AN IMPROVED UPPER BOUND ON THE LINEAR 2-ARBORICITY OF TOROIDAL GRAPHS*

Xiaoxue Hu¹, Juan Liu² and Yiqiao Wang^{3,†}

Abstract The linear 2-arboricity $la_2(G)$ of a graph G is the smallest integer k such that G can be partitioned into k edge-disjoint forests, whose components are paths of length at most 2. In this paper, we prove that every toroidal graph G has $la_2(G) \leq \left\lceil \frac{\Delta(G)+1}{2} \right\rceil + 6$. Since K_7 is a toroidal graph with $la_2(K_7) = 6 = \left\lceil \frac{\Delta(K_7)+1}{2} \right\rceil + 2$, our solution is within four from optimal.

Keywords Toroidal graph, linear 2-arboricity, maximum degree, edge-partition.

MSC(2010) 05C15.

1. Introduction

In this paper, we will consider only simple graphs. For a graph G, we use V(G), E(G), $\delta(G)$ and $\Delta(G)$ to denote the vertex set, edge set, minimum degree, and maximum degree, respectively. A *linear forest* is one in which each connected component is a path. Given a graph G, we define its *linear arboricity*, denoted by la(G), to be the minimum number of edge-disjoint linear forests in G whose union is E(G). A *linear k-forest* is a graph whose components are paths of length at most k. The *linear k-arboricity* $la_k(G)$ of G is the smallest integer m for which G can be edge-partitioned into m linear k-forests.

The linear k-arboricity of a graph was first introduced by Habib and Péroche [5], who were based on the linear arboricity, see the most recent research [1,4,6]. Among other things, they made the conjecture that any graph G with n vertices has

$$la_2(G) \leq \begin{cases} \left\lceil \frac{n\Delta(G)+1}{2\lfloor \frac{2}{3}n \rfloor} \right\rceil, & \text{if } \Delta(G) \neq n-1; \\ \left\lceil \frac{n\Delta(G)}{2\lfloor \frac{2}{3}n \rfloor} \right\rceil, & \text{if } \Delta(G) = n-1. \end{cases}$$

[†]The corresponding author. Email: yqwang@bucn.edu.cn (Y. Wang) ¹School of Science, Zhejiang University of Science and Technology, Hangzhou,

^{310023,} China

²School of Mathematics and Computer Science, Jiangxi Science and Technology Normal University, Nanchang, 330038, China

³School of Management, Beijing University of Chinese Medicine, Beijing, 100029, China

^{*}The authors were supported by National Science Foundation of China (11801512, 11971437, 11901525, 12071048) and Science and Technology Commission of Shanghai Municipality (18dz2271000).

The linear 2-arboricity of graphs has been extensively studied in the past decades. Let $f(\Delta(G)) = \left\lceil \frac{\Delta(G)+1}{2} \right\rceil$. In 2004, Lih, Tong and Wang [7] proved that every planar graph G has $la_2(G) \leq f(\Delta(G)) + 12$; and if G does not contain 3-cycles, then $la_2(G) \leq f(\Delta(G)) + 6$. In 2009, Ma, Wu and Hu [10] proved that if a planar graph G contains no 5-cycles or 6-cycles, then $la_2(G) \leq f(\Delta(G)) + 6$. Wang et al. [12,13] provided a significant improvement by showing that $la_2(G) \leq f(\Delta(G)) + 6$ for any planar graph G. Graphs are referred to as 1-planar if each edge can be drawn in the plane and only one other edge is crossed by it. Liu et al. [8] proved that $la_2(G) \leq f(\Delta(G)) + 14$ for any 1-planar graph G. Recently, this result was improved to $la_2(G) \leq f(\Delta(G)) + 7$ in [9].

A graph is *toroidal* if it can be embedded in the torus such that any two edges cross only at their ends. Wang et al. [11] showed that every toroidal graph G has $la_2(G) \leq f(\Delta(G)) + 7$. The purpose of this paper is to improve this result by reducing the constant 7 to 6.

