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WEAK N-BEST POAFD FOR SOLVING
PARABOLIC EQUATIONS IN REPRODUCING

KERNEL HILBERT SPACE
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Abstract The analytical solutions and numerical ones of parabolic equations
in one space variable and the time variable are constructed by weak N-best
pre-orthogonal adaptive Fourier decomposition method (weak N-best POAFD)
in reproducing kernel Hilbert space (RKHS). To apply weak N-best POAFD,
we first choose a dictionary for weak N-best POAFD and implement pre-
orthonormalization to all dictionary elements. Then select some parameters
by weak N-best maximal selection principle and determine some normalized
dictionary elements iteratively. Thus, the analytical solution can be expressed
as a linear combination of these determined normalized dictionary elements
with a fast convergence rate. Some numerical examples confirm the good
accuracy and applicability of the weak N-best POAFD method in solving the
partial differential equations.
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1. Introduction
Consider the following one-dimensional time-dependent partial differential equation
defined on Ω = [0, 1]2

ut − a(t)uxx = f(x, t), (x, t) ∈ (0, 1)2, (1.1)

with the conditions

u(0, t) = g0(t), u(1, t) = g1(t), 0 ≤ t ≤ 1,

u(x, 0) = v0(x), 0 ≤ x ≤ 1,
(1.2)

where u is a dependent variable, t is an initial-value independent variable, x is a
boundary-value independent variable, u is unknown, and the variables f , v0, g0, g1
are known. a > 0, a, f ∈W (1,1)(Ω), u ∈W (3,2)(Ω), where W (1,1)(Ω) and W (3,2)(Ω)
are reproducing kernel Hilbert spaces defined in Section 2. Suppose that f is given
such that PDE (1.1)–(1.2) satisfies the existence and uniqueness of the solution.

First, we homogenize the initial and boundary conditions in (1.1)-(1.2) to obtain

ūt − a(t)ūxx = F (x, t), (x, t) ∈ (0, 1)2,
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ū(0, t) = 0, ū(1, t) = 0, 0 ≤ t ≤ 1, (1.3)
ū(x, 0) = 0, 0 ≤ x ≤ 1,

where ū = u− v0(x)− x(g1(t)− g1(0))− (1− x)(g0(t)− g0(0)), F (x, t) = f(x, t)−

x
dg1(t)

dt
− (1− x)

dg0(t)

dt
+ a(t)

d2v0(x)

dx2
. For convenience and without ambiguity, ū

is still marked with u.
We introduce a linear operator L :W (3,2)(Ω) →W (1,1)(Ω),

(Lu)(x, t) = ut − a(t)uxx.

Then the problem (1.3) can be converted to the following problem with homogeneous
conditions 

Lu(x, t) = F (x, t), (x, t) ∈ (0, 1)2,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 1,

u(x, 0) = 0, 0 ≤ x ≤ 1.

(1.4)

PDEs have many applications in various fields, but the analytical solutions of
most PDEs are hard to obtain. So numerical procedures are needed to find approx-
imate solutions. Many computational methods have been developed and applied to
approximate the solution of PDE. Such as finite difference methods (FDMs) [7]; the
method of weighted residuals (MWR) [5], like the Galerkin methods and collocation
methods [13]; Wavelet methods [12], and finite element method [14] etc. In RKHS,
Cui et al. presented the reproducing kernel method (RKM), and many researchers
devoted themselves to applying RKM to solve PDEs [1, 2, 4, 6].

On the other hand, Qian and his co-workers have proposed adaptive Fourier de-
composition (AFD) type methods, including AFD, pre-orthogonal adaptive Fourier
decomposition (POAFD) and several other variations [8,10,11], as sparse non-basis
methods for more general approximation problems in RKHS. Based on the max-
imal selection principle they adopted, this type of approximation representation
converges fast in the first few steps.

Thanks to the previous work of Cui et al. on RKM, and inspired by the ad-
vantage of the AFD type method benefitting from its maximal selection principle,
we aim to obtain the solution of PDE (1.4) by weak N-best POAFD. For the weak
N-best POAFD method, we choose the system {L∗KP }P∈Ω used by Cui et al. [4]
as a dictionary such that the solution of (1.4) has a simple expression. However,
the boundary vanishing condition for POAFD does not hold under the dictionary
we choose. Thus, we select parameters by the weak N-best maximal selection prin-
ciple. Here, “weak” means a weak type optimal selection strategy that establishes
the existence of parameters to make the residual as small as possible at each step.
“N-best” means we choose more than one parameter minimizing the residual as
much as possible iteratively. Such selection principle is more greedy than that of
the existing orthogonal greedy algorithm, thus the weak N-best POAFD has better
convergence property.

This paper is organized as follows. In Section 2, we introduce RKHSs related
to (1.4). In Section 3, we construct the analytical solutions and numerical ones by
the weak N-best POAFD method. And the convergence properties of the numerical
solutions, as well as the stability of the weak N-best POAFD method, are discussed.
Numerical experiments are carried out in Section 4. The paper ends with a brief
conclusion in Section 5.
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2. Several reproducing kernel Hilbert spaces
In this section, we introduce the following RKHSs W 1[0, 1], W 2[0, 1] and W 3[0, 1].
For convenience, we use the notations ∥·∥W 1= ∥·∥W 1[0,1], ∥·∥W 2= ∥·∥W 2[0,1], and
∥·∥W 3= ∥·∥W 3[0,1]. The same is true for their inner products.

Definition 2.1 (Theorem 1.3.2, [4]). The Sobolev space W 1[0, 1] is defined as
follows

W 1[0, 1] = {w|w is absolutely continuous on [0, 1], w′ ∈ L2[0, 1].}

under the inner product and the norm

⟨w, v⟩W 1 = w(0)v(0) +

∫ 1

0

w′(ξ)v′(ξ)dξ, w, v ∈W 1[0, 1],

∥w∥W 1=
√

⟨w,w⟩W 1 , w ∈W 1[0, 1].

The Hilbert space W 1[0, 1] is a RKHS admitting the reproducing kernel

K1(s, t) = K1
t (s) =

{
1 + s, s ≤ t,

1 + t, s > t.
(2.1)

Definition 2.2 (Theorem 1.3.5, [4]). The Sobolev space W 2[0, 1] is defined as

W 2[0, 1] = {w|w′ is absolutely continuous on [0, 1], w
′′
∈ L2[0, 1], w(0) = 0}

with the inner product and the norm respectively given by

⟨w, v⟩W 2 = w(1)v(1) +

∫ 1

0

w
′′
(ξ)v

′′
(ξ)dξ, w, v ∈W 2[0, 1],

∥w∥W 2=
√
⟨w,w⟩W 2 , w ∈W 2[0, 1].

(2.2)

The space W 2[0, 1] is a RKHS with the reproducing kernel

K2(s, t) = K2
t (s) =


1

6
s(s2(t− 1) + t(8− 3t+ t2)), s ≤ t,

1

6
t(−3s2 + s3 − t2 + s(8 + t2)), s > t.

(2.3)

Definition 2.3 (Theorem 1.3.5, [4]). The RKHS W 3[0, 1] is defined as

W 3[0, 1] = {w|w′′ is absolutely continuous, w(3) ∈ L2[0, 1], w(0) = w(1) = 0}

with the inner product and the norm defined by

⟨w, v⟩W 3 = w′(0)v′(0) +

∫ 1

0

w(3)(ξ)v(3)(ξ)dξ, w, v ∈W 3[0, 1],

∥w∥W 3=
√

⟨w,w⟩W 3 , w ∈W 3[0, 1].

