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Abstract In this paper, the classification of limit-point case and limit-circle
case for the 2α-order conformable fractional Sturm-Liouville operator

ℓα(y) = −Tα (pTαy) + qy, x ∈ [a,∞), a > 0
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formable fractional derivatives are obtained. Examples illustrating the main
results are presented.
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1. Introduction
Differential operators play an increasingly important role in describing many phe-
nomena and processes in various fields of science and engineering such as quantum
mechanics, finance, medicine.

For the second-order singular symmetric differential operator (Sturm-Liouville
operator):

ℓ(y) = − (p(x)y′)
′
+ q(x)y, x ∈ [a,∞), (1.1)

where p, q are real-valued functions with p > 0 and p−1, q ∈ Lloc[a,∞), there are a
lot of spectral analysis results for (1.1), we refer the readers to papers [2, 5, 10, 14,
16–19] and references cited therein.

Regarding the study of the spectral theory of differential operator (1.1), the
classification problem of limit-point case(LPC) and limit-circle case(LCC) was first
proposed by H. Weyl in 1910 [21]. After then, Levinson [16], Sears [20], Read [18]
and other researchers gave a series of classical LPC criteria. By separating the
potential function q(x), Read gave a more general LPC criterion in 1970s.

Theorem 1.1 (Read criterion [18]). Assume w(x) be a non-negative local absolutely
continuous function on [a,∞) and q(x) = q1(x) + q2(x) + q3(x). If

(1) q1(x) ≥ 0, for a positive number δ, there exists constant K, such that (1 +
δ)p(w′)2 − q1w

2 ≤ K;
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(2) −q2w
2 ≤ K;

(3) There exists a constant d with 0 ≤ d ≤ 1 such that wdp−1/2|Q| ≤ K, where
Q′ = q3w

1−d;

(4)
∫ ∞

0

w2 (q1/p)
1/2

dx = ∞.

Then (1.1) is of the LPC at ∞.

Kuffman, Read and Zettl in [12] replaced condition (4) by
∫∞
0

wp−1/2dx =
∞, conditions (1)-(3) being unchanged, then they deduced that (1.1) is also of
the LPC at ∞. The Read criterion is an extension of the Levinson criterion. It
generalizes Hartman-Wintner criterion, Levinson criterion and Sears criterion (see
[12] for details).

The above LPC criteria are considering the properties of p and q on the entire
positive half axis. As we all know, LPC for differential operator on [a,∞) is an
interval-type property, it is necessary to consider the nature of p and q in a series
of interval sequences tending to ∞. There are two typical methods to obtain the
interval-type LPC criterion, one is restriction p and q on given sequence of interval
by constants, this method appeared in the early 1960s. The first interval-type LPC
criterion was proposed by the Soviet mathematician R. S. Ismagilov in 1963.

Theorem 1.2 ( [10]). Suppose {Ik} are mutually disjoint intervals whose endpoints
tend to ∞. The length of Ik is denoted by hk and p(x) = 1. If there is a sequence
of real numbers qk, such that

(1)
∞∑
k=1

√
qkh

3
k = ∞;

(2) q(x) ≥ qk for x ∈ Ik,

then ℓ(y) is of the LPC at ∞.

In 1973, Knowles improved Ismagilov criterion to a more general form, he proved
the following conclusions.

Theorem 1.3 (Knowles criterion [14]). If there are mutually disjoint intervals In
(n=1, 2, · · · ) with the endpoints tending to infinity as n → ∞, and pn, qn are
constants such that

(1) q(x) ≥ qn > 0, p(x) ≥ pn > 0, (x ∈ In) ;

(2)
∞∑

n=1

p3/2n q1/2n

(∫
In

dx

p(x)

)3

= ∞,

then ℓ(y) is of the LPC at ∞.

Another method of interval-type LPC criterion is obtained by constructing suit-
able nonnegative function w(x) in Therem 1.1. Followed this line, Eastham and
Thompson gave the following result.

Theorem 1.4 (Eastham and Thompson interval-type criterion [8]). If there are
mutually disjoint intervals In = [an, bn] (n=1, 2, · · · ) with bn → ∞ as n → ∞, and
a sequence of positive numbers {vn}, such that
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(1) vnPn ≥ K > 0, where Pn =

∫ bn

an

dx√
p(x)

;

(2)
∞∑

n=1

1

vn
= ∞;

(3)
∫ bn

an

q−(x)dx ≤ Cv2nP
3
n min

In

√
p(x).