2. Results

Let G be a graph embedded in the torus. Denote by F(G) the set of faces. A vertex of degree k (at most k or at least k) is called a k-vertex (k⁻-vertex or k⁺-vertex). Similarly, we can define k-face, k⁻-face, and k⁺-face. For a vertex $v \in V(G)$ and an integer $i \geq 1$, let $n_i(v)$ denote the number of i-vertices in G adjacent to v.

A linear-k-coloring of graph G is a mapping $\phi : E(G) \to \{1, 2, \dots, k\}$ such that each color class induces a subgraph whose components are paths of length at most 2. It is clear that a graph G has linear 2-arboricity at most k if and only if G is linear-k-colorable.

Lemma 2.1 ([2]). For any graph G, $la_2(G) \leq \Delta(G)$.

Theorem 2.1. If G is a toroidal graph with $\Delta(G) \leq 10$, then $la_2(G) \leq 9$.

Proof. It suffices to prove that G has a linear-9-coloring. If $\Delta(G) \leq 9$, then the result holds automatically by Lemma 2.1, so assume that $\Delta(G) = 10$. The proof is given by contradiction. Let G be such a counterexample to the theorem that |V(G)| + |E(G)| is the smallest possible. So G is connected and $\delta(G) \geq 1$. For any proper subgraph H of G, H has a linear-9-coloring ϕ . In what follows, we denote by $C = \{1, 2, \ldots, 9\}$ a set of nine colors used in the proof. For a vertex $v \in V(H)$, we denote by C(v) the set of colors used in edges incident to v in H, and by S(v) the sequence of colors assigned to the edges incident to v in H. For example, $S(v) = (1, 1, 2, \ldots, 9)$ means that color 1 occurs twice, and each of colors 2,3,...,9 occurs exactly once in C(v). This means that v is a 10-vertex of H. Usually, we write $S(v) = (1, 1, 2, \ldots, 9)$ for short as S(v) = (1, 1, 2 - 9). For an edge $xy \in E(G) \setminus E(H)$, we define a list assignment $L(xy) = C \setminus (C(x) \cup C(y))$, whose colors can be applied to color xy.

Choose H as the largest component of the graph obtained from G by removing all 1-vertices and 2-vertices. Then H is a connected toroidal graph with $\Delta(H) \leq 10$. Claim 1 below can be similarly established as in [12].

Claim 1. ([12])

- (1) Every edge $xy \in E(G)$ has $d_G(x) + d_G(y) \ge 11$.
- (2) $\delta(H) \ge 3$.

- (3) If $v \in V(H)$ with $d_H(v) \le 6$, then $d_H(v) = d_G(v)$.
- (4) Let $v \in V(G)$ be a k-vertex with $5 \le k \le 10$ and v_1, v_2, \ldots, v_k be its neighbors with $d_G(v_1) \le d_G(v_2) \le \cdots \le d_G(v_k)$. Then
 - (4.1) $n_{11-k}(v) \le 1;$
 - (4.2) If $n_{11-k}(v) = 1$, then $n_{12-k}(v) \le 1$; moreover, if $n_{12-k}(v) = 1$, then $n_{13-k}(v) \le 1$;
 - (4.3) $n_{11-k}(v) + n_{12-k}(v) \le 3$; moreover, if $n_{11-k}(v) + n_{12-k}(v) = 3$, then $n_{13-k}(v) = 0$;
 - (4.4) If k = 10, then $n_1(v) + n_2(v) + n_3(v) \le 5$; moreover, if $n_1(v) + n_2(v) \ge 3$, then $n_3(v) = 0$.

For a vertex $v \in V(H)$ and an integer $i \geq 3$, let $n'_i(v)$ denote the number of *i*-vertices adjacent to v in H, and let $m'_3(v)$ denote the number of 3-faces incident to v in H. According to Claim 1(3), $n'_i(v) = n_i(v)$ for i = 3, 4, 5.

The proof of Claim 2 below can be similarly given as in [13].