(2.4)

The RKHS W 3[0, 1] has the reproducing kernel

K3(s, t) =


− s(t− 1)

120
(120t− 5s3t+ s4(1 + t) + st(t3 − 4t2 + 6t− 120)), s ≤ t,

− t(s− 1)

120
(6s2t− 4s3t+ s4t+ t4 + s(120− 120t− 5t3 + t4)), s > t.
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Remark 2.1. For the reproducing kernels K1(s, t) of W 1[0, 1], K2(s, t) of W 2[0, 1]
and K3(s, t) of W 3[0, 1], they satisfy the following:
(i) The reproducing properties: for any s, t ∈ [0, 1], any wi ∈ W i[0, 1], i = 1, 2, 3,
then

⟨wi,K
i
t⟩W i = wi(t). (2.5)

(ii) The symmetric properties:

Ki(s, t) = Ki(t, s). (2.6)

Let Ω = [0, 1]× [0, 1]. We can define the tensor products of RKHSs W (3,2)(Ω) =
W 3[0, 1]×W 2[0, 1] and W (1,1)(Ω) = W 1[0, 1]×W 1[0, 1] as follows. For simplicity,
we use the following notations ∥·∥= ∥·∥W (3,2)(Ω) and ∥·∥W (1,1)= ∥·∥W (1,1)(Ω). The
same is true for their inner products.

Definition 2.4 (Theorem 1.5.2, [4]). The space W (3,2)(Ω) is defined as

W (3,2)(Ω) =

u
∣∣∣∣∣∣∣∣
u : Ω → R2,

∂3u

∂x2∂t
exists and is completely continuous,

∂5u

∂x3∂t2
∈ L2(Ω), u(0, t) = u(1, t) = u(x, 0) = 0.


The inner product and the norm in W (3,2)(Ω) are given by

⟨u, v⟩ =
〈
du(0, t)

dx
,
dv(0, t)

dx

〉
W 2

+

∫ 1

0

d3u(x, 1)

dx3
· d

3v(x, 1)

dx3
dx

+

∫ 1

0

∫ 1

0

∂5u(x, t)

∂x3∂t2
· ∂

5v(x, t)

∂x3∂t2
dtdx,

∥u∥=
√
⟨u, u⟩, u ∈W (3,2)(Ω).

(2.7)

W (3,2)(Ω) is a RKHS with reproducing kernel [4]

K(3,2)(x, ξ, t, η) = K
(3,2)
(ξ,η)(x, t) = K3(x, ξ)K2(t, η), (2.8)

where K3, K2 are the reproducing kernels of W 3[0, 1] and W 2[0, 1], respectively.
Similarly, we can define the second tensor product of RKHS W (1,1)(Ω) [4].

W (1,1)(Ω) =

{
u|u : Ω → R2, u is completely continuous on Ω,

∂2u

∂x∂t
∈ L2(Ω)

}
with the inner product and the norm as follows:

⟨f, g⟩W (1,1) = ⟨f(0, t), g(0, t)⟩W 1 +

∫ 1

0

df(x, 0)

dx
· dg(x, 0)

dx
dx

+

∫ 1

0

∫ 1

0

∂2f(x, t)

∂x∂t
· ∂

2g(x, t)

dxdt
dtdx,

∥f∥W (1,1)=
√
⟨f, f⟩W (1,1) .

(2.9)

The RKHS W (1,1)(Ω) has reproducing kernel [4]

K(1,1)(x, ξ, t, η) = K
(1,1)
(ξ,η)(x, t) = K1(x, ξ)K1(t, η), (2.10)

where K1 is the reproducing kernel of W 1[0, 1].
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Remark 2.2. For any x, t, ξ, η in [0, 1], any f ∈W (1,1)(Ω) and any u ∈W (3,2)(Ω),
the reproducing kernels K(1,1) of W (1,1)(Ω) and K(3,2) of W (3,2)(Ω) satisfy the
following:
(i) Reproducing properties:

u(ξ, η) = ⟨u(x, t),K(3,2)(x, ξ, t, η)⟩ = ⟨u(x, t),K(3,2)
(ξ,η)(x, t)⟩; (2.11)

f(ξ, η) = ⟨f(x, t),K(1,1)(x, ξ, t, η)⟩W (1,1) = ⟨f(x, t),K(1,1)
(ξ,η)(x, t)⟩W (1,1) . (2.12)

(ii) Symmetric properties: it follows from the symmetric property of K1, K2, K3

(2.6) that

K
(3,2)
(ξ,η)(x, t) = K(3,2)(x, ξ, t, η) = K(3,2)(ξ, x, η, t) = K

(3,2)
(x,t) (ξ, η); (2.13)

K
(1,1)
(ξ,η)(x, t) = K(1,1)(x, ξ, t, η) = K(1,1)(ξ, x, η, t) = K

(1,1)
(x,t) (ξ, η). (2.14)

Lemma 2.1. The operator L :W (3,2)(Ω) →W (1,1)(Ω) defined in (1.4) is a bounded
linear operator.

3. Weak N-best POAFD for solutions and error es-
timate

In the following discussion, we assume that L has bounded inverse L−1 mapping
from W (1,1)(Ω) to W (3,2)(Ω). We construct the dictionary D in W (3,2)(Ω) for weak
N-best POAFD first.

Let X = {(xi, ti)}j≥1 ⊂ Ω, Y = {(ξj , ηj)}j≥1 ⊂ Ω, Qi = (xi, ti), Q = (x, t),
Q′ = (ξ, η). By the adjoint operator L∗ of L and the reproducing property of
K

(1,1)
Q ∈W (1,1)(Ω) in (2.12), we have the following important observation:

F (Q) = ⟨F,K(1,1)
Q ⟩W (1,1) = ⟨Lu,K(1,1)

Q ⟩W (1,1) = ⟨u, L∗K
(1,1)
Q ⟩ = ⟨u,hQi

⟩ (3.1)

for any f ∈W (1,1)(Ω) and any u ∈W (3,2)(Ω).

3.1. The dictionary of weak N-best POAFD
Lemma 3.1. Define functions ϕ : Ω → W (3,2)(Ω) and ψ : Ω → R as follows: for
any Q ∈ Ω,

ϕ(Q) = hQ = L∗K
(1,1)
Q , ψ(Q) = ∥hQ∥.

Then (i) ϕ and ψ are continuous on Ω; (ii) ϕ(Q) ̸= 0 and ψ(Q) > 0 for any Q ∈ Ω.

Proof. (i) By definition in (2.10), K(Q,Q′) is a continuous function on Ω2, so

∥K(1,1)
Q −K

(1,1)
P ∥2W (1,1)

= ⟨K(1,1)
Q −K

(1,1)
P ,K

(1,1)
Q −K

(1,1)
P ⟩W (1,1)

= ⟨K(1,1)
Q ,K

(1,1)
Q ⟩W (1,1) + ⟨K(1,1)

P ,K
(1,1)
P ⟩W (1,1) − 2⟨K(1,1)

Q ,K
(1,1)
P ⟩W (1,1)

= K(1,1)(Q,Q) +K(1,1)(P, P )− 2K(1,1)(P,Q) → 0, as Q→ P.
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As L and L∗ are continuous operators on W (3,2)(Ω) and W (1,1)(Ω) respectively, so

lim
Q→P

ϕ(Q) = lim
Q→P

hQ = lim
Q→P

L∗K
(1,1)
Q = L∗K

(1,1)
P = hP = ϕ(P ).

Thus, ϕ is continuous on Ω. The continuity of ψ follows from that of ϕ and ψ(Q) =
∥ϕ(Q)∥.

(ii) As L is invertible, so is L∗ for any Q ∈ Ω. It follows from K
(1,1)
Q ̸= 0 that

ϕ(Q) = hQ = L∗K
(1,1)
Q ̸= 0, and hence ψ(Q) = ∥ϕ(Q)∥ = ∥hQ∥ > 0.

Theorem 3.1. If X = {Qi}i≥1 is dense on Ω, then {hQi}i≥1 is the complete
function system of the space W (3,2)(Ω). If X consists of distinct points, then
{hQi

}i≥1 is linearly independent.

