ≤ deg(β(ℏ)) ≤ 3n − 5, 0 ≤ deg(γ(ℏ)) ≤ 3n − 6,
2 ≤ deg(δ(ℏ)) ≤ 3n − 4, when n ≥ 2; α(ℏ) = 0, deg(β(ℏ)) = 1, deg(γ(ℏ)) = 0,
δ(ℏ) = 0, when n = 1.

(1) When n ≥ 2, assume that K(h) := h3n−4J(h), that is K(h) = h3n−5A(h),
we can get

K(h) = α(h)J− 1
3
(h) + β(h)J0(h) + γ(h)J 1

3
(h) + δ(h)J 2

3
(h),

where 0 ≤ deg(α(h)) ≤ 3n − 6, 1 ≤ deg(β(h)) ≤ 3n − 5, 2 ≤ deg(γ(h)) ≤ 3n − 4,
0 ≤ deg(δ(h)) ≤ 3n− 6.

(2) When n = 1, assume that K(h) := hJ(h), that is K(h) = A(h), we can get

A(h) = K(h) = β(h)J0(h) + γ(h)J 1
3
(h),

where deg(β(h)) = 0, deg(γ(h)) = 1.
(3) When n = 0, from (2.1), we can get

A(h) = −7

3
a0,0J−1(h) = ζ(h)J−1(h),

where ζ(h) = −7a0,0/3, and deg(ζ(h)) = 0.

3. Picard-Fuchs Equation and Riccati Equation
In this section, we give a relation among functions Jm(h) and their derivatives J ′

m(h)
for m = −1/3, 0, 1/3, 2/3; a relation among functions J ′

m(h) and their derivatives
J ′′
m(h) for m = −1/3, 0, 1/3; a relation between J ′

−1/3(h) and J ′
1/3(h), obtaining two

Picard-Fuchs equations and a Riccati equation.
The following lemma gives a relation among functions Jm(h) and their deriva-

tives J ′
m(h) for m = −1/3, 0, 1/3, 2/3.
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Lemma 3.1. Functions Jm(h) for m = −1/3, 0, 1/3, 2/3 satisfy the following
Picard-Fuchs equation

J− 1
3
(h)

J0(h)

J 1
3
(h)

J 2
3
(h)

 =



4
5h 0 1

20 0

1
16 h 0 0

0 1
12

4
3h 0

0 0 1
8 2h





J ′
− 1

3

(h)

J ′
0(h)

J ′
1
3

(h)

J ′
2
3

(h)


. (3.1)

Proof. By (1.5), we have y2 = 2hx4/3 + x/6− 1/24, ∂y/∂h = x4/3/y, and ydy =
(4hx1/3/3 + 1/12)dx. Since Ji(h) =

∮
Γh
xi−7/3ydx, J ′

i(h) =
∮
Γh
xi−1/ydx. Thus(

i− 4

3

)
Ji(h) =

∮
Γh

(
i− 4

3

)
xi−

7
3 ydx =

∮
Γh

ydxi−
4
3

= −
∮
Γh

xi−
4
3

(
4
3hx

1
3 + 1

12

)
y

dx = −4

3
hJ ′

i(h)−
1

12
J ′
i− 1

3
(h).

(3.2)

By (3.2), let i = −1/3, 0, 1/3, 2/3 respectively, we obtain

J− 1
3
(h) = 4

5hJ
′
− 1

3

(h) + 1
20J

′
− 2

3

(h),

J0(h) =
1
16J

′
− 1

3

(h) + hJ ′
0(h),

J 1
3
(h) = 1

12J
′
0(h) +

4
3hJ

′
1
3

(h),

J 2
3
(h) = 1

8J
′
1
3

(h) + 2hJ ′
2
3

(h).

(3.3)

From equalities (3.3) and (2.7), we obtain (3.1).
The following lemma gives a relation among functions J ′

m(h) and their deriva-
tives J ′′

m(h) for m = −1/3, 0, 1/3.