Claim 2. ([13])

- (1) If $d_H(v) = 7$, then $n'_3(v) = 0$, $n'_4(v) \le 1$; and if $n'_4(v) = 1$, then $n'_5(v) \le 1$.
- (2) If $d_H(v) = 8$, then $n'_3(v) \le 1$; and if $n'_3(v) = 1$, then $n'_4(v) \le 1$.
- (3) If $d_H(v) = 9$, then $n'_3(v) \le 3$.
- (4) No 9-vertex v of H satisfies $n'_3(v) = 3$ and $m'_3(v) = 9$.
- (5) No 3-face [uvw] of H satisfies $d_H(u) = 5$ and $d_H(v) = 6$.
- (6) No 10-vertex v of H with $n'_3(v) \ge 4$ such that every adjacent 3-vertex is incident to a 3-face that is incident to v.

Claim 3. No 10-vertex $v \in V(H)$ satisfies $n'_3(v) \ge 3$ and $m_3(v) = 10$.

Proof. Suppose H contains such a 10-vertex v. Let v_0, v_1, \ldots, v_9 be the neighbors of v in clockwise order. For $0 \leq i \leq 9$, let f_i denote the incident face of v with vv_i and vv_{i+1} as two of the boundary edges, where subscripts are taken modulo 10. Without loss of generality, we assume that v_1, v_3, v_5 are 3-vertices; for other cases we have a similar proof. By Claim 1(3), $d_G(v_i) = d_H(v_i)$ for i = 1, 3, 5. Let $G' = G - vv_1$. Then G' is a torodial graph with |V(G')| + |E(G')| < |V(G)| + |E(G)|and $\Delta(G') \leq \Delta(G) \leq 10$. By the minimality of G, G' has a linear-9-coloring ϕ using the color set C. First, we remove the colors of vv_3 and vv_5 . To color vv_1, vv_3 and vv_5 , we consider four cases as follows by symmetry.

Case 1. $|L(vv_i)| \ge 1$ for i = 1, 3, 5.

If $|L(vv_i)| \geq 2$ for some $i \in \{1,3,5\}$ or there are $i, j \in \{1,3,5\}$ such that $L(vv_i) \neq L(vv_j)$, then we can color vv_1, vv_3, vv_5 . Otherwise, we assume that $L(vv_1) = L(vv_3) = L(vv_5) = \{9\}$. The proof is split into two subcases.

Case 1.1. There is a color, say 1, that occurs twice in S(v).

We can now assume that S(v) = (1, 1, 2 - 6) and $C(v_i) = \{7, 8\}$ for i = 1, 3, 5. Let us also assume that $\phi(vv_6) = 4$, $\phi(v_4v_5) = 7$ and $\phi(v_5v_6) = 8$. We first assign color 9 to vv_1 and vv_3 . If 4 or 8 occurs exactly once in $S(v_6)$, then we color vv_5 with 4 or 8. If there is $a \in \{1, 2, 3, 5, 6, 7\} \setminus C(v_6)$, then we recolor v_5v_6 with a and color vv_5 with 8. Otherwise, it follows that $S(v_6) = (1 - 3, 4, 4, 5 - 7, 8, 8)$. This implies that $9 \notin C(v_6)$. We can recolor v_5v_6 with 9 and vv_5 with 8.

Case 1.2. S(v) = (1 - 7).

Then $8 \in C(v_i)$ for i = 1, 3, 5, assume that $\phi(v_4v_5) = 8$. Let $\phi(vv_0) = 1$, $\phi(vv_2) = 2$, $\phi(vv_4) = 3$, and $\phi(vv_6) = 4$. First color vv_1 and vv_3 with 9.

Suppose that $\phi(v_5v_6) \neq 3$. If $3 \notin C(v_1)$, then we exchange the colors of vv_4 and v_4v_5 , recolor vv_1 with 3, and color vv_5 with 9. Otherwise, $3 \in C(v_1)$. A similar discussion can show that $3 \in C(v_3)$. It follows that $S(v_1) = S(v_3) = (3, 8, 9)$, say $\phi(v_0v_1) = 3$ and $\phi(v_1v_2) = 8$. If there is $a \in \{1, 4 - 7, 9\} \setminus C(v_2)$, then we recolor v_1v_2 with a and vv_1 with 8, and color vv_5 with 9. If 2 or 8 appears exactly once in $S(v_2)$, then we recolor vv_1 with 2 or 8 and color vv_5 with 9. Otherwise, $S(v_2) = \{1, 2, 2, 4 - 7, 8, 8, 9\}$. This implies that $3 \notin C(v_2)$. We exchange the colors of vv_4 and v_4v_5 , recolor vv_1 with 2 and vv_2 with 3, and color vv_5 with 9.