Proof. First, consider the completeness of {hQi}i≥1. For any V in the orthogonal
complement of the subspace spanned by {hQi

}i≥1 in W (3,2)(Ω), we have ⟨V,hQi
⟩ =

0, i = 1, 2, · · · , which means

⟨V, L∗K
(1,1)
Qi

⟩ = ⟨LV,K(1,1)
Qi

⟩W (1,1) = (LV )(Qi) = (LV )(xi, ti) = 0.

As X = {(xi, ti)}j≥1 is dense on Ω and LV is continuous on Ω, we have (LV )(x, t) =
0 for all (x, t) ∈ Ω. It follows from the existence of L−1 that V ≡ 0. Therefore, the
span of {hQi

(Q′)}i≥1 is a dense subspace of W (3,2)(Ω).
For the linear independence, suppose that for any fixed natural number n and

n∑
j=1

cjhQ′
j
= 0 for some c1, c2, · · · , cn ∈ R. Then, we have

0 =

n∑
j=1

cjhQ′
j
=

n∑
j=1

cjL
∗K

(1,1)
Q′

j
= L∗

[ n∑
j=1

cjK
(1,1)
Q′

j

]
. (3.2)

It follows from the boundedness of L−1 that L∗ also has a bounded inverse. There-
fore, (3.2) implies that

n∑
j=1

cjK
(1,1)
Q′

j
= 0.

It follows from (2.1), (2.10) and (2.14) that

det(K(1,1)(xi, ξj , ti, ηj))1≤i,j≤n = det(K
(1,1)
(ξj ,ηj)

(xi, ti))1≤i,j≤n

= det(K
(1,1)
Q′

j
(Qi))1≤i,j≤n

= det(Diag(K1(xi, ξj)K
1(ti, ηj)))

=

n∏
j=1

n∏
i=1

K(xi, ξj)K(ti, ηj) > 0. (3.3)

Then from (3.3) and Cramer’s rule that
n∑

j=1

cjK
(1,1)
Q′

j
(Qi) =

n∑
j=1

cjK
(1,1)
(ξj ,ηj)

(xi, ti) =

n∑
j=1

cjK
(1,1)(xi, ξj , ti, ηj) = 0

has only trivial solution. Hence {hQ′
j
}j≥1 is linearly independent. The proof is

complete.
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Theorem 3.1 shows that {hQ}Q∈Ω can be a dictionary D of W (3,2)(Ω). Let L(1)

and L(2) be operators on the space of functions defined on Ω2, in which L acts the
function K(3,2)(Q,Q′) on the first and second variable respectively. By symmetric
property of K(3,2) in W (3,2)(Ω) (2.11), we have

L(1)K
(3,2)
Q (Q′) = L(2)K

(3,2)
Q′ (Q).

Then we can express {hQ}Q∈Ω as follows:

Lemma 3.2. For any Q ∈ Ω define hQ = L∗K
(1,1)
Q ∈W (3,2)(Ω). Then

hQ′(Q) = (LK
(3,2)
Q )(Q′), for any Q,Q′ ∈ Ω, (3.4)

⟨hP ,hP ′⟩ = (L(1)L(2)K(3,2))(P, P ′), for any P, P ′ ∈ Ω. (3.5)

Proof. Due to reproducing property of K(1,1)(x, y), we have

hQ′(Q) = L∗K
(1,1)
Q′ (Q) = ⟨L∗K

(1,1)
Q′ ,K

(3,2)
Q ⟩ = ⟨K(1,1)

Q′ , LK
(3,2)
Q ⟩W (1,1)

= LK
(3,2)
Q (Q′) = L(2)K

(3,2)
Q′ (Q),

LhP ′(P ) = (L(1))(L(2)K
(3,2)
P ′ (P )) = (L(1)L(2))K

(3,2)
P ′ (P ).

And from (3.4) we have

⟨hP ,hP ′⟩ = ⟨L∗K
(1,1)
P ,hP ′⟩ = ⟨K(1,1)

P , LhP ′⟩W (1,1) = LhP ′(P )

= L(1)L(2)K
(3,2)
P ′ (P ).

This completes the proof.
We now explain how we can solve PDE (1.4) by weak N-best POAFD. The key

strategy of weak N-best POAFD is to choose a sequence {Qi}i≥1 of distinct points
successively by the weak N-best maximum selection principle below on minimizing
the norm of the residual ui as much as possible step by step, then the solution u of
equation PDE (1.4) is a linear combination of hQi

’s from the dictionary D.

3.2. The weak 1-best POAFD
For N = 1, suppose that we have selected n − 1 distinct parameters {Qi =
(xi, ti)}n−1

i=1 in Ω by weak maximal selection principle (3.8) in the first n− 1 steps.
The related normalized dictionary elements are {Bi = BQi}n−1

i=1 in W (3,2)(Ω) ob-
tained by applying Gram-Schmidt (G-S) orthonormalization to {hQi

}n−1
i=1 , where

Di(Qi) = hQi
−

i−1∑
j=1

⟨hQi
, Bj⟩Bj , 1 ≤ i ≤ n− 1, (3.6)

Bi =
Di(Qi)

∥Di(Qi)∥
=

hQi
−

i−1∑
j=1

⟨hQi
, Bj⟩Bj

∥hQi
−

i−1∑
j=1

⟨hQi
, Bj⟩Bj∥

. (3.7)

And un = u−
n−1∑
i=1

⟨u,Bi⟩Bi is the (n− 1)–th residual of u.
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To select the n–th parameter Qn at n–th step, we apply G-S orthonormalization
to the sequence (B1, · · · , Bn−1,hQ) for any Q ∈ Ω \ {Qi}n−1

i=1 to obtain a new
normalized sequence (B1, · · · , Bn−1, B

Q
n ), where

BQ
n =

hQ −
n−1∑
i=1

⟨hQ, Bi⟩Bi

∥hQ −
n−1∑
i=1

⟨hQ, Bi⟩Bi∥
.

Then the n–th point Qn ∈ Ω\{Qi}n−1
i=1 can be chosen by the following weak maximal

selection principle:

|⟨un, BQn
⟩| ≥ ρ sup

{
|⟨un, BQ

n ⟩|
∣∣∣ Q ∈ Ω \ {Qi}n−1

i=1

}
, (3.8)

where ρ ∈ (0, 1) is any fixed constant.
With the selected parameter {Qi}i≥1 and the normalized vector {Bi = BQi}i≥1,

we can express the solution u ∈W (3,2)(Ω) of PDE (1.4) as follows:

u = lim
n→∞

Sn =
∑
n≥1

⟨u,Bn⟩Bn, (3.9)

where n–th partial sum Sn is defined by

Sn =

n∑
i=1

⟨u,Bi⟩Bi. (3.10)

Such representation method is also called weak pre-orthogonal adaptive Fourier
decomposition (W-POAFD). The convergence of the series (3.9) can be checked
from [3,9].

3.3. The weak 2-best POAFD
For N = 2, after successive n− 1 steps with n ≥ 2, suppose that we have chosen
(i) the sequence (Q1, P1, Q2, P2, · · · , Qn−1, Pn−1) of 2(n− 1) distinct points in Ω.
(ii) 2(n− 1) orthonormal vectors

(BQ1
, BP1

, · · · , BQn−1
, BPn−1

) ∈W (3,2)(Ω)

obtained by applying G-S orthonormalization to (hQ1 ,hP1 , · · · ,hQn−1 ,hPn−1).
Define

Oi(Qi) = hQi
−

i−1∑
k=1

(⟨hQi
, BQk

⟩BQk
+ ⟨hQi

, BPk
⟩BPk

), (3.11)

then

BQi =
Oi(Qi)

∥Oi(Qi)∥
=

hQi
−

i−1∑
k=1

(⟨hQi
, BQk

⟩BQk
+ ⟨hQi

, BPk
⟩BPk

)

∥hQi
−

i−1∑
k=1

(⟨hQi
, BQk

⟩BQk
+ ⟨hQi

, BPk
⟩BPk

)∥
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=

i−1∑
k=1

(β
(Qi,Qk)
ik hQk

+ β
(Qi,Pk)
ik hPk

) + β
(Qi,Qi)
ii hQi , (3.12)

and

Ei(Pi) = hPi −
i−1∑
k=1

(⟨hPi , BQk
⟩BQk

+ ⟨hPi , BPk
⟩BPk

)− ⟨hPi , BQi⟩BQi , (3.13)

BPi =
Ei(Pi)

∥Ei(Pi)∥

=

hPi
−

i−1∑
k=1

(⟨hPi
, BQk

⟩BQk
+ ⟨hPi

, BPk
⟩BPk

)− ⟨hPi
, BQi

⟩BQi

∥hPi
−

i−1∑
k=1

(⟨hPi
, BQk

⟩BQk
+ ⟨hPi

, BPk
⟩BPk

)− ⟨hPi
, BQi

⟩BQi
∥

=

i∑
k=1

(β
(Pi,Qk)
ik hQk

+ β
(Pi,Pk)
ik hPk

)

(3.14)

for 1 ≤ i ≤ n− 1. Thus the sequence {BQ1 , BP1 , · · · , BQn−1 , BPn−1} is orthonormal
set.