Then ℓ(y) is of the LPC at ∞.

Read improved Knowles’ result and he gave the following conclusion.

Theorem 1.5 (Read interval-type criterion [19]). If there are mutually disjoint
intervals In (n=1, 2, · · · ) with the endpoints tending to infinity as n → ∞, such
that

(1) q(x) ≥ 0 (x ∈ Ik);
(2) there exist constants γ > 0, 0 < c < 1 and interval In ⊂ Jn(n = 1, 2, · · · ), such

that
∫
J
p−

1
2 dx ≥ γ

∫
Jn

p−
1
2 dx on each connected component J of Jn\In, and

∞∑
n=1

{
exp

[
c

∫
In

(
q

p

) 1
2

dx

]
− 1

}(∫
Jn

p−
1
2 dx

)2

= ∞,

then ℓ(y) is of the LPC at ∞.

For spectral theory of fractional Sturm-Liouville operator, the research draw
many researchers’ attention in recent years (see [4, 6, 7, 11, 22] for detials). Mean-
while, there are a lot of attention being paid to finding the more suitable definitions
of fractional derivatives, and many definitions in the existing literature, such as
the Riemann-Liouville, Caputo, Riesz, Riesz-Caputo, Weyl, Grunwald-Letnikov,
Hadamard, are defined. In 2014, R. Khalil et al. in [13] introduced a new sim-
ple well-behaved definition of the fractional derivative called conformable fractional
derivative. This new definition satisfies almost all the requirements of standard
derivative, such as, the chain rule, integration by part, fractional power series expan-
sions. For recent results from conformable fractional calculus we refer the readers
to [3, 13].

In this paper, we consider the following 2α-order conformable fractional Sturm-
Liouville operator

ℓα(y) = −Tα (pTαy) + qy, x ∈ [a,∞), a > 0, (1.2)

where p > 0, q are real-valued continuous functions and p is α-differentiable and
Tα denotes the conformable fractional derivative of order 0 < α ≤ 1, we note that
when α = 1, (1.2) reduce to (1.1).

In 2018, Dumitru Baleanu [4] promoted the Levinson criterion to 2α-order con-
formable fractional Sturm-Liouville operator.

Theorem 1.6 (Dumitru Baleanu [4]). Suppose M(x) is a positive, α−nondecreasing
function on [a,∞), a > 0. If

(i) for sufficiently large value of x, q(x) > −KM(x), where K is a constant;
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(ii)
∫ ∞

a

1√
pM

dαx = ∞;

(iii) lim sup
x→∞

TαM · √p
√
M3

< ∞,

then the operator ℓα(y) is of the LPC at ∞.

In 2020, Z. Zheng et.al. [22] promoted the Read criterion to 2α-order conformable
fractional Sturm-Liouville operator.

Theorem 1.7. Suppose that w(x) is a non-negative local absolutely continuous
function defined on [a,∞), a > 0 and q(x) = q1(x) + q2(x) + q3(x), such that

(1) q1(x) ≥ 0, for some δ > 0, there exists a constant K, such that (1+δ)p(Tαw)
2−

q1w
2 ≤ K;

(2) −q2w
2 ≤ K;

(3) There exists a constant d with 0 ≤ d ≤ 1 such that wdp−
1
2 |Q| ≤ K, where

TαQ = q3w
1−d;

(4)
∫ ∞

a

w2

(
q1
p

) 1
2

dαx = ∞.

Then the operator ℓα(y) is of the LPC at ∞.

Theorem 1.8. Suppose that w(x) is a non-negative local absolutely continuous
function on [a,∞), a > 0, and q(x) = q1(x) + q2(x) + q3(x). If conditions (1)-(3)
are fulfilled, and

(4)’
∫ ∞

a

wp−
1
2 dαx = ∞,

then the operator ℓα(y) is of the LPC at ∞.

Theorem 1.9. For sufficiently large value of x, if q(x) > −Kx2α, K > 0, then the
operator ℓα(y) is of the LPC at ∞.

Based on the above information, a natural problem is that whether the Eastham-
Thompson-Read interval-type LPC criterion and Read interval-type criterion can
be improved to the 2α-order conformable fractional Sturm-Liouville operator (1.2).
In this paper, we give a confirm answer to these questions.