Suppose that $\phi(v_5v_6) = 3$. If vv_5 cannot be colored, we may derive that $S(v_4) = (1 - 7, 8, 8, 9)$. If there is $b \in \{1, 2, 5, 6, 7, 9\} \setminus C(v_6)$, then we recolor v_5v_6 with b and color vv_5 with 3. If $8 \notin C(v_6)$, then we color or recolor $\{v_5v_6, vv_5\}$ with 8, and v_4v_5 with 3. If 4 occurs exactly once in $S(v_6)$, we color vv_5 with 4. This shows that $S(v_6) = (1 - 3, 4, 4, 5 - 9)$. If $3 \notin C(v_1)$, then we recolor vv_1 with 3 and color vv_5 with 9. Otherwise, $S(v_1) = (3, 8, 9)$. Recolor or color $\{v_5v_6, vv_1\}$ with 4, vv_6 with 3, and vv_5 with 9.

Since, in each of the following remaining cases, there is at least one index $i \in \{1,3,5\}$ such that $|L(vv_i)| = 0$, we always assume that S(v) = (1-7), $\phi(vv_0) = 1$, $\phi(vv_2) = 2$, $\phi(vv_4) = 3$, and $\phi(vv_6) = 4$.

Case 2. $|L(vv_1)|, |L(vv_3)| \ge 1$ and $|L(vv_5)| = 0$.

Note that $S(v_5) = (8,9)$, we assume that $9 \in C(v_1)$ and $a \in C(v_3)$, where $a \in \{8,9\}$. We first color vv_1 with 9 and vv_3 with a. Assume that $\phi(v_4v_5) = 8$ and $\phi(v_5v_6) = 9$. If there is a color $c \in \{1, 2, 4, 5, 6, 7\} \setminus C(v_4)$, then we recolor v_4v_5 with c and color vv_5 with 8. If 3 appears once in $S(v_4)$, then we color vv_5 with 3.

Assume that a = 8. If $9 \notin C(v_4)$, we recolor vv_4 with 9 and color vv_5 with 3. Otherwise, $S(v_4) = (1, 2, 3, 3, 4 - 9)$ and $S(v_6) = (1 - 3, 4, 4, 5 - 9)$. If $4 \notin C(v_1)$, then we exchange the colors of vv_6 and v_5v_6 , recolor vv_1 with 4, and color vv_5 with 9. If $8 \notin C(v_1)$, then we recolor vv_1 with 8 and color vv_5 with 9. Otherwise, $S(v_1) = (4, 8, 9)$. Similarly, $S(v_3) = (3, 8, 9)$. Recolor or color $\{vv_1, v_4v_5\}$ with 3, vv_4 with 8, and vv_5 with 9.

Suppose a = 9. Similarly, we can deduce that $S(v_4) = (1, 2, 3, 3, 4-7, 8, 8)$. This implies that $9 \notin C(v_4)$. If $d \in \{1 - 3, 5 - 8\} \setminus C(v_6)$, then we recolor v_5v_6 with d, v_4v_5 with 9, and color vv_5 with 8. If 4 occurs only once in $S(v_6)$, we color vv_5 with 4. Otherwise, $S(v_6) = (1 - 3, 4, 4, 5 - 9)$. It sufficient to recolor v_4v_5 with 9 and color vv_5 with 8.

Case 3. $|L(vv_1)| \ge 1, |L(vv_3)| = |L(vv_5)| = 0.$

Note that $S(v_3) = S(v_5) = (8, 9)$ and $9 \in L(vv_1)$. We color vv_1 with 9 and assume that $\phi(v_4v_5) = 8$ and $\phi(v_5v_6) = 9$. If v_4v_5 may be recolored by one of the colors $1, 2, \ldots, 7$, we define a new list assignment L' for the edges vv_1, vv_3, vv_5 such that $|L'(vv_1)| \ge 1$, $|L'(vv_5)| \ge 1$ and $|L'(vv_3)| \ge 0$. The proof is then reduced to either Case 1 or Case 2. If 8 appears just once in $S(v_4)$, we exchange the colors of vv_4 and v_4v_5 , and color vv_3 with 3 and vv_5 with 8. Otherwise, $S(v_4) =$ (1, 2, 3, 3, 4 - 7, 8, 8), implying that $9 \notin C(v_4)$. We recolor vv_4 with 9 and color $\{vv_3, vv_5\}$ with 3.