(iii) For all k = 1, · · · , n− 1, u1 = u, we have

u =

k∑
i=1

(⟨ui, BQi
⟩BQi

+ ⟨ui, BPi
⟩BPi

) + uk+1, (3.15)

uk+1 = u−
k∑

i=1

(⟨ui, BQi⟩BQi + ⟨ui, BPi⟩BPi), (3.16)

where uk+1 is the k–th residual of u at the k–th step.

For all 1 ≤ k ≤ n− 1, from (3.16) and (ii), we have

⟨uk, BQk
⟩ = ⟨u−

k−1∑
i=1

(⟨ui, BQi⟩BQi + ⟨ui, BPi⟩BPi), BQk
⟩ = ⟨u,BQk

⟩,

⟨uk, BPk
⟩ = ⟨u,BPk

⟩.

(3.17)

And for 1 ≤ k ≤ j − 1,

⟨uj , BQk
⟩ = ⟨u−

j−1∑
i=1

(⟨ui, BQi⟩BQi + ⟨ui, BPi⟩BPi), BQk
⟩

= ⟨u,BQk
⟩ − ⟨uk, BQk

⟩ = 0,

⟨uj , BPk
⟩ = 0.

(3.18)

Define Ci(Qi, Pi) = |⟨ui, BQi
⟩|2 + |⟨ui, BPi

⟩|2. Then

⟨ui, BQi
⟩BQi

+ ⟨ui, BPi
⟩BPi

= ⟨u,BQi
⟩BQi

+ ⟨u,BPi
⟩BPi

, (3.19)
Ci(Qi, Pi) = |⟨u,BQi⟩|2 + |⟨u,BPi⟩|2. (3.20)
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If un = 0, stop the decomposition; otherwise, we continue to work out the
n–th decomposition of u. That is, we shall choose 2 distinct points Qn, Pn ∈
Ω \ {Qi, Pi }n−1

i=1 by the following strategy.
Denote by An := Ω\{Qi, Pi }n−1

i=1 the punctured region. For any fixed 2 distinct
points P, Q ∈ An, we get a new point sequence (Q1, P1, · · · , Qn−1, Pn−1, Q, P ) of
distinct points. Then from Theorem 3.1, the new vector

(hQ1
,hP1

, · · · ,hQn−1
,hPn−1

,hQ,hP )

is linearly independent. We can obtain the orthonormal set

{BQ1
, BP1

, · · · , BQn−1
, BPn−1

, BQ
n , B

P
n }

by applying G-S orthonormalization to (hQ1
,hP1

, · · · ,hQn−1
,hPn−1

,hQ,hP ).
Denote the pre-orthogonalization at n–th step.

On(Q) = hQ −
n−1∑
j=1

(⟨hQ, BQj
⟩BQj

+ ⟨hQ, BPj
⟩BPj

) ̸= 0, (3.21)

BQ
n =

On(Q)

∥On(Q)∥
, (3.22)

En(P ) = hP −
n−1∑
j=1

(⟨hP , BQj
⟩BQj

+ ⟨hP , BPj
⟩BPj

)− ⟨hP , B
Q
n ⟩BQ

n ̸= 0, (3.23)

BP
n =

En(P )

∥En(P )∥
. (3.24)

Then from (3.21)– (3.24) and (3.18), we have

Cn(Q,P ) =|⟨un, BQ
n ⟩|2 + |⟨un, BP

n ⟩|2 =
|⟨un, On(Q)⟩|2

∥On(Q)∥2
+

|⟨un, En(P )⟩|2

∥En(P )∥2

=

∣∣〈un,hQ −
n−1∑
j=1

(⟨hQ, BQj ⟩BQj + ⟨hQ, BPj ⟩BPj )
〉∣∣2

∥On(Q)∥2

+

∣∣〈un,hP −
n−1∑
j=1

(⟨hP , BQj ⟩BQj + ⟨hP , BPj ⟩BPj )− ⟨hP , B
Q
n ⟩BQ

n

〉∣∣2
∥En(P )∥2

=
|⟨un,hQ⟩|2

∥On(Q)∥2
+

|⟨un,hP − ⟨hP , B
Q
n ⟩BQ

n ⟩|2

∥En(P )∥2

=
|Lun(Q)|2

∥On(Q)∥2
+

|un(P )− ⟨hP , B
Q
n ⟩⟨un, BQ

n ⟩|2

∥En(P )∥2
≥ |Lun(Q)|2

∥On(Q)∥2
> 0. (3.25)

The existence of the n–th 2 distinct points Qn, Pn ∈ An follows the following
Weak 2-Best Maximal Selection Principle to establish.

Lemma 3.3 ( Weak 2-Best Maximal Selection Principle). For any n ≥ 2, let
An := Ω \ {Qi, Pi }n−1

i=1 be the punctured region. Suppose that un ̸= 0, then for any
distinct two points Q,P ∈ An

(i) sup{Cn(Q,P ) = |⟨u,BQ
n ⟩|2 + |⟨u,BP

n ⟩|2 : Q,P ∈ An } is finite.
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(ii) For any fixed 0 < ρ < 1, there exists 2 distinct points Qn, Pn ∈ An such that

Cn(Qn, Pn) = |⟨u,BQn
⟩|2 + |⟨u,BPn

⟩|2

≥ ρ sup{ |⟨u,BQ
n ⟩|2 + |⟨u,BP

n ⟩|2
∣∣ Q,P ∈ An } > 0. (3.26)

Proof. (i) First, from definition of Cn(Q,P ) in (3.25) and the Cauchy-Schwarz
inequality, we have

0 ≤ Cn(Q,P ) = |⟨u,BQ
n ⟩|2 + |⟨u,BP

n ⟩|2 ≤ ∥u∥2 ∥BQ
n ∥2 + ∥un∥2 ∥BP

n ∥2 ≤ 2∥u∥2,

which shows that Cn is bounded on An.
To ensure the finiteness of supremum of Cn(Q,P ) on An, it needs to show that

Cn is continuous on An. First, we notice that On(Q) ̸= 0 and En(P ) ̸= 0 for any
Q,P ∈ An from Theorem 3.1. On one hand, by definition of On(Q) in (3.21), the
triangle inequality and the Cauchy-Schwarz inequality, we have

∥On(Q)−On(Q0)∥2

=∥(hQ − hQ0
)−

n−1∑
j=1

(⟨(hQ − hQ0
), BQj

⟩BQj
+ ⟨(hQ − hQ0

), BPj
⟩BPj

)∥2

=∥(hQ − hQ0
)∥2 −

n−1∑
j=1

(
|⟨(hQ − hQ0

), BQj
⟩|2 + |⟨(hQ − hQ0

), BPj
⟩|2

)
≤∥hQ − hQ0∥2. (3.27)

It follows from Lemma 3.1 (ii) and (3.27) lim
Q→Q0

On(Q)=On(Q0), and lim
Q→Q0

∥On(Q)∥2=

∥On(Q0)∥2 > 0 as well as En(P ). Thus On(Q) and En(P ) are non-zero and contin-
uous on An.