Lemma 3.2. Functions J ′
m(h) for m = −1/3, 0, 1/3 satisfy the following Picard-

Fuchs equation 
J ′′
− 1

3

(h)

J ′′
0 (h)

J ′′
1
3

(h)

 =
1

B(h)


−64h2 −4h

4h 1
4

− 1
4 64h2


J ′

− 1
3

(h)

J ′
1
3

(h)

 , (3.4)

where B(h) = −256(h3 + 1/163) = −256(h+ 1/16)(h2 − h/16 + 1/256).

Proof. From the first three equations of (3.3), differentiated both sides of equa-
tions with respect to h, we obtain

J ′
− 1

3

(h)

0 · J ′
0(h)

J ′
1
3

(h)

 =


4h 0 1

4

1 16h 0

0 − 1
4 −4h



J ′′
− 1

3

(h)

J ′′
0 (h)

J ′′
1
3

(h)

 . (3.5)
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From (3.5), we can get
J ′′
− 1

3

(h)

J ′′
0 (h)

J ′′
1
3

(h)

 =
1

B(h)


−64h2 − 1

16 −4h

4h −16h2 1
4

− 1
4 h 64h2



J ′
− 1

3

(h)

0 · J ′
0(h)

J ′
1
3

(h)

 , (3.6)

where B(h) = −256(h+ 1/16)(h2 − h/16 + 1/256).
From equation (3.6), we get (3.4).

Lemma 3.3. J−1(h) < 0, J ′
m(h) > 0 (m = −1/3, 0, 1/3, 2/3) when h ∈ (−1/16, 0);

Jm(−1/16) = 0 (m = −1/3, 0, 1/3, 2/3).

Since Jm(h) =
∮
Γh
xm−7/3ydx, J ′

m(h) =
∮
Γh
xm−1/ydx. The proof only requires

some simple calculations, so it is omitted.
For the relation between J ′

−1/3(h),J ′
1/3(h), assume that U(h) :=J ′

−1/3(h)/J
′
1/3(h),

we obtain the following corollary.

Corollary 3.1. Function U(h) satisfies the following Riccati equation

B(h)U ′(h) =
1

4
U2(h)− 128h2U(h)− 4h, (3.7)

where B(h) = −256(h+ 1/16)(h2 − h/16 + 1/256).

Proof. Using Lemma 3.2, and differentiated both sides of U(h) with respect to h,
we obtain (3.7).

4. The Number of Zeros for Abelian Integrals A(h)

In this section, we obtain three variable coefficient first order linear ordinary differ-
ential equations and a Riccati equation. Finally, we prove Theorem 1.1 using the
method of Picard-Fuchs equation and Riccati equation.

(1) If n ≥ 2, by (2.2) and (3.1), we have

K(h) = α1(h)J
′
− 1

3
(h) + β1(h)J

′
0(h) + γ1(h)J

′
1
3
(h) + δ1(h)J

′
2
3
(h), (4.1)

where α1(h) = 4hα(h)/5 + β(h)/16, β1(h) = hβ(h) + γ(h)/12, γ1(h) = α(h)/20 +
4hγ(h)/3+δ(h)/8, δ1(h) = 2hδ(h). Thus 1 ≤ deg(α1(h)) ≤ 3n−5, 2 ≤ deg(β1(h)) ≤
3n− 4, 0 ≤ deg(γ1(h)) ≤ 3n− 3, and 1 ≤ deg(δ1(h)) ≤ 3n− 5.

Differentiating both sides of (2.2) with respect to h and using (3.1), we obtain

K ′(h) = α2(h)J
′
− 1

3
(h) + β2(h)J

′
0(h) + γ2(h)J

′
1
3
(h) + δ2(h)J

′
2
3
(h), (4.2)

where α2(h) = α(h) + 4hα′(h)/5 + β′(h)/16, β2(h) = β(h) + hβ′(h) + γ′(h)/12,
γ2(h) = γ(h) + 4hγ′(h)/3 + α′(h)/20 + δ′(h)/8, δ2(h) = δ(h) + 2hδ′(h). So 0 ≤
deg(α2(h)) ≤ 3n − 6, 1 ≤ deg(β2(h)) ≤ 3n − 5, 2 ≤ deg(γ2(h)) ≤ 3n − 4, 0 ≤
deg(δ2(h)) ≤ 3n− 6.