Case 4. $|L(vv_i)| = 0$ for i = 1, 3, 5.

For $i = 1, 3, 5, S(v_i) = (8, 9)$. Assume that $\phi(v_0 v_1) = 8$ and $\phi(v_1 v_2) = 9$.

If 8 appears only once in $S(v_0)$, then we interchange the colors of vv_0 and v_0v_1 , and color vv_1 with 8 and $\{vv_3, vv_5\}$ with 1. If $9 \notin C(v_0)$, we recolor vv_0 with 9 and v_0v_1 with 1, and color vv_1 with 8, $\{vv_3, vv_5\}$ with 1. Otherwise, v_0v_1 can be recolored with one of the colors $1, 2, \ldots, 7$, we can define a new list assignment L'such that $|L'(vv_1)| \geq 1$ and the proof is reduced to the preceding cases.

By employing Euler's formula |V(H)| - |E(H)| + |F(H)| = 0 and the hand shaking theorem

$$\sum_{v \in V(H)} d_H(v) = \sum_{f \in F(H)} d_H(f) = 2|E(H)|,$$

the following identity can be deduced:

$$\sum_{v \in V(H)} (d_H(v) - 4) + \sum_{f \in F(H)} (d_H(f) - 4) = 0.$$
(2.1)

Consider the weight function defined on H by $w(x) = d_H(x) - 4$ for any $x \in V(H) \cup F(H)$. We are going to redistribute the weight between vertices and faces in H while keeping the sum of all weights fixed so that the resultant weight $w'(x) \ge 0$ for all $x \in V(H) \cup F(H)$. In addition, there exists some $x^* \in V(H) \cup F(H)$ such that $w'(x^*) > 0$. This yields the following obvious contradiction

$$0 < \sum_{x \in V(H) \cup F(H)} w'(x) = \sum_{x \in V(H) \cup F(H)} w(x) = 0$$
(2.2)

and hence the proof is complete.

Let $f = [v_1v_2v_3]$ be a 3-face with $d_H(v_1) \leq d_H(v_2) \leq d_H(v_3)$. If v_i sends the weight a_i to the face f, then we simply write $(d_H(v_1), d_H(v_2), d_H(v_3)) \rightarrow (a_1, a_2, a_3)$. Our discharging rules are as follows.

- (R1) Every 8⁺-vertex $v \in V(H)$ sends $\frac{1}{3}$ to each adjacent 3-vertex.
- (**R2**) If $f = [v_1v_2v_3]$ is a 3-face of H, then
 - $\begin{array}{l} (\mathbf{R2.1}) \quad (3,8^+,8^+) \to (0,\frac{1}{2},\frac{1}{2}); \\ (\mathbf{R2.2}) \quad (4,7^+,7^+) \to (0,\frac{1}{2},\frac{1}{2}); \\ (\mathbf{R2.3}) \quad (5,6^+,6^+) \to (\frac{1}{5},\frac{2}{5},\frac{2}{5}); \end{array}$
 - (**R2.4**) $(6^+, 6^+, 6^+) \rightarrow (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}).$
 - Let w' denote the resultant weight function after (B1)-(E

Let w' denote the resultant weight function after (R1)-(R2) are carried out on H. Now we need to compute w'(x) for all $x \in V(H) \cup F(H)$.