The rest of the paper is organized as follows: In Section 2, we recall some
definitions and results of conformable fractional calculus. In Section 3, we use an
example to introduce the possibility of 2α-order conformable fractional interval-
type criteria and obtain limit-point interval-type criteria for 2α-order conformable
fractional Sturm-Liouville operator. Two examples illustrating the main results are
presented in Section 4.

2. Conformable Fractional Calculus
In this section, we give the definitions and properties of conformable fractional
derivative and integral, which are important to the proofs of the main results.
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Definition 2.1 ( [13]). For given a function u : [0,∞) → R, the left conformable
fractional derivative of u of order α is defined by

(Tt0
α u)(t) = u(α)(t) = lim

ε→0

u(t+ ε(t− t0)
1−α)− u(t)

ε
,

for all t > 0, α ∈ (0, 1]. When α = 1, this derivative of u(t) coincides with u′(t). If
(Tt0

α u)(t) exists on (t0, t1) £¬ then
(Tt0

α u)(t0) = lim
t→t0

u(α)(t).

By the definition of the left conformable fractional derivative, we see that
(Tt0

α u)(t) > 0 on an interval implies the monotone increasing of u on this interval.

Definition 2.2. Let α ∈ (0, 1]. The left conformable fractional integral of order α
starting at t0 is defined by

(It0α u)(t0) =

∫ t

t0

(s− t0)
α−1u(s) ds :=

∫ t

t0

u(s) dαt0s.

If the conformable fractional integral exists, we call u is α–integrable.

Lemma 2.1 (see [1]). Let α ∈ (0, 1], and u ∈ C1 ([t0,∞) ,R). Then for all t > t0
we have

It0α Tt0
α u(t) = u(t)− u(t0),

and
Tt0

α It0α u(t) = u(t).

Lemma 2.2 (see [13]).
(1) Tt0

α (au+ bv) = aTt0
α (u) + bTt0

α (v) for all real constant a, b.
(2) Tt0

α (uv) = uTt0
α (v) + vTt0

α (u).

(3) Tt0
α (tp) = ptp−α for all p.

(4) Tt0
α (uv ) =

vTt0
α (u)− uTt0

α (v)

v2
.

(5) Tt0
α (c) = 0, where c is a constant.

Lemma 2.3 (see [1]). Let u, v : [t0, t1] → R be two functions with u, v being
differentiable. Then∫ t1

t0

u(s)Tαv(s)d
α
t0s = u(s)v(s)|t1t0 −

∫ t1

t0

v(s)Tαu(s)d
α
t0s.

Lemma 2.4 (Chain Rule, see [15]). Let u : R → R be a differential function and
y(t) : R → R be an α−differentiable function. Then we get

Tαu(y(t)) = u′(y(t))Tαy(t). (2.1)
Similar to the second order Sturm-Liouvile equation, we introduce the second

order conformable fractional Sturm-Liouville equation as
ℓα(y) = −Tα (pTαy) + qy = λy, x > 0, (2.2)

where p > 0, q are real-valued continuous functions and p is α-differentiable on
given interval. By a solution of (2.2), we mean a function y(t) which satisfies (2.2)
a.e. on [0,∞). If the coefficients in (2.2) are smooth sufficiently, then the equation
(2.2) turns into

− x1−α
(
px1−αy′

)′
+ qy = λy, x > 0. (2.3)
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3. Limit-point interval-type criteria
In this section, we give an example to illustrate the possibility of interval-type cri-
teria of LPC for 2α-order conformable fractional differential operator firstly. Then
we give interval-type theorems of LPC for 2α-order conformable fractional Sturm-
Liouville operators.

Example 3.1. Consider the 2α-order conformable fractional differential operator

Mα(y) ≡ −Tα(Tαy)− (xn +
1

α
xαe

1
αxα

cos e
1
αxα

)y on [a,∞)

with a > 0, α ∈ (0, 1]. We obtain that Mα(y) is of the LPC at ∞ when n ≤ 2α.

