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AN IMPROVED UPPER BOUND ON THE
LINEAR 2-ARBORICITY OF TOROIDAL

GRAPHS∗
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Abstract The linear 2-arboricity la2(G) of a graph G is the smallest integer k
such that G can be partitioned into k edge-disjoint forests, whose components
are paths of length at most 2. In this paper, we prove that every toroidal graph
G has la2(G) ≤

⌈∆(G)+1
2

⌉
+ 6. Since K7 is a toroidal graph with la2(K7) =

6 =
⌈∆(K7)+1

2

⌉
+ 2, our solution is within four from optimal.
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1. Introduction
In this paper, we will consider only simple graphs. For a graph G, we use V (G),
E(G), δ(G) and ∆(G) to denote the vertex set, edge set, minimum degree, and
maximum degree, respectively. A linear forest is one in which each connected com-
ponent is a path. Given a graph G, we define its linear arboricity, denoted by
la(G), to be the minimum number of edge-disjoint linear forests in G whose union
is E(G). A linear k-forest is a graph whose components are paths of length at most
k. The linear k-arboricity lak(G) of G is the smallest integer m for which G can be
edge-partitioned into m linear k-forests.

The linear k-arboricity of a graph was first introduced by Habib and Péroche [5],
who were based on the linear arboricity, see the most recent research [1,4,6]. Among
other things, they made the conjecture that any graph G with n vertices has

la2(G) ≤


⌈n∆(G) + 1

2⌊ 2
3n⌋

⌉
, if ∆(G) ̸= n− 1;

⌈n∆(G)

2⌊ 2
3n⌋

⌉
, if ∆(G) = n− 1.
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The linear 2-arboricity of graphs has been extensively studied in the past decades.
Let f(∆(G)) =

⌈∆(G)+1
2

⌉
. In 2004, Lih, Tong and Wang [7] proved that every pla-

nar graph G has la2(G) ≤ f(∆(G)) + 12; and if G does not contain 3-cycles, then
la2(G) ≤ f(∆(G)) + 6. In 2009, Ma, Wu and Hu [10] proved that if a planar graph
G contains no 5-cycles or 6-cycles, then la2(G) ≤ f(∆(G)) + 6. Wang et al. [12,13]
provided a significant improvement by showing that la2(G) ≤ f(∆(G)) + 6 for any
planar graph G. Graphs are referred to as 1-planar if each edge can be drawn
in the plane and only one other edge is crossed by it. Liu et al. [8] proved that
la2(G) ≤ f(∆(G)) + 14 for any 1-planar graph G. Recently, this result was im-
proved to la2(G) ≤ f(∆(G)) + 7 in [9].

A graph is toroidal if it can be embedded in the torus such that any two edges
cross only at their ends. Wang et al. [11] showed that every toroidal graph G has
la2(G) ≤ f(∆(G)) + 7. The purpose of this paper is to improve this result by
reducing the constant 7 to 6.

2. Results
Let G be a graph embedded in the torus. Denote by F (G) the set of faces. A vertex
of degree k (at most k or at least k) is called a k-vertex (k−-vertex or k+-vertex).
Similarly, we can define k-face, k−-face, and k+-face. For a vertex v ∈ V (G) and
an integer i ≥ 1, let ni(v) denote the number of i-vertices in G adjacent to v.

A linear-k-coloring of graph G is a mapping ϕ : E(G) → {1, 2, . . . , k} such that
each color class induces a subgraph whose components are paths of length at most
2. It is clear that a graph G has linear 2-arboricity at most k if and only if G is
linear-k-colorable.

Lemma 2.1 ( [2]). For any graph G, la2(G) ≤ ∆(G).

Theorem 2.1. If G is a toroidal graph with ∆(G) ≤ 10, then la2(G) ≤ 9.