In addition, by the Cauchy-Schwarz inequality, we have

|⟨un, On(Q)−On(Q0)⟩| ≤ ∥un∥ ∥On(Q)−On(Q0)∥,

which implies lim
Q→Q0

⟨un, On(Q)⟩ = ⟨un, On(Q0)⟩. Thus ⟨u,On(Q)⟩ and ⟨u,En(P )⟩

are continuous on An. Noticing that Cn(Q,P ) =
|⟨u,On(Q)⟩|2
∥On(Q)∥2 + |⟨u,En(P )⟩|2

∥En(P )∥2 , conse-
quently, lim

(Q,P )→(Q0,P0)
Cn(Q,P ) = Cn(Q0, P0). As Cn is continuous on An, and An

is a finite union of disjoint sub-regions of Ω. From intermediate value theorem, we
see that the range of Cn on An is also a finite union of disjoint bounded sub-regions,
and that

sup{ |⟨u,BQ
n ⟩|2 + |⟨u,BP

n ⟩|2
∣∣ Q,P ∈ An}

is finite.
(ii) Since un ̸= 0 and L is bounded, then L(un) ̸= 0, and hence |L(un)(Q)| > 0.
From (3.25), we see that

Cn(Q,P ) ≥
|Lun(Q)|2

∥On(Q)∥2
> 0.

Recall that 0 < ρ < 1, so

0 < ρ sup{ Cn(Q,P ) = |⟨u,BQ
n ⟩|2 + |⟨u,BP

n ⟩|2 | Q,P ∈ An }
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< sup{ Cn(Q,P ) = |⟨u,BQ
n ⟩|2 + |⟨u,BP

n ⟩|2 | Q,P ∈ An }.

It follows from definition of supremum, there exists 2 distinct points Qn, Pn ∈ An

such that

Cn(Qn, Pn) = |⟨u,BQn
⟩|2 + |⟨u,BPn

⟩|2

≥ ρ sup
{
|⟨u,BQ

n ⟩|2 + |⟨u,BP
n ⟩|2

∣∣Q,P ∈ An

}
> 0,

which is called the Weak 2-best Maximal Selection Principle (3.26).
Thus we have the n–th orthonormal decomposition of u in terms of

{BQ1 , BP1 , · · · , BQn−1 , BPn−1 , BQn , BPn}

and the n–th residual un+1 = un − ⟨u,BQn
⟩BQn

− ⟨u,BPn
⟩BPn

:

u =

n∑
i=1

(⟨u,BQi⟩BQi + ⟨u,BPi⟩BPi) + un+1; (3.28)

∥un+1∥2 = ∥u∥2 −
n∑

i=1

(|⟨u,BQi
⟩|2 + |⟨u,BPi

⟩|2). (3.29)

Theorem 3.2. Suppose that L−1 exists and is bounded. For any 2 distinct points
Q,P ∈ An (n ≥ 1), we orthonormalize (BQ1 , BP1 · · · , BQn−1 , BPn−1 ,hQ,hP ) to
obtain a new normalized set (BQ1 , BP1 · · · , BQn−1 , BPn−1 , B

Q
n , B

P
n ). One can find

the n–th pair of distinct points Qn, Pn ∈ An by the weak 2-best maximal selection
principle (3.26), then the solution u ∈ W (3,2)(Ω) of PDE (1.4) has the following
series form:

u = lim
n→∞

Sn =

∞∑
i=1

(⟨u,BQi
⟩BQi

+ ⟨u,BPi
⟩BPi

), (3.30)

where n–th partial sum Sn is defined by

Sn =

n∑
i=1

(⟨u,BQi
⟩BQi

+ ⟨u,BPi
⟩BPi

). (3.31)

Proof. If L−1 exists, then the solution u = L−1f ∈ W (3,2)(Ω). Let {Qi, Pi}i≥1

be a sequence of distinct points in Ω for the solution u satisfying the weak 2-best
maximal selection principle (3.26). It remains to prove that the solution of PDE
(1.4) can be represented by the series u =

∑
i≥1(⟨u,BQi

⟩BQi
+ ⟨u,BPi

⟩BPi
). The

proof is rather long, we divide it into 3 parts.
(I) We first prove the series

∑
i≥1(⟨u,BQi⟩BQi + ⟨u,BPi⟩BPi) ∈ W (3,2)(Ω). As

the corresponding sequence (BQ1 , BP1 , · · · , BQi , BPi , · · · ) is an orthonormal set in
W (3,2)(Ω), so Bessel’s inequality implies that∑

i≥1

Ci(Qi, Pi) =
∑
i≥1

(|⟨u,BQi
⟩|2 + |⟨u,BPi

⟩|2) ≤ ∥u∥2, (3.32)

and hence the series
∑
i≥1

(⟨u,BQi
⟩BQi

+ ⟨u,BPi
⟩BPi

) ∈W (3,2)(Ω).

(II) We are going to prove that this series converges to the solution u of PDE (1.4).
Suppose to the contrary that the residual

g = u−
∑
i≥1

(⟨u,BQi⟩BQi + ⟨u,BPi⟩BPi) ∈W (3,2)(Ω) (3.33)
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is non-zero. Then the weak 2-best maximal selection principle in Lemma 3.3 implies
that the sequence {Qi, Pi}i≥1 is infinite.

Define Ω′ = Ω\{Q1, P1, · · · , QN−1, PN−1}. For any distinct S, T ∈ Ω′, we define
two unit vectors

eS =
hS

∥hS∥
, (3.34)

eT =
hT − ⟨hT , B

S
N ⟩BS

N

∥hT − ⟨hT , BS
N ⟩BS

N∥
, (3.35)

where BS
N =

hS−
N−1∑
j=1

(⟨hS ,BQj
⟩BQj

+⟨hS ,BPj
⟩BPj

)

∥hS−
N−1∑
j=1

(⟨hS ,BQj
⟩BQj

+⟨hS ,BPj
⟩BPj

)∥
defined in (3.22).

It follows from Lemma 3.1 (ii) that hS , ∥hS∥ are continuous on Ω′. And ∥hS∥≠ 0
follows from Lemma 3.1 (iii). Thus eS (3.34) is continuous on Ω′.

On the other hand, it follows from Theorem 3.1 that ∥hT − ⟨hT , B
S
N ⟩BS

N∥≠ 0.
As hT is continuous on Ω′, then hT − ⟨hT , B

S
N ⟩BS

N is continuous in Ω′. Since

∥hT − ⟨hT , B
S
N ⟩BS

N∥2 = ⟨hT ,hT ⟩+ |⟨hT , B
S
N ⟩|2 − 2|⟨hT , B

S
N ⟩|2

= ∥hT ∥2−|⟨hT , B
S
N ⟩|2 ≤ ∥hT ∥2,

from continuity of ∥hT ∥, we see that ∥hT −⟨hT , B
S
N ⟩BS

N∥ is continuous in Ω′. Thus
eT in (3.35) is continuous in Ω′. By Cauchy-Schwarz inequality, we have

|⟨g, eS⟩| ≤ ∥g∥∥eS∥,
|⟨g, eT ⟩| ≤ ∥g∥∥eT ∥,

which imply that |⟨g, eS⟩| and |⟨g, eT ⟩| are continuous in Ω′. As Ω′ is a region
removing finite points from a bounded closed region Ω, from intermediate value
theorem, we see that the range of |⟨g, eS⟩| and |⟨g, eT ⟩| in Ω′ are bounded, and
sup{|⟨g, eS⟩|2 + |⟨g, eT ⟩|2

∣∣S, T ∈ Ω′} is finite.
Hence there exists a closed region Ω̄ ⊂ Ω′ such that

3

2
C0 = inf

S,T∈Ω̄
{|⟨g, eS⟩|2 + |⟨g, eT ⟩|2} > 0. (3.36)

Recall that uN = u−
N−1∑
i=1

(⟨u,BQi⟩BQi + ⟨u,BPi⟩BPi) is the (N −1)–th residual

of u. We are going to estimate |⟨uN , eQ⟩|2 + |⟨uN , eP ⟩|2 for any Q,P ∈ Ω̄ in two
different ways.