Proof. By Mα(y) = 0, we see that p(x) = 1. Taking

w = x−α, q1 = 0, q2 = −xn, q3 = − 1

α
xαe

1
αxα

cos e
1
αxα

,

we verify all the conditions of Theorem 1.8. According to the conformable frac-
tional calculus, we get (1 + δ)p(Tαx

m)2 − q1w
2 = (1 + δ)α2x−4α ≤ K, thus

condition (1) holds; we get −q2w
2 = xnx−2α = xn−2α, and since n ≤ 2α, we

get xn−2α is bounded, hence condition (2) is fulfilled. Moreover, we see that∫∞
a

wp−
1
2 dαx =

∫∞
a

x−αdαx = 1
α ln(xα)

∣∣∞
a

= ∞ implies (4)’ holds. Now, let
d = 1, q3 = − 1

αx
αe

1
αxα

cos e
1
αxα

, Q =
∫ x

1
− 1

α t
αe

1
α tα cos e

1
α tαdαt, we obtain that

wdp−
1
2 |Q| = 1

xα

∣∣∣∫ x

1
− 1

α t
αe

1
α tα cos e

1
α tαdαt

∣∣∣ ≤ K. According to Lemma 2.3 and
integrating by parts, we obtain

1

xα

∣∣∣∣∫ x

1

− 1

α
tαe

1
α tα cos e

1
α tαdαt

∣∣∣∣
=

1

xα

∣∣∣∣− 1

α
tα · sin e 1

α tα
∣∣∣∣x
1

+

∫ x

1

sin e
1
α tαdt

∣∣∣∣
≤ 1

xα

(∣∣∣∣− 1

α
xα · sin e 1

αxα

∣∣∣∣+ | 1
α
sin e

1
α |+ 1

α
xα − 1

α

)
≤ 2

α
≤ K.

Hence all conditions of Theorem 1.8 are fulfilled, so the 2α-order conformable frac-
tional differential operator Mα(y) is of the LPC at ∞ when n ≤ 2α.

This example shows that although the oscillation of q(x) is strong, it even break
through the speed of q(x) → ∞ in Theorem 1.8, but it still maintains the LPC
for conformable fractional Sturm-Liouville operators. Therefore, in order to ensure
that M is of the LPC, there is no requirement for the whole property of q(x) in
the interval [a,∞), q(x) needs only to have better properties in a part of the range.
This leads to the following interval-type criteria of LPC.

Theorem 3.1. If there exist mutually disjoint intervals In = [an, bn] (n=1, 2, · · · )
with bn → ∞ as n → ∞, and a sequence of positive numbers {vn}, such that

(1) vnP
2
n ≥ K > 0, where Pn =

∫ bn

an

1√
p(x)

dαx;
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(2)
∞∑

n=1

1

vn
= ∞;

(3)
∫ bn

an

q−(x)dαx ≤ Cv2nP
3
n min

In

√
p(x), where q−(x) = min{q(x), 0}.

Then ℓα(y) is of the LPC at ∞.

Proof. We give the proof by three steps.
Step One. Defining function w(x).

We define
[
vnP

2
n

]
as the integer part of vnP 2

n , then we get 1 ≤
[
vnP

2
n

]
≤ vnP

2
n <[

vnP
2
n

]
+ 1. We divide In into

[
vnP

2
n

]
+ 1 intervals Jni

(i=1, 2, · · · ,
[
vnP

2
n

]
+ 1),

we see that
1

2vnPn
≤
∫
Jni

p−
1
2 (x)dαx ≤ 1

vnPn
(3.1)

at each of such intervals Jni
.

If more than half of the intervals satisfy∫
Jni

q−(x)dαx > 2CvnPn min
In

√
p(x),

then we get[
vnP

2
n

]
+ 1

2

∫
J

q−(x)dαx > CvnPn

([
vnP

2
n

]
+ 1
)
min
In

√
p(x) > Cv2nP

3
n min

In

√
p(x).

So the remaining intervals Jnj
must be satisfied∫

Jnj

q−(x)dαx ≤ 2CvnPn min
In

√
p(x). (3.2)

On each such an interval Jnj
= [c, d], we take e ∈ [c, d], such that∫ e

c

p−
1
2 (x)dαx =

1

2

∫ d

c

p−
1
2 (x)dαx, (3.3)

we define

w(x) =


∫ x

c

p−
1
2 (t)dαt, c ≤ x ≤ e,

w(e)−
∫ x

e

p−
1
2 (t)dαt, e < x ≤ d.