By (4.1) and (4.2), we have

δ1(h)K
′(h) = δ2(h)K(h) +W (h), (4.3)
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W (h) = α3(h)J
′
− 1

3
(h) + β3(h)J

′
0(h) + γ3(h)J

′
1
3
(h), (4.4)

where α3(h) = α1(h)δ2(h)− δ1(h)α2(h), β3(h) = β1(h)δ2(h)− δ1(h)β2(h), γ3(h) =
γ1(h)δ2(h)−δ1(h)γ2(h). Thus 1 ≤ deg(α3(h)) ≤ 6n−11, 2 ≤ deg(β3(h)) ≤ 6n−10,
0 ≤ deg(γ3(h)) ≤ 6n− 9.

By (3.4) and (4.4), we have

B(h)W ′(h) = α4(h)J
′
− 1

3
(h) +B(h)β′

3(h)J
′
0(h) + γ4(h)J

′
1
3
(h), (4.5)

where α4(h) = B(h)α′
3(h)− 64h2α3(h) + 4hβ3(h)− γ3(h)/4, γ4(h) = B(h)γ′3(h) +

64h2γ3(h) − 4hα3(h) + β3(h)/4. Thus 0 ≤ deg(α4(h)) ≤ 6n − 9, 2 ≤ deg(γ4(h)) ≤
6n− 7.

By (4.4) and (4.5), we have

B(h)β3(h)W
′(h) = B(h)β′

3(h)W (h) + V (h), (4.6)
V (h) = α5(h)J

′
− 1

3
(h) + γ5(h)J

′
1
3
(h), (4.7)

where α5(h) = β3(h)α4(h)−B(h)β′
3(h)α3(h), γ5(h) = β3(h)γ4(h)−B(h)β′

3(h)γ3(h).
Thus 2 ≤ deg(α5(h)) ≤ 12n− 19, 1 ≤ deg(γ5(h)) ≤ 12n− 17.

(2) If n = 1, by (2.3) and (3.1), we have

A(h) = α1(h)J
′
− 1

3
(h) + β1(h)J

′
0(h) + γ1(h)J

′
1
3
(h), (4.8)

where α1(h) = β(h)/16, β1(h) = hβ(h) + γ(h)/12, γ1(h) = 4hγ(h)/3. Thus
deg(α1(h)) = 0, deg(β1(h)) = 1, deg(γ1(h)) = 2.

Differentiating both sides of (2.3) with respect to h and using (3.1), we obtain

A′(h) = α2(h)J
′
− 1

3
(h) + β2(h)J

′
0(h) + γ2(h)J

′
1
3
(h), (4.9)

where α2(h) = β′(h)/16, β2(h) = β(h)+hβ′(h)+γ′(h)/12, γ2(h) = γ(h)+4hγ′(h)/3.
Thus α2(h) = 0, deg(β2(h)) = 0, deg(γ2(h)) = 1.

By (4.8) and (4.9), we have

β1(h)A
′(h) = β2(h)A(h) + V (h), (4.10)

V (h) = α5(h)J
′
− 1

3
(h) + γ5(h)J

′
1
3
(h), (4.11)

where α5(h) = β1(h)α2(h) − β2(h)α1(h), γ5(h) = β1(h)γ2(h) − β2(h)γ1(h). Thus
deg(α5(h)) = 0, deg(γ5(h)) = 2.

For the relation between V (h) and J ′
1/3(h), assume that E(h) := V (h)/J ′

1/3(h),
we obtain the following lemma.