Proof. It suffices to prove that G has a linear-9-coloring. If ∆(G) ≤ 9, then the
result holds automatically by Lemma 2.1, so assume that ∆(G) = 10. The proof
is given by contradiction. Let G be such a counterexample to the theorem that
|V (G)| + |E(G)| is the smallest possible. So G is connected and δ(G) ≥ 1. For
any proper subgraph H of G, H has a linear-9-coloring ϕ. In what follows, we
denote by C = {1, 2, . . . , 9} a set of nine colors used in the proof. For a vertex
v ∈ V (H), we denote by C(v) the set of colors used in edges incident to v in H,
and by S(v) the sequence of colors assigned to the edges incident to v in H. For
example, S(v) = (1, 1, 2, . . . , 9) means that color 1 occurs twice, and each of colors
2, 3, . . . , 9 occurs exactly once in C(v). This means that v is a 10-vertex of H.
Usually, we write S(v) = (1, 1, 2, . . . , 9) for short as S(v) = (1, 1, 2−9). For an edge
xy ∈ E(G) \ E(H), we define a list assignment L(xy) = C \ (C(x) ∪ C(y)), whose
colors can be applied to color xy.

Choose H as the largest component of the graph obtained from G by removing
all 1-vertices and 2-vertices. Then H is a connected toroidal graph with ∆(H) ≤ 10.

Claim 1 below can be similarly established as in [12].
Claim 1. ( [12])

(1) Every edge xy ∈ E(G) has dG(x) + dG(y) ≥ 11.
(2) δ(H) ≥ 3.
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(3) If v ∈ V (H) with dH(v) ≤ 6, then dH(v) = dG(v).
(4) Let v ∈ V (G) be a k-vertex with 5 ≤ k ≤ 10 and v1, v2, . . . , vk be its neighbors

with dG(v1) ≤ dG(v2) ≤ · · · ≤ dG(vk). Then
(4.1) n11−k(v) ≤ 1;
(4.2) If n11−k(v) = 1, then n12−k(v) ≤ 1; moreover, if n12−k(v) = 1, then

n13−k(v) ≤ 1;
(4.3) n11−k(v) + n12−k(v) ≤ 3; moreover, if n11−k(v) + n12−k(v) = 3, then

n13−k(v) = 0;
(4.4) If k = 10, then n1(v)+n2(v)+n3(v) ≤ 5; moreover, if n1(v)+n2(v) ≥ 3,

then n3(v) = 0.

For a vertex v ∈ V (H) and an integer i ≥ 3, let n′
i(v) denote the number of

i-vertices adjacent to v in H, and let m′
3(v) denote the number of 3-faces incident

to v in H. According to Claim 1(3), n′
i(v) = ni(v) for i = 3, 4, 5.

The proof of Claim 2 below can be similarly given as in [13].
Claim 2. ( [13])

(1) If dH(v) = 7, then n′
3(v) = 0, n′

4(v) ≤ 1; and if n′
4(v) = 1, then n′

5(v) ≤ 1.
(2) If dH(v) = 8, then n′

3(v) ≤ 1; and if n′
3(v) = 1, then n′

4(v) ≤ 1.
(3) If dH(v) = 9, then n′

3(v) ≤ 3.
(4) No 9-vertex v of H satisfies n′

3(v) = 3 and m′
3(v) = 9.

(5) No 3-face [uvw] of H satisfies dH(u) = 5 and dH(v) = 6.
(6) No 10-vertex v of H with n′

3(v) ≥ 4 such that every adjacent 3-vertex is incident
to a 3-face that is incident to v.

Claim 3. No 10-vertex v ∈ V (H) satisfies n′
3(v) ≥ 3 and m3(v) = 10.

Proof. Suppose H contains such a 10-vertex v. Let v0, v1, . . . , v9 be the neighbors
of v in clockwise order. For 0 ≤ i ≤ 9, let fi denote the incident face of v with
vvi and vvi+1 as two of the boundary edges, where subscripts are taken modulo
10. Without loss of generality, we assume that v1, v3, v5 are 3-vertices; for other
cases we have a similar proof. By Claim 1(3), dG(vi) = dH(vi) for i = 1, 3, 5. Let
G′ = G−vv1. Then G′ is a torodial graph with |V (G′)|+ |E(G′)| < |V (G)|+ |E(G)|
and ∆(G′) ≤ ∆(G) ≤ 10. By the minimality of G, G′ has a linear-9-coloring ϕ using
the color set C. First, we remove the colors of vv3 and vv5. To color vv1, vv3 and
vv5, we consider four cases as follows by symmetry.
Case 1. |L(vvi)| ≥ 1 for i = 1, 3, 5.