Firstly, it follows from (3.32) and ρ,C0 > 0 that there exists a positive integer
N0 such that for all N ≥ N0, one has

|⟨uN , BQN
⟩|2 + |⟨uN , BPN

⟩|2 ≤
∞∑

i=N

(|⟨u,BQi⟩|2 + |⟨u,BPi⟩|2) <
ρC0

2
. (3.37)

Secondly, for any fixed N ≥ N0, we select distinct points P,Q ∈ Ω̄. Consider-
ing another sequence {Q1, P1, . . . , QN−1, PN−1, Q, P} ∈ Ω of distinct points, then
(hQ1

,hP1
, · · · ,hQN−1

,hPN−1
,hQ,hP ) is linearly independent. Let the sequence
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(BQ1
, BP1

, · · · , BQN−1
, BPN−1

, BQ
N , B

P
N ) in (3.22) be the G-S orthonormalization of

(BQ1
, BP1

, · · · , BQN−1
, BPN−1

,hQ,hP ), where

BQ
N =

hQ −
N−1∑
i=1

(⟨hQ, BQi⟩BQi + ⟨hQ, BPi⟩BPi)

∥hQ −
N−1∑
i=1

(⟨hQ, BQi
⟩BQi

+ ⟨hQ, BPi
⟩BPi

)∥
,

BP
N =

hP −
N−1∑
i=1

(⟨hP , BQi⟩BQi + ⟨hP , BPi⟩BPi)− ⟨hP , B
Q
N ⟩BQ

N

∥hP −
N−1∑
i=1

(⟨hP , BQi
⟩BQi

+ ⟨hP , BPi
⟩BPi

)− ⟨hP , B
Q
N ⟩BQ

N∥
.

(3.38)

Since Qn, Pn are selected according to the weak 2-best maximal selection principle
(3.26) in Lemma 3.3, we have

|⟨uN , BQN
⟩|2 + |⟨uN , BPN

⟩|2 ≥ ρ sup
{
|⟨uN , BQ

N ⟩|2 + |⟨uN , BP
N ⟩|2

∣∣∣ Q,P ∈ Ω̄
}

≥ ρ
[
|⟨uN , BQ

N ⟩|2 + |⟨uN , BP
N ⟩|2

]
. (3.39)

In order to arrive at a contradiction, we can consider 2 unit vectors

eQ =
hQ

∥hQ∥
, eP =

hP − ⟨hP , B
Q
N ⟩BQ

N

∥hP − ⟨hP , B
Q
N ⟩BQ

N∥
(3.40)

in W (3,2)(Ω), where BQ
N defined in (3.38). And note that

∥hQ −
N−1∑
i=1

(⟨hQ, BQi
⟩BQi

+ ⟨hQ, BPi
⟩BPi

)∥2

=∥hQ∥2 −
N−1∑
i=1

(|⟨hQ, BQi
⟩|2 + |⟨hQ, BPi

⟩|2) ≤ ∥hQ∥2,

∥hP −
N−1∑
i=1

(⟨hP , BQi
⟩BQi

+ ⟨hP , BPi
⟩BPi

)− ⟨hP , B
Q
N ⟩BQ

N∥2

≤∥hP − ⟨hP , B
Q
N ⟩BQ

N∥2.

(3.41)

It follows from (3.18) that for 1 ≤ i ≤ N − 1, we have

⟨uN , BQi⟩ = ⟨uN , BPi⟩ = 0. (3.42)

Then, (3.38) and (3.40)–(3.42) imply that

|⟨uN , eQ⟩| = |⟨uN ,
hQ

∥hQ∥
⟩| =

∣∣∣∣〈uN ,hQ −
N−1∑
i=1

(⟨hQ, BQi
⟩BQi

+ ⟨hQ, BPi
⟩BPi

)

〉∣∣∣∣
∥hQ∥

≤

∣∣∣∣〈uN ,hQ −
N−1∑
i=1

(⟨hQ, BQi
⟩BQi

+ ⟨hQ, BPi
⟩BPi

)

〉∣∣∣∣∥∥∥∥hQ −
N−1∑
i=1

(⟨hQ, BQi
⟩BQi

+ ⟨hQ, BPi
⟩BPi

)

∥∥∥∥ = |⟨uN , BQ
N ⟩|,

(3.43)
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|⟨uN , eP ⟩| =
|⟨uN ,hP − ⟨hP , B

Q
N ⟩BQ

N ⟩|
∥hP − ⟨hP , B

Q
N ⟩BQ

N∥

=

∣∣∣∣〈uN ,hP − ⟨hP , B
Q
N ⟩BQ

N −
N−1∑
i=1

(⟨hP , BQi
⟩BQi

+ ⟨hP , BPi
⟩BPi

)

〉∣∣∣∣
∥hP − ⟨hP , B

Q
N ⟩BQ

N∥

≤

∣∣∣∣〈uN ,hP − ⟨hP , B
Q
N ⟩BQ

N −
N−1∑
i=1

(⟨hP , BQi⟩BQi + ⟨hP , BPi⟩BPi)

〉∣∣∣∣∥∥∥∥hP − ⟨hP , B
Q
N ⟩BQ

N −
N−1∑
i=1

(⟨hP , BQi
⟩BQi

+ ⟨hP , BPi
⟩BPi

)

∥∥∥∥
= |⟨uN , BP

N ⟩|. (3.44)

Thus, it follows from (3.43), (3.44), (3.39) and (3.37) that

|⟨uN , eQ⟩|2 + |⟨uN , eP ⟩|2 ≤ |⟨uN , BQ
N ⟩|2 + |⟨uN , BP

N ⟩|2

≤ 1

ρ
[|⟨uN , BQN

⟩|2 + ⟨uN , BPN
⟩|2]

<
1

ρ

ρC0

2
=
C0

2
. (3.45)

On the other hand, it follows from (3.33) that one has

uN = u−
N−1∑
i=1

(⟨u,BQi⟩BQi + ⟨u,BPi⟩BPi) = g +

∞∑
i=N

(⟨u,BQi⟩BQi + ⟨u,BPi⟩BPi).

(3.46)

Recall that 0 < ρ < 1, it follows from the triangle inequality, the Cauchy-Schwarz
inequality, (3.36), (3.37) and (3.46) that

|⟨uN , eQ⟩|2 + |⟨uN , eP ⟩|2

=

∣∣∣∣∣
〈
g +

∞∑
i=N

(⟨u,BQi
⟩BQi

+ ⟨u,BPi
⟩BPi

), eQ

〉∣∣∣∣∣
2

+

∣∣∣∣∣
〈
g +

∞∑
i=N

(⟨u,BQi⟩BQi + ⟨u,BPi⟩BPi), eP

〉∣∣∣∣∣
2

≥|⟨g, eQ⟩|2 −

∣∣∣∣∣
〈 ∞∑

i=N

(⟨u,BQi⟩BQi + ⟨u,BPi⟩BPi), eQ

〉∣∣∣∣∣
2

+ |⟨g, eP ⟩|2 −

∣∣∣∣∣
〈 ∞∑

i=N

(⟨u,BQi
⟩BQi

+ ⟨u,BPi
⟩BPi

), eP

〉∣∣∣∣∣
2

≥|⟨g, eQ⟩|2 −

∥∥∥∥∥
∞∑

i=N

(⟨u,BQi
⟩BQi

+ ⟨u,BPi
⟩BPi

)

∥∥∥∥∥
2

∥eQ∥|2

+ |⟨g, eP ⟩|2 −

∥∥∥∥∥
∞∑

i=N

(⟨u,BQi
⟩BQi

+ ⟨u,BPi
⟩BPi

)

∥∥∥∥∥
2

∥eP ∥|2
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=|⟨g, eQ⟩|2 + |⟨g, eP ⟩|2 − 2

∥∥∥∥∥
∞∑

i=N

(⟨u,BQi⟩BQi + ⟨u,BPi⟩BPi)

∥∥∥∥∥
2

≥ inf
Q,P∈Ω̄

{|⟨g, eQ⟩|2 + |⟨g, eP ⟩|2} − 2

∞∑
i=N

(|⟨u,BQi⟩|2 + |⟨u,BPi⟩|2)

>
3C0

2
− 2

ρC0

2
≥ 3C0

2
− 2

C0

2
=
C0

2
,

which contradicts to (3.45). Consequently, the residual g = 0. And this completes
the proof of (II).