On the other parts of In and the complementary set of ∪nIn, we define w(x) = 0.
Hence w(x) is a non-negative local absolutely continuous function, and

max
J

w(x) = w(e) =
1

2

∫
J

p−
1
2 (x)dαx ≤ 1

2vnPn
. (3.4)

Moreover, on the intervals Jnj
= [c, d] satisfying (3.2),

Tα(w(x)) =


Tα

∫ x

c

p−
1
2 (t)dt = p−

1
2 (x), c ≤ x ≤ e,

Tα

[
w(e)−

∫ x

e

p−
1
2 (t)dt

]
= −p−

1
2 (x), e < x ≤ d.
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On the other parts of In and the complementary set of ∪nIn, Tα(w(x)) = 0 a.e., so
p(Tαw)

2 ≤ K.
Step Two. Dividing potential function p(x).

On the
[
vnP

2
n

]
+ 1 subintervals Jnj

= [c, d] of each interval In, we define

q0(x) =
α

dα − cα

∫ d

c

q−(x)dαx.

Between In and In+1, i.e., [bn, an+1], we define

q0(x) =
α

aαn+1 − bαn

∫ an+1

bn

q−(x)dαx.

Then q0(x) is the step function on [a,∞). Obviously, [a,∞) contains some subin-
tervals I, which satisfies ∫

I

[q−(x)− q0(x)] dαx = 0.

Let q1(x) = 0, q2(x) = q+(x)− q0(x), q3(x) = −q−(x) + q0(x). Then q(x) = q1(x) +
q2(x) + q3(x).

Step Three. Verifying the conditions of Theorem 1.8.
Firstly, it is easy to see that

(1 + δ)p(Tαw)
2 − q1w

2 = (1 + δ)p(Tαw)
2 ≤ (1 + δ)K. (3.5)

Secondly, on the intervals where the inequality (3.2) is not satisfied, w(x) = 0, then
q0w

2 = 0. And on the intervals satisfying the inequality (3.2),

q0w
2 =

(
α

dα − cα

∫ d

c

q−(x)dαx

)
w2 ≤ α

dα − cα
2CvnPn min

In

√
p(x)

1

4v2nP
2
n

.

Because of ∫ d

c

p−
1
2 (x)dαx ≤ max

(
1√
p(x)

)∫ d

c

dαx =
dα − cα

αminIn
√
p(x)

,

we have
αminIn

√
p(x)

dα − cα
≤ 1∫ d

c
p−

1
2 (x)dαx

≤ 2vnPn,

then we get
q0w

2 ≤ C.

So for the interval ∪nIn,

− q2w
2 = (q0 − q+)w

2 ≤ C − q+w
2 ≤ C. (3.6)

Thirdly, we take d = 1 and notice that wp−
1
2

∣∣∫ x

a
q3(t)dαt

∣∣ ̸= 0 only in the interval
Jnj

that satisfies inequality (3.2). When x ∈ Jnj
= [c, d],∫ x

a

q3(t)dαt =

∫ c

a

q3(t)dαt+

∫ x

c

q3(t)dαt =

∫ x

c

q3(t)dαt.
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Hence we get

wp−
1
2

∣∣∣∣∫ x

a

q3(t)dαt

∣∣∣∣ ≤ 1

2vnPn
√
p

∣∣∣∣∫ x

c

q3(t)dαt

∣∣∣∣
=

1

2vnPn
√
p

∣∣∣∣−∫ x

c

q−(t)dαt+

∫ x

c

q0(t)dαt

∣∣∣∣
=

1

2vnPn
√
p

∣∣∣∣−∫ x

c

q−(t)dαt+
1
α (x

α − cα)α

dα − cα

∫ x

c

q−(t)dαt

∣∣∣∣
≤ 1

vnPn
√
p

∫ d

c

q−(t)dαt ≤
2CvnPn min

√
p

vnPn
√
p

≤ 2C.

(3.7)
Finally, since∫

J

wp−
1
2 dαx

=

∫ e

c

1
√
p

(∫ x

c

p−
1
2 dαt

)
dαx+

∫ d

e

w(e)
√
p
dαx−

∫ d

e

1
√
p

(∫ x

c

p−
1
2 dαt

)
dαx

=
1

2

(∫ e

c

p−
1
2 dαx

)2

+
1

4

(∫
J

p−
1
2 dαx

)2

− 1

2

(∫ d

e

p−
1
2 dαx

)2

=
1

4

(∫
J

p−
1
2 dαx

)2

≥
(

1

4vnPn

)2

,

so we get∫ ∞

a

wp−
1
2 dαx ≥

∑
n

∫
In

wp−
1
2 dαx ≥

∑
n

[
vnP

2
n

]
+ 1

2

(
1

4vnPn

)2

≥ 1

32

∑
n

1

vn
= ∞.