If |L(vvi)| ≥ 2 for some i ∈ {1, 3, 5} or there are i, j ∈ {1, 3, 5} such that
L(vvi) ̸= L(vvj), then we can color vv1, vv3, vv5. Otherwise, we assume that
L(vv1) = L(vv3) = L(vv5) = {9}. The proof is split into two subcases.
Case 1.1. There is a color, say 1, that occurs twice in S(v).

We can now assume that S(v) = (1, 1, 2 − 6) and C(vi) = {7, 8} for i = 1, 3, 5.
Let us also assume that ϕ(vv6) = 4, ϕ(v4v5) = 7 and ϕ(v5v6) = 8. We first assign
color 9 to vv1 and vv3. If 4 or 8 occurs exactly once in S(v6), then we color vv5
with 4 or 8. If there is a ∈ {1, 2, 3, 5, 6, 7} \ C(v6), then we recolor v5v6 with a and
color vv5 with 8. Otherwise, it follows that S(v6) = (1 − 3, 4, 4, 5 − 7, 8, 8). This
implies that 9 /∈ C(v6). We can recolor v5v6 with 9 and vv5 with 8.
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Case 1.2. S(v) = (1− 7).
Then 8 ∈ C(vi) for i = 1, 3, 5, assume that ϕ(v4v5) = 8. Let ϕ(vv0) = 1,

ϕ(vv2) = 2, ϕ(vv4) = 3, and ϕ(vv6) = 4. First color vv1 and vv3 with 9.
Suppose that ϕ(v5v6) ̸= 3. If 3 /∈ C(v1), then we exchange the colors of vv4 and

v4v5, recolor vv1 with 3, and color vv5 with 9. Otherwise, 3 ∈ C(v1). A similar
discussion can show that 3 ∈ C(v3). It follows that S(v1) = S(v3) = (3, 8, 9),
say ϕ(v0v1) = 3 and ϕ(v1v2) = 8. If there is a ∈ {1, 4 − 7, 9} \ C(v2), then we
recolor v1v2 with a and vv1 with 8, and color vv5 with 9. If 2 or 8 appears exactly
once in S(v2), then we recolor vv1 with 2 or 8 and color vv5 with 9. Otherwise,
S(v2) = {1, 2, 2, 4− 7, 8, 8, 9}. This implies that 3 /∈ C(v2). We exchange the colors
of vv4 and v4v5, recolor vv1 with 2 and vv2 with 3, and color vv5 with 9.

Suppose that ϕ(v5v6) = 3. If vv5 cannot be colored, we may derive that S(v4) =
(1 − 7, 8, 8, 9). If there is b ∈ {1, 2, 5, 6, 7, 9} \ C(v6), then we recolor v5v6 with b
and color vv5 with 3. If 8 /∈ C(v6), then we color or recolor {v5v6, vv5} with 8, and
v4v5 with 3. If 4 occurs exactly once in S(v6), we color vv5 with 4. This shows that
S(v6) = (1 − 3, 4, 4, 5 − 9). If 3 /∈ C(v1), then we recolor vv1 with 3 and color vv5
with 9. Otherwise, S(v1) = (3, 8, 9). Recolor or color {v5v6, vv1} with 4, vv6 with
3, and vv5 with 9.

Since, in each of the following remaining cases, there is at least one index i ∈
{1, 3, 5} such that |L(vvi)| = 0, we always assume that S(v) = (1 − 7), ϕ(vv0) =
1, ϕ(vv2) = 2, ϕ(vv4) = 3, and ϕ(vv6) = 4.
Case 2. |L(vv1)|, |L(vv3)| ≥ 1 and |L(vv5)| = 0.

Note that S(v5) = (8, 9), we assume that 9 ∈ C(v1) and a ∈ C(v3), where
a ∈ {8, 9}. We first color vv1 with 9 and vv3 with a. Assume that ϕ(v4v5) = 8 and
ϕ(v5v6) = 9. If there is a color c ∈ {1, 2, 4, 5, 6, 7}\C(v4), then we recolor v4v5 with
c and color vv5 with 8. If 3 appears once in S(v4), then we color vv5 with 3.