Lemma 4.1. For n ≥ 1, function E(h) satisfies the following Riccati equation

B(h)α5(h)E
′(h) =

1

4
E2(h) +D(h)E(h) +G(h), (4.12)

where D(h) = B(h)α′
5(h) − 128h2α5(h) − γ5(h)/2, G(h) = B(h)α5(h)γ

′
5(h) −

B(h)α′
5(h)γ5(h) + 128h2α5(h)γ5(h) − 4hα2

5(h) + γ25(h)/4. Thus 1 ≤ deg(D(h)) ≤
12n−17, 2 ≤ deg(G(h)) ≤ 24n−34 when n ≥ 2; deg(D(h)) = 2, 1 ≤ deg(G(h)) ≤ 4
when n = 1.
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Proof. Using equalities (4.7), (4.11) and Corollary 3.1, differentiated both sides
of E(h) with respect to h, we obtain (4.12).

We use ♯A(h) to denote the number of zeros of Abelian integrals A(h) in ∆, and
we need the following lemma.

Lemma 4.2 ( [17]). The smooth functions S(h), ϕ(h), ψ(h), ξ(h), and η(h) satisfy
the following Riccati equation

η(h)S′(h) = ϕ(h)S2(h) + ψ(h)S(h) + ξ(h),

then
♯S(h) ≤ ♯η(h) + ♯ξ(h) + 1.

Lemma 4.2 is Lemma 5.3 in [17], and the proof can be found in [17], so it is
omitted.

Finally, we complete the proof of Theorem 1.1 using the method of Picard-Fuchs
equation and Riccati equation.
Proof of Theorem 1.1. (1) When n ≥ 2, using equalities (2.2), (4.3), (4.6),
Lemma 4.1 and Lemma 4.2, therefore

♯A(h) = ♯K(h) ≤ ♯δ1(h) + ♯W (h) + 1,

and

♯W (h) ≤ ♯B(h) + ♯β3(h) + ♯V (h) + 1,

♯V (h) = ♯E(h) ≤ ♯B(h) + ♯α5(h) + ♯G(h) + 1.

So,
♯A(h) ≤ 2♯B(h) + ♯δ1(h) + ♯β3(h) + ♯α5(h) + ♯G(h) + 3.

Since 1 ≤ deg(δ1(h)) ≤ 3n − 5, 2 ≤ deg(β3(h)) ≤ 6n − 10, 2 ≤ deg(α5(h)) ≤
12n − 19, 2 ≤ deg(G(h)) ≤ 24n − 34, noticing that B(h) = −256(h + 1/16)(h2 −
h/16 + 1/256) and there is no zero in (−1/16, 0), we obtain

♯A(h) ≤ (3n− 6) + (6n− 12) + (12n− 21) + (24n− 36) + 3 = 45n− 72.

(2) When n = 1, using equality (4.10), Lemma 4.1 and Lemma 4.2, therefore

♯A(h) ≤ ♯β1(h) + ♯V (h) + 1,

and
♯V (h) = ♯E(h) ≤ ♯B(h) + ♯α5(h) + ♯G(h) + 1.

So,
♯A(h) ≤ ♯B(h) + ♯β1(h) + ♯α5(h) + ♯G(h) + 2.

Since deg(β1(h)) = 1, deg(α5(h)) = 0, 1 ≤ deg(G(h)) ≤ 4, we can get

♯A(h) ≤ 0 + 0 + 0 + 3 + 2 = 5.

(3) When n = 0, using equality (2.4) and Lemma 3.3, since A(h) = ζ(h)J−1(h),
where deg(ζ(h)) = 0, J−1(h) < 0, therefore

♯A(h) = 0.
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5. Conclusion
In this paper, we study the linear estimation to the number of zeros for Abelian
integrals in the quadratic reversible system (r7) under arbitrary polynomial pertur-
bations of degree n, according to the method of Picard-Fuchs equation and Riccati
equation. We obtain that the upper bound of the number is 45n− 72 when n ≥ 2,
5 when n = 1, and 0 when n = 0. This result shows that the upper bound depends
linearly on n.
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