(3.8)

By (3.5)-(3.8), the conditions (1)-(4) of Theorem 1.8 are fulfilled, so ℓα(y) is of the
LPC at ∞.

Remark 3.1. For the special case of α = 1, Theorem 3.1 reduces to Theorem 1.4
in [8].

Theorem 3.2. If there exist mutually disjoint intervals Jn (n=1, 2, · · · ), such that

(1) q(x) ≥ 0 for x ∈ Jn.

(2) There exist constants γ > 0, 0 < c < 1 and subinterval In ⊂ Jn(n = 1, 2, · · · ),
such that

∫
J
p−

1
2 dαx ≥ γ

∫
In

p−
1
2 dαx on each connected component J of Jn\In,

and
∞∑

n=1

{
exp

[
c

∫
In

(
q

p

) 1
2

dαx

]
− 1

}(∫
Jn

p−
1
2 dαx

)2

= ∞.

Then ℓα(y) is of the LPC at ∞.

Proof. We give the proof by three steps.
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Step One. Defining function w(x).
For given Jn = [an, bn], we divide it appropriately into three subintervals [c0n, c1n],
In = [c1n, c3n] and [c3n, c4n] with c0n = an, c4n = bn such that∫ c1n

c0n

p−
1
2 dαx =

∫ c4n

c3n

p−
1
2 dαx = γ

∫
Jn

p−
1
2 dαx, (3.9)

then we take c2n ∈ (c1n, c3n), such that∫ c2n

c1n

(
q

p

) 1
2

dαx =

∫ c3n

c2n

(
q

p

) 1
2

dαx. (3.10)

Outside the interval ∪nJn, we take w(x) = 0, and define w(x) on Jn as follows:

w(x) =



∫ x

c0n

p−
1
2 dαt, c0n ≤ x ≤ c1n,

w (c1n) exp

[
c

∫ x

c1n

(
q

p

) 1
2

dαt

]
, c1n ≤ x ≤ c2n,

w (c1n) exp

[
c

∫ c3n

x

(
q

p

) 1
2

dαt

]
, c2n ≤ x ≤ c3n,∫ c4n

x

p−
1
2 dαt, c3n ≤ x ≤ c4n.

(3.11)

By (3.11), we get when c0n < x < c1n and c3n < x < c4n, there is p(Tαw)
2 = 1,

and when c1n < x < c2n, we get

llTα(w(x)) = w (c1n) exp

[
c

∫ x

c1n

(
q

p

) 1
2

dαt

]
· Tα

[
c

∫ x

c1n

(
q

p

) 1
2

dαt

]

= w(x) · c
(
q

p

) 1
2

,

and using the same method, when c2n < x < c3n, we have

Tα(w(x)) = −w(x) · c
(
q

p

) 1
2

.

Step Two. Dividing potential function p(x).
We take q1(x) = 0, q2(x) = p(x), q3(x) = 0 outside the interval ∪nJn, and take
q1(x) = q(x), q2(x) = 0, q3(x) = 0 on the interval ∪nJn.

Step Three. Verifying the conditions of Theorem 1.7.
Obviously, q1(x) ≥ 0, we take δ = 1

c2 > 0, K ≥ 1
c2 then by (3.5),

(1 + δ)p(Tαw)
2 − q1w

2 ≤ K, (3.12)

hence (1) holds. (2) holds obviously since

− q2w
2 = 0 ≤ K. (3.13)
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Now, q3 = 0, then Q = C. So

wdp−
1
2 |Q| = wdp−

1
2 |C| ≤ K (3.14)

implies (3) is true. Finally, since∫
Jn

w2

(
q1
p

) 1
2

dαx =

∫
Jn

w2

(
q

p

) 1
2

dαx ≥
∫ c2

c1

w2

(
q

p

) 1
2

dαx

=

∫ c2

c1

w2 (c1) exp

[
2c

∫ x

c1

(
q

p

) 1
2

dαt

]
dα

(∫ x

c1

(
q

p

) 1
2

dαt

)

=
w2 (c1)

2c
exp

[
2c

∫ x

c1

(
q

p

) 1
2

dαdt

]∣∣∣∣∣
c2

c1

=
w2 (c1)

2c

{
exp

[
2c

∫ c2

c1

(
q

p

) 1
2

dαx

]
− 1

}

=
γ2

2c

{
exp

[
c

∫
In

(
q

p

) 1
2

dαx

]
− 1

}(∫
Jn

p−
1
2 dαx

)2

,

(3.15)
so∫ ∞

a

w2

(
q1
p

) 1
2

dαx ≥ γ2

2c

∞∑
n=1

{
exp

[
c

∫
In

(
q

p

) 1
2

dαx

]
− 1

}(∫
Jn

p−
1
2 dαx

)2

= ∞.