Assume that a = 8. If 9 /∈ C(v4), we recolor vv4 with 9 and color vv5 with 3.
Otherwise, S(v4) = (1, 2, 3, 3, 4 − 9) and S(v6) = (1 − 3, 4, 4, 5 − 9). If 4 /∈ C(v1),
then we exchange the colors of vv6 and v5v6, recolor vv1 with 4, and color vv5
with 9. If 8 /∈ C(v1), then we recolor vv1 with 8 and color vv5 with 9. Otherwise,
S(v1) = (4, 8, 9). Similarly, S(v3) = (3, 8, 9). Recolor or color {vv1, v4v5} with 3,
vv4 with 8, and vv5 with 9.

Suppose a = 9. Similarly, we can deduce that S(v4) = (1, 2, 3, 3, 4−7, 8, 8). This
implies that 9 /∈ C(v4). If d ∈ {1 − 3, 5 − 8} \ C(v6), then we recolor v5v6 with d,
v4v5 with 9, and color vv5 with 8. If 4 occurs only once in S(v6), we color vv5 with
4. Otherwise, S(v6) = (1 − 3, 4, 4, 5 − 9). It sufficient to recolor v4v5 with 9 and
color vv5 with 8.
Case 3. |L(vv1)| ≥ 1, |L(vv3)| = |L(vv5)| = 0.

Note that S(v3) = S(v5) = (8, 9) and 9 ∈ L(vv1). We color vv1 with 9 and
assume that ϕ(v4v5) = 8 and ϕ(v5v6) = 9. If v4v5 may be recolored by one of the
colors 1, 2, . . . , 7, we define a new list assignment L′ for the edges vv1, vv3, vv5 such
that |L′(vv1)| ≥ 1, |L′(vv5)| ≥ 1 and |L′(vv3)| ≥ 0. The proof is then reduced
to either Case 1 or Case 2. If 8 appears just once in S(v4), we exchange the
colors of vv4 and v4v5, and color vv3 with 3 and vv5 with 8. Otherwise, S(v4) =
(1, 2, 3, 3, 4 − 7, 8, 8), implying that 9 /∈ C(v4). We recolor vv4 with 9 and color
{vv3, vv5} with 3.
Case 4. |L(vvi)| = 0 for i = 1, 3, 5.

For i = 1, 3, 5, S(vi) = (8, 9). Assume that ϕ(v0v1) = 8 and ϕ(v1v2) = 9.
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If 8 appears only once in S(v0), then we interchange the colors of vv0 and v0v1,
and color vv1 with 8 and {vv3, vv5} with 1. If 9 /∈ C(v0), we recolor vv0 with 9
and v0v1 with 1, and color vv1 with 8, {vv3, vv5} with 1. Otherwise, v0v1 can be
recolored with one of the colors 1, 2, . . . , 7, we can define a new list assignment L′

such that |L′(vv1)| ≥ 1 and the proof is reduced to the preceding cases.
By employing Euler’s formula |V (H)|−|E(H)|+|F (H)| = 0 and the handshaking

theorem ∑
v∈V (H)

dH(v) =
∑

f∈F (H)

dH(f) = 2|E(H)|,

the following identity can be deduced:∑
v∈V (H)

(dH(v)− 4) +
∑

f∈F (H)

(dH(f)− 4) = 0. (2.1)

Consider the weight function defined on H by w(x) = dH(x) − 4 for any x ∈
V (H)∪F (H). We are going to redistribute the weight between vertices and faces in
H while keeping the sum of all weights fixed so that the resultant weight w′(x) ≥ 0
for all x ∈ V (H) ∪ F (H). In addition, there exists some x∗ ∈ V (H) ∪ F (H) such
that w′(x∗) > 0. This yields the following obvious contradiction

0 <
∑

x∈V (H)∪F (H)

w′(x) =
∑

x∈V (H)∪F (H)

w(x) = 0 (2.2)

and hence the proof is complete.
Let f = [v1v2v3] be a 3-face with dH(v1) ≤ dH(v2) ≤ dH(v3). If vi sends the

weight ai to the face f , then we simply write (dH(v1), dH(v2), dH(v3)) → (a1, a2, a3).
Our discharging rules are as follows.