(III) We are going to derive another analytic formula (3.30) of the solution u of
PDE Lu = f. We may assume that ui ̸= 0 for all i; otherwise the series in (3.30)
is a finite sum. For this, we prove that the sequence Sn =

∑n
i=1(⟨u,BQi⟩BQi +

⟨u,BPi
⟩BPi

) satisfies lim
n→∞

L(Sn) = f . The result of part (II) implies that lim
n→∞

∥u−
Sn∥ = 0. As L is bounded and

∥f − LSn∥ = ∥Lu− LSn∥ = ∥L(u− Sn)∥ ≤ ∥L∥ ∥u− Sn∥,

we know that the series LSn =
∑n

i=1(⟨u,BQi
⟩LBQi

+ ⟨u,BPi
⟩LBPi

) converges to
f in W (1,1)(Ω). This completes the proof.

Remark 3.1. As it is well-known that in any RKHS the norm-convergence implies
pointwise convergence, we can even prove the uniform convergence of the series
solution in RKHS W (3,2)(Ω).

Corollary 3.1. The numerical solutions {Sn}n≥1 in (3.10) and (3.31) constructed
by weak 1-best POAFD method and weak 2-best POAFD method converge uniformly
to the solution u of PDE (1.4) on Ω.

To discuss the convergence rate of the weak 2-best POAFD, we define the sub-
class W (3,2)

M (Ω) of W (3,2)(Ω)

W
(3,2)
M (Ω) =

u
∣∣∣∣∣∣∣∣∣
u ∈W (3,2)(Ω), there exists {ci}i≥1, {di}i≥1

and {hQi
}i≥1, {hPi

}i≥1in W (3,2)(Ω) such that

u =
∑
i≥1

(cihQi + dihPi),
∑
i≥1

(|ci|+ |di|) ≤M.


One can follow the proof in the paper of Qian et al. [3, 9] to obtain the following
result:

Theorem 3.3 (Convergence rate, [3, 9]). For N = 2, let u =
∑

i≥1(⟨u,BQi
⟩BQi

+

⟨u,BPi
⟩BPi

) =
∑

i≥1(cihQi
+dihPi

) ∈W
(3,2)
M (Ω) be the series solution of PDE (1.4)

obtained by weak 2-best POAFD method. Denote by un = u−
∑n−1

i=1 (⟨u,BQi⟩BQi +
⟨u,BPi

⟩BPi
) the (n− 1)–th residual of u. We have

∥un∥≤
MRn

ρ
√
2n
,

where Rn = max
1≤i≤k≤n−1

{∥Ok(Qi)∥, ∥Ek(Pi)∥}, and Ok(Qi), Ek(Pi) defined in (3.11)
and (3.13) depend on the first 2(k − 1) functions hQj

,hPj
(1 ≤ j ≤ n− 1).
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To discuss the stability of weak 2-best POAFD for the solution of PDE (1.4),
denote by Fϵ = F +δϵ the ϵ–perturbation of the non-homogeneous term F. We shall
prove that the variations of both the numerical solutions and the solution u using
weak 2-best POAFD are controlled by ϵ.

Theorem 3.4. Suppose that L :W (3,2)(Ω) →W (1,1)(Ω) has bounded inverse, then
the solution u and numerical solutions Sn obtained by weak 2-best method are stable.

Proof. For any ϵ > 0, and δϵ ∈W (1,1)(Ω) with ∥δϵ∥W (1,1)< ϵ. Let u and uϵ be the
solutions of Lu = F and Luϵ = F + δϵ, respectively. Let Sn and Sϵ

n be the n–th
partial sum in (3.31) of weak 2-best POAFD solutions of (1.4) with inhomogeneous
term F and F + δϵ respectively. Then u = lim

n→∞
Sn and uϵ = lim

n→∞
Sϵ
n.

Clearly, L(uϵ − u) = δϵ. As L−1 is bounded, let C = ∥L−1∥> 0. Then

∥u− uϵ∥= ∥L−1(F − Fϵ)∥≤ ∥L−1δϵ∥= ∥L−1∥ ∥δϵ∥W (1,1) ≤ Cϵ. (3.47)

For any ϵ > 0, there exist N ∈ N, if n > N , then

∥Sn − u∥≤ ϵ

2
, and ∥uϵ − Sϵ

n∥≤
ϵ

2
. (3.48)

It follows from

∥Sn − Sϵ
n∥=∥Sn − u+ u− uϵ + uϵ − Sϵ

n∥
≤∥Sn − u∥+∥u− uϵ∥+∥uϵ − Sϵ

n∥,

(3.47) and (3.48) that we have

∥Sn − Sϵ
n∥≤ (C + 1)ϵ, (3.49)

for all n > N. Meanwhile, by reproducing property, we have

|Sn(Q)− Sϵ
n(Q)| =

∣∣∣∣⟨Sn − Sϵ
n,K

(3,2)
Q ⟩

∣∣∣∣ ≤ ∥Sn − Sϵ
n∥∥K

(3,2)
Q ∥≤M2

0 (C + 1)ϵ.

(3.50)

Inequalities (3.49) and (3.50) mean numerical solutions obtained by weak 2-best
POAFD method depend continuously on the inhomogeneous term of the equation
(1.4) with respect to norm topology in W (3,2)(Ω).

3.4. The weak N-best POAFD
For any sequence {P1, P2, · · · , PN} of distinct points in Ω, there relates a sequence
of dictionary elements {hP1

,hP2
, · · · ,hPN

}. Applying G-S orthonormalization to
{hP1

,hP2
, · · · ,hPN

}, we obtain the orthonormal set {BP1
, BP2

, · · · , BPN
}, where

BPi
=

hPi −
i−1∑
j=1

⟨hPi , BPj ⟩BPj

∥hPi −
i−1∑
j=1

⟨hPi , BPj ⟩BPj∥
, 1 ≤ i ≤ N.
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For any fixed 0 < ρ < 1, we determine a sequence {Q1, Q2, · · · , QN} of distinct
points by the following weak N–best maximal selection principle:

N∑
i=1

∣∣〈u,BQi

〉∣∣2 ≥ ρ sup{
N∑
i=1

∣∣〈u,BPi

〉∣∣2∣∣{Pi}Ni=1 ∈ Ω}. (3.51)

Denote Bi = BQi
, 1 ≤ i ≤ N , then we can approximate the solution u ∈W (3,2)(Ω)

of PDE (1.4) by weak N–best POAFD as follows:

u = lim
N→∞

SN = lim
N→∞

N∑
i=1

⟨u,Bi⟩Bi. (3.52)

The existence of these selected parameters (3.51), the convergence properties, and
the stability of the series (3.52) can be similarly discussed as shown in 2-best case.

4. Numerical experiments
In this section, we implement two numerical experiments of PDE (1.1)–(1.2) by weak
N-best POAFD method (N=1, N=2) and the reproducing kernel method discussed
in [4]. Meanwhile, we consider the robustness of the weak N-best POAFD method.
All these numerical experiments are carried out by MATLAB.