Assume that $f \in F(H)$. If $d_H(f) \ge 4$, then $w'(f) = w(f) = d_H(f) - 4 = 0$. Consider that f = [xyz] is a 3-face with $d_H(x) \le d_H(y) \le d_H(z)$. There are a number of subcases to be discussed in view of Claims 1 and 2 and Rule (R2). If $d_H(x) = 3$, then $d_H(y), d_H(z) \ge 8$, and thus $w'(f) = -1 + 2 \cdot \frac{1}{2} = 0$ by (R2.1). Assuming $d_H(x) = 4$, $d_H(y), d_H(z) \ge 7$, and so $w'(f) = -1 + 2 \cdot \frac{1}{2} = 0$ by (R2.2). If $d_H(x) = 5$, then $d_H(y), d_H(z) \ge 6$. By (R2.3), $w'(f) = -1 + 2 \cdot \frac{2}{5} + \frac{1}{5} = 0$. If $d_H(x) \ge 6$, in this case, $w'(f) = -1 + 3 \cdot \frac{1}{3} = 0$ by (R2.4).

Assume that $v \in V(H)$ is a k-vertex, where $k \ge 3$ by Claim 1(2). Let $v_0, v_1, \ldots, v_{k-1}$ be the clockwise neighbors of v. For $i = 0, 1, \ldots, k-1$, let f_i denote the incident face of v with vv_i, vv_{i+1} as two boundary edges, where indices are taken modulo k.

If k = 3, then each of the neighbors of v is of degree at least 8 in H by Claims 1 and 2. According to (R1), $w'(v) \ge -1 + 3 \cdot \frac{1}{3} = 0$. If k = 4, then $w'(v) = w(v) = d_H(v) - 4 = 0$. Since each incident face in (R2.3) receives a maximum weight of $\frac{1}{5}$ if k = 5, $w'(v) \ge 1 - 5 \cdot \frac{1}{5} = 0$.

Assume that k = 6, w(v) = 2. If v is adjacent to a 5-vertex, say v_1 , then neither f_0 nor f_1 is a 3-face according to Claim 2(5). We get $w'(v) \ge 2 - 4 \cdot \frac{1}{3} = \frac{2}{3}$. Otherwise, only 6^+ vertices are adjacent to v, and therefore $w'(v) \ge 2 - 6 \cdot \frac{1}{3} = 0$ by (R2.4).

Assume that k = 7. By Claim 2(1), $n'_3(v) = 0$, $n'_4(v) \le 1$; moreover, if $n'_4(v) = 1$, then $n'_5(v) \le 1$. If $n'_4(v) = 1$, then $w'(v) \ge 3 - 2 \cdot \frac{1}{2} - 2 \cdot \frac{2}{5} - 3 \cdot \frac{1}{3} = \frac{1}{5}$ by (R2). Assuming $n'_4(v) = 0$, (R2) and Claim 1(1) assert that $w'(v) \ge 3 - 6 \cdot \frac{2}{5} - \frac{1}{3} = \frac{4}{15}$.

Assume that k = 8. As stated in Claim 2(2), $n'_3(v) \leq 1$, and if $n'_3(v) = 1$, then $n'_4(v) \leq 1$. If $n'_3(v) = 0$, then $w'(v) \geq 4 - 8 \cdot \frac{1}{2} = 0$ by (R2). Assuming that $n'_3(v) = 1$, then $w'(v) \geq 4 - 4 \cdot \frac{1}{2} - 4 \cdot \frac{2}{5} - \frac{1}{3} = \frac{1}{15}$ by (R1) and (R2). Assume that k = 9. According to Claim 2(3), $n'_3(v) \leq 3$. If $n'_3(v) \leq 1$, then

Assume that k = 9. According to Claim 2(3), $n'_3(v) \leq 3$. If $n'_3(v) \leq 1$, then $w'(v) \geq 5 - 9 \cdot \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$ by (R1) and (R2). Assume that $n'_3(v) = 2$. If $m'_3(v) \leq 8$, then $w'(v) \geq 5 - 8 \cdot \frac{1}{2} - 2 \cdot \frac{1}{3} = \frac{1}{3}$ by (R1) and (R2). Otherwise, $m'_3(v) = 9$. In this case, Claim 1(1) asserts that v is adjacent to at most four 5⁻-vertices, which means that $w'(v) \geq 5 - 8 \cdot \frac{1}{2} - \frac{1}{3} - 2 \cdot \frac{1}{3} = 0$ by (R1) and (R2). Next suppose that $n'_3(v) = 3$. If $m'_3(v) \leq 8$, then $w'(v) \geq 5 - 8 \cdot \frac{1}{2} - 3 \cdot \frac{1}{3} = 0$ by (R1) and (R2). Otherwise, $m'_3(v) = 9$, which contradicts Claim 2(4).