(R1) Every 8+-vertex v ∈ V (H) sends 1
3 to each adjacent 3-vertex.

(R2) If f = [v1v2v3] is a 3-face of H, then
(R2.1) (3, 8+, 8+) → (0, 1

2 ,
1
2 );

(R2.2) (4, 7+, 7+) → (0, 1
2 ,

1
2 );

(R2.3) (5, 6+, 6+) → ( 15 ,
2
5 ,

2
5 );

(R2.4) (6+, 6+, 6+) → ( 13 ,
1
3 ,

1
3 ).

Let w′ denote the resultant weight function after (R1)-(R2) are carried out on
H. Now we need to compute w′(x) for all x ∈ V (H) ∪ F (H).

Assume that f ∈ F (H). If dH(f) ≥ 4, then w′(f) = w(f) = dH(f) − 4 = 0.
Consider that f = [xyz] is a 3-face with dH(x) ≤ dH(y) ≤ dH(z). There are a
number of subcases to be discussed in view of Claims 1 and 2 and Rule (R2). If
dH(x) = 3, then dH(y), dH(z) ≥ 8, and thus w′(f) = −1 + 2 · 1

2 = 0 by (R2.1).
Assuming dH(x) = 4, dH(y), dH(z) ≥ 7, and so w′(f) = −1 + 2 · 1

2 = 0 by (R2.2).
If dH(x) = 5, then dH(y), dH(z) ≥ 6. By (R2.3), w′(f) = −1 + 2 · 2

5 + 1
5 = 0. If

dH(x) ≥ 6, in this case, w′(f) = −1 + 3 · 1
3 = 0 by (R2.4).

Assume that v∈V (H) is a k-vertex, where k≥3 by Claim 1(2). Let v0, v1, . . .,
vk−1 be the clockwise neighbors of v. For i = 0, 1, . . . , k − 1, let fi denote the
incident face of v with vvi, vvi+1 as two boundary edges, where indices are taken
modulo k.
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If k = 3, then each of the neighbors of v is of degree at least 8 in H by Claims
1 and 2. According to (R1), w′(v) ≥ −1 + 3 · 1

3 = 0. If k = 4, then w′(v) = w(v) =
dH(v)− 4 = 0. Since each incident face in (R2.3) receives a maximum weight of 1

5
if k = 5, w′(v) ≥ 1− 5 · 1

5 = 0.
Assume that k = 6, w(v) = 2. If v is adjacent to a 5-vertex, say v1, then

neither f0 nor f1 is a 3-face according to Claim 2(5). We get w′(v) ≥ 2− 4 · 1
3 = 2

3 .
Otherwise, only 6+ vertices are adjacent to v, and therefore w′(v) ≥ 2 − 6 · 1

3 = 0
by (R2.4).

Assume that k = 7. By Claim 2(1), n′
3(v) = 0, n′

4(v) ≤ 1; moreover, if n′
4(v) = 1,

then n′
5(v) ≤ 1. If n′

4(v) = 1, then w′(v) ≥ 3 − 2 · 1
2 − 2 · 2

5 − 3 · 1
3 = 1

5 by (R2).
Assuming n′

4(v) = 0, (R2) and Claim 1(1) assert that w′(v) ≥ 3− 6 · 2
5 − 1

3 = 4
15 .

Assume that k = 8. As stated in Claim 2(2), n′
3(v) ≤ 1, and if n′

3(v) = 1,
then n′

4(v) ≤ 1. If n′
3(v) = 0, then w′(v) ≥ 4 − 8 · 1

2 = 0 by (R2). Assuming that
n′
3(v) = 1, then w′(v) ≥ 4− 4 · 1

2 − 4 · 2
5 − 1

3 = 1
15 by (R1) and (R2).