Denote by Sn the n–th partial sum constructed by weak N-best POAFD method
and the RKM in [4]. Let m be the number of discrete points xi = i

m , i = 1, 2, · · · ,m
in [0, 1]. Suppose n ≤ m2. Then for square region Ω, we obtain m × m grid
points (xi, tj) = (

i

m
,
j

m
), i, j = 1, 2, · · · ,m. For the weak N-best POAFD method,

we select n paremeters {(xni , tnj )}ni,j=1 from {(xi, tj)}m
2

i,j=1 by the weak N-best
maximal selection principle to construct the numerical solutions Sn. For the RKM
in [4], we take Q̂(xi, tj), xi = i√

n
, tj = j√

n
, i, j = 1, 2, · · · ,

√
n to construct the

numeircal solutions Sn. To show the stability of weak N-best POAFD, we choose
ϵ = 0.0001 ∗ rand(1, n) as disturbance of the inhomogeneous term f of (1.1), where
rand(1,m) represents 1 × n matrix containing pseudo-random values drawn from
a uniform distribution on the unit interval. Then we compare the norms of the
remainders ∥u−Sϵ

n∥ obtained by weak N-best POAFD. In the following, we denote
by | · |R, ∥·∥R the errors and norms obtained by RKM, | · |1b , ∥·∥1b the errors and
norms obtained by weak 1-best POAFD, | · |2b , ∥·∥2b the errors and norms obtained
by weak 2-best POAFD, respectively.

Example 4.1. Consider the following equation
ut − 10uxx = x− x2 + 20(1 + t), (x, t) ∈ (0, 1)2,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1,

u(x, 0) = x− x2, 0 ≤ x ≤ 1.

The exact solution is given by u(x, t) = (x− x2)(t+ 1).

Table 1 lists the maximum absolute errors, the maximum relative errors, and
the norms of remainders of u obtained by RKM [4], weak 1-best POAFD, and weak
2-best POAFD for Example 4.1. Fig. 1 gives the graphs of numerical solutions Sn

obtained by these three methods with n = 4, 16, 36. Figure 3 compares the errors
obtained by weak 1-best POAFD, and weak 2-best POAFD.
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Example 4.2. Consider the following equation
ut − 120t2uxx = f(x, t), (x, t) ∈ (0, 1)2,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1,

u(x, 0) = 0, 0 ≤ x ≤ 1,

where f(x, t) = −120(e−1+x − e−1+x−t)x2 − e−t
(
1
e − e−1+x +

(
1 − x

e

))
. The exact

solution is u(x, t) = − 1
e + e−1+x −

(
1− 1

e

)
x+ e−t

(
1
e − e−1+x +

(
1− x

e

))
.

One can check the numerical results of Example 4.2 obtained by RKM, weak
1-best POAFD, and weak 2-best POAFD from Table 2, Figure 2, and Figure 4.

The comparison of these numerical results shows that the weak N-best POAFD
converges fast in the first few steps and has higher accuracy than RKM. Since the
implementation of weak 2-best POAFD is limited by hardware, we set ∆x = 1

10 ,
and thus the weak 2-best POAFD has a slight advantage over weak 1-best POAFD.
As ∆x smaller, the weak 2-best POAFD greatly improves the accuracy than the
weak 1-best POAFD in our previous work on solving integral equations. Of course,
the N-best case will be better.

Table 1. Comparison of the maximum absolute errors, the maximum relative errors, and the norms of
remainders obtained by RKM in [4] and the present method with N = 1, N = 2 for Example 4.1.

Errors n = 4 n = 8 n = 10 n = 16 n = 20 n = 36

|u− Sn|R 3.9527e-3 Null Null 5.1110e-4 Null 1.8261e-4
|u− Sn|1b 5.7175e-4 8.5216e-5 5.9191e-5 5.7459e-5 5.7426e-5 5.7383e-5
|u− Sn|2b 2.6316e-4 7.0894e-5 5.7750e-5 5.7433e-5 5.7414e-5 5.7382e-5∣∣u−Sn

u

∣∣R 2.4820e-2 Null Null 3.9715e-3 Null 1.3068e-3∣∣u−Sn
u

∣∣1
b

3.5320e-3 4.0847e-4 3.4549e-4 3.4146e-4 3.4134e-4 3.4119e-4∣∣u−Sn
u

∣∣2
b

1.3334e-3 6.3662e-4 3.4230e-4 3.4137e-4 3.4130e-4 3.4118e-4
∥u− Sn∥R 1.3857e-1 Null Null 2.2914e-2 Null 2.9595e-3
∥u− Sn∥1b 2.0376e-2 3.3598e-3 9.7029e-4 7.0062e-4 7.3057e-4 7.2460e-4
∥u− Sn∥2b 7.8132e-3 1.9293e-3 5.8186e-4 5.5332e-4 5.5279e-4 7.2311e-4
∥u− Sn∥1ϵ 2.0376e-2 3.3619e-3 9.6628e-3 1.0932e-3 2.0340e-3 1.6453e-3
∥u− Sn∥2ϵ 1.0205e-2 2.5304e-3 5.9410e-3 2.8096e-3 2.5600e-3 2.6686e-3
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Figure 1. The numerical solutions S4(x, t), S16(x, t), S36 obtained by RKM in [4], weak 1-best POAFD
and weak 2-best POAFD for Example 4.1, respectively.
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Table 2. Comparison of the maximum absolute errors, the maximum relative errors, and the norms of
remainders obtained by RKM in [4] and the present method with N = 1, N = 2 for Example 4.2.

Errors n = 4 n = 8 n = 10 n = 16 n = 20 n = 36

|u− Sn|R 3.9957e-3 Null Null 5.7104e-4 Null 1.6190e-4
|u− Sn|1b 8.6468e-4 1.9437e-4 2.6171e-4 1.4654e-4 5.1844e-5 3.4166e-5
|u− Sn|2b 1.2791e-3 2.3351e-4 2.9238e-4 5.1456e-5 5.3856e-5 3.3537e-5∣∣u−Sn

u

∣∣R 1.5074e-1 Null Null 3.1149e-2 Null 1.0665e-2∣∣u−Sn
u

∣∣1
b

1.7804e-2 1.5095e-2 1.2125e-2 5.0212e-3 6.7118e-3 5.7902e-3∣∣u−Sn
u

∣∣2
b

3.3596e-2 1.0368e-2 1.1537e-2 4.5756e-3 6.2193e-3 5.0876e-3
∥u− Sn∥R 2.1028e-1 Null Null 6.8686e-2 Null 3.1795e-2
∥u− Sn∥1b 8.8449e-2 3.3402e-2 3.0950e-2 1.9564e-2 1.4148e-2 5.9997e-3
∥u− Sn∥2b 8.8618e-2 3.1736e-2 2.7259e-2 1.6621e-2 1.3288e-2 5.8484e-3
∥u− Sn∥1ϵ 8.8567e-2 3.3206e-2 3.0935e-2 1.8300e-2 1.5392e-2 7.8187e-3
∥u− Sn∥2ϵ 8.8542e-2 3.0944e-2 2.7152e-2 1.8077e-2 1.5867e-2 8.5171e-3
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Figure 2. The numerical solutions S4(x, t), S16(x, t), S36 obtained by RKM in [4], weak 1-best POAFD
and weak 2-best POAFD for Example 4.2, respectively.
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Figure 3. Comparison of numerical results for Example 4.1.

5. Conclusion
In this paper, we applied weak N-best POAFD method to solve the parabolic equa-
tion (1.4) in the RKHSs W (3,2)(Ω) and W (1,1)(Ω). And obtained the solutions u
in a series form under some additional assumptions. This is the first trial in apply-
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Figure 4. Comparison of numerical results for Example 4.2.

ing weak N-best POAFD to solve PDEs. Based on weak N-best maximal selection
principle (3.8), (3.26), and (3.51), the numerical solutions Sn is a finite linear com-
bination of {L∗KQi

}Qi∈Ω with a higher accuracy in W (3,2)(Ω) than that of RKM
method. Moreover, theoretical and numerical results show that the weak N-best
POAFD method is robust and converges fast.
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