(3.16)
i.e., (4) holds. By (3.5)-(3.8), the conditions (1)-(4) of Theorem 1.7 are fulfilled,
then ℓα(y) is of the LPC at ∞.

Remark 3.2. For the special case of α = 1, Theorem 3.2 reduces to Theorem 1.5
introduced in [19].

4. Examples
In this section, we give two examples to verify our main results.

Example 4.1. Consider the 2α-order conformable fractional differential operator

Mα(y) ≡ −Tα(Tαy)− xδ sin(xβ)y on [a,∞)

with a > 0, α ∈ (0, 1]. We obtain that Mα(y) is of the LPC at ∞ when 0 ≤ β ≤ 2α.

Proof. We take In =
[
((2n− 1)π)

1
β , (2nπ)

1
β

]
(n = 1, 2, · · · ), obviously q(x) ≥ 0

on In, so q−(x) = 0 and by the definition of Pn in Theorem 3.1,

Pn = (2nπ)
α
β − ((2n− 1)π)

α
β = (2nπ)

α
β

[
1−

(
1− 1

2n

)α
β

]
= O

(
n

α
β −1

)
. (4.1)

Then we take vn = n−2(α
β −1) and verify the conditions of Theorem 3.1. According

to the conformable fractional calculus, we get vnP
2
n = n−2(α

β −1) · O
(
n2(α

β −1)
)
≥
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K > 0; and
∑∞

n=1
1
vn

=
∑∞

n=1 n
2(α

β −1), hence when 2(αβ −1) ≥ −1, i.e., 0 < β ≤ 2α,

∞∑
n=1

1

vn
=

∞∑
n=1

n2(α
β −1) = ∞;

since q−(x) = 0, it is obviously that
∫ bn
an

q−(x)dαx ≤ Cv2nP
3
n minIn

√
p(x) holds.

Hence by Theorem 3.1, the 2α-order conformable fractional differential operator
Mα(y) is of the LPC at ∞ when 0 ≤ β ≤ 2α.

Example 4.2. Consider the 2α-order conformable fractional differential operator

Mα(y) ≡ −Tα(Tαy)− xδ sin(πxβ)y on [a,∞)

with a > 0, α ∈ (0, 1], δ, β > 0. We obtain that Mα(y) is of the LPC at ∞ when
β − δ

2 < α.

Proof. By the definition of Mα(y), it is clear that the potential function q(x) → ∞
on some intervals. Then we take Jn=

[
(2n)

1
β , (2n+1)

1
β

]
, In=

[(
2n+ 1

6

) 1
β ,
(
2n+ 5

6

) 1
β

]
,

and verify the conditions of Theorem 3.2. We get:
(1) It is clear that q(x) ≥ 0, when x ∈ Jn;
(2) According to the conformable fractional calculus, we get

∫
In

(
q

p

) 1
2

dx =

∫
In

x
δ
2

√
sinπxβdx ≥ 1√

2

∫
In

x
δ
2 dx

=
1√

2
(
δ
2 + α

) [(2n+
5

6

) 1
β (

δ
2+α)

−
(
2n+

1

6

) 1
β (

δ
2+α)

]

=
1√

2
(
δ
2 + 1

) (2n+
5

6

) 1
β (

δ
2+α)

1− (1− 4
6

2n+ 5
6

) 1
β (

δ
2+α)


= O

(
n

1
β (

δ
2+α)−1

)
.

(4.2)

Since there is an exponential function in (2), we only need to make 1
β

(
δ
2 + α

)
−1 > 0,

i.e. β − δ
2 < α. Then

∞∑
n=1

{
exp

[
c

∫
In

(
q

p

) 1
2

dαx

]
− 1

}(∫
Jn

p−
1
2 dαx

)2

= ∞.

Hence, the 2α-order conformable fractional differential operator Mα(y) is of the
LPC at ∞ when β − δ

2 < α.
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