Assume that k = 9. According to Claim 2(3), n′
3(v) ≤ 3. If n′

3(v) ≤ 1, then
w′(v) ≥ 5− 9 · 1

2 − 1
3 = 1

6 by (R1) and (R2). Assume that n′
3(v) = 2. If m′

3(v) ≤ 8,
then w′(v) ≥ 5 − 8 · 1

2 − 2 · 1
3 = 1

3 by (R1) and (R2). Otherwise, m′
3(v) = 9. In

this case, Claim 1(1) asserts that v is adjacent to at most four 5−-vertices, which
means that w′(v) ≥ 5− 8 · 1

2 − 1
3 − 2 · 1

3 = 0 by (R1) and (R2). Next suppose that
n′
3(v) = 3. If m′

3(v) ≤ 8, then w′(v) ≥ 5 − 8 · 1
2 − 3 · 1

3 = 0 by (R1) and (R2).
Otherwise, m′

3(v) = 9, which contradicts Claim 2(4).
Assume that k = 10. Claim 1(4) states that n′

3(v) ≤ 5. We have w′(v) ≥
6−10 · 12 −2 · 13 = 1

3 when n′
3(v) ≤ 2 by (R1) and (R2). Suppose that n′

3(v) ≥ 3. By
Claim 3, m′(v) ≤ 9. If n′

3(v) = 3, then w′(v) ≥ 6− 9 · 1
2 − 3 · 1

3 = 1
2 . If n′

3(v) = 4,
then w′(v) ≥ 6 − 9 · 1

2 − 4 · 1
3 = 1

6 by (R1) and (R2). Now assume that n′
3(v) = 5.

By Claim 2(6), m′
3(v) ≤ 8, which means that w′(v) ≥ 6− 8 · 1

2 − 5 · 1
3 = 1

3 by (R1)
and (R2).

We have now shown that w′(x) ≥ 0 for all x ∈ V (H) ∪ F (H). Note that a
10-vertex, say x∗, can always be found in G due to the fact that ∆(H) = 10, and
the above proof implies that w′(x∗) > 0. This completes proof of the theorem.

Lemma 2.2 ( [11]). Every toroidal graph G with ∆(G) ≥ 12 can be edge-partitioned
into two forests F1, F2 and a subgraph H such that ∆(H) ≤ 10 and ∆(Fi) ≤
⌈∆(G)−9

2 ⌉ for i = 1, 2.

Lemma 2.3 ( [3]). For a forest F , we have la2(F ) ≤
⌈∆(F )+1

2

⌉
.

The following conclusion is obvious:

Lemma 2.4. If G = G1 ∪G2, then la2(G) ≤ la2(G1) + la2(G2).

Theorem 2.2. If G is a toroidal graph, then la2(G) ≤
⌈∆(G)+1

2

⌉
+ 6.

Proof. Lemma 2.1 makes it simple to see la2(G) ≤ ∆(G) ≤
⌈∆(G)+1

2

⌉
+ 6 if

∆(G) ≤ 11, so assume that ∆(G) ≥ 12. According to Lemma 2.2, G has an
edge-partition into two forests F1, F2 and a subgraph H with ∆(F1) ≤

⌈∆(G)−9
2

⌉
,

∆(F2) ≤
⌈∆(G)−9

2

⌉
, and ∆(H) ≤ 10. We establish the following sequence of in-

equalities by combining Lemmas 2.3 and 2.4 with Theorem 2.1:

la2(G) ≤ la2(F1) + la2(F2) + la2(H)

≤
⌈∆(F1) + 1

2

⌉
+
⌈∆(F2) + 1

2

⌉
+ 9
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≤ 2
⌈1
2

⌈∆(G)− 9)

2

⌉
+

1

2

⌉
+ 9

≤
⌈∆(G) + 1

2

⌉
+ 6.

Note that K7 is a toroidal graph with ∆(K7) = 6 and it is simple to compute
that la2(K7) = 6 =

⌈∆(K7)+1
2

⌉
+ 2. This means that Theorem 2.2 is within four of

optimality. As a natural observation, we provide the following problem:
Problem. Determine the smallest constant C such that every toroidal graph G has
la2(G) ≤

⌈∆(G)+1
2

⌉
+ C.

Based on Theorem 2.2 and the linear 2-arboricity of K7, we can conclude that
2 ≤ C ≤ 6.
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