Assume that k = 10. Claim 1(4) states that $n'_3(v) \leq 5$. We have $w'(v) \geq 6 - 10 \cdot \frac{1}{2} - 2 \cdot \frac{1}{3} = \frac{1}{3}$ when $n'_3(v) \leq 2$ by (R1) and (R2). Suppose that $n'_3(v) \geq 3$. By Claim 3, $m'(v) \leq 9$. If $n'_3(v) = 3$, then $w'(v) \geq 6 - 9 \cdot \frac{1}{2} - 3 \cdot \frac{1}{3} = \frac{1}{2}$. If $n'_3(v) = 4$, then $w'(v) \geq 6 - 9 \cdot \frac{1}{2} - 4 \cdot \frac{1}{3} = \frac{1}{6}$ by (R1) and (R2). Now assume that $n'_3(v) = 5$. By Claim 2(6), $m'_3(v) \leq 8$, which means that $w'(v) \geq 6 - 8 \cdot \frac{1}{2} - 5 \cdot \frac{1}{3} = \frac{1}{3}$ by (R1) and (R2).

We have now shown that $w'(x) \ge 0$ for all $x \in V(H) \cup F(H)$. Note that a 10-vertex, say x^* , can always be found in G due to the fact that $\Delta(H) = 10$, and the above proof implies that $w'(x^*) > 0$. This completes proof of the theorem. \Box

Lemma 2.2 ([11]). Every toroidal graph G with $\Delta(G) \geq 12$ can be edge-partitioned into two forests F_1, F_2 and a subgraph H such that $\Delta(H) \leq 10$ and $\Delta(F_i) \leq \lfloor \frac{\Delta(G)-9}{2} \rfloor$ for i = 1, 2.

Lemma 2.3 ([3]). For a forest F, we have $la_2(F) \leq \left\lceil \frac{\Delta(F)+1}{2} \right\rceil$.

The following conclusion is obvious:

Lemma 2.4. If $G = G_1 \cup G_2$, then $la_2(G) \le la_2(G_1) + la_2(G_2)$.

Theorem 2.2. If G is a toroidal graph, then $la_2(G) \leq \left\lfloor \frac{\Delta(G)+1}{2} \right\rfloor + 6$.

Proof. Lemma 2.1 makes it simple to see $la_2(G) \leq \Delta(G) \leq \left\lceil \frac{\Delta(G)+1}{2} \right\rceil + 6$ if $\Delta(G) \leq 11$, so assume that $\Delta(G) \geq 12$. According to Lemma 2.2, G has an edge-partition into two forests F_1 , F_2 and a subgraph H with $\Delta(F_1) \leq \left\lceil \frac{\Delta(G)-9}{2} \right\rceil$, $\Delta(F_2) \leq \left\lceil \frac{\Delta(G)-9}{2} \right\rceil$, and $\Delta(H) \leq 10$. We establish the following sequence of inequalities by combining Lemmas 2.3 and 2.4 with Theorem 2.1:

$$\begin{aligned} \operatorname{la}_2(G) &\leq \operatorname{la}_2(F_1) + \operatorname{la}_2(F_2) + \operatorname{la}_2(H) \\ &\leq \left\lceil \frac{\Delta(F_1) + 1}{2} \right\rceil + \left\lceil \frac{\Delta(F_2) + 1}{2} \right\rceil + 9 \end{aligned}$$

$$\begin{split} &\leq 2\Big\lceil \frac{1}{2}\Big\lceil \frac{\Delta(G)-9)}{2}\Big\rceil + \frac{1}{2}\Big\rceil + 9\\ &\leq \Big\lceil \frac{\Delta(G)+1}{2}\Big\rceil + 6. \end{split}$$

Note that K_7 is a toroidal graph with $\Delta(K_7) = 6$ and it is simple to compute that $la_2(K_7) = 6 = \left\lceil \frac{\Delta(K_7)+1}{2} \right\rceil + 2$. This means that Theorem 2.2 is within four of optimality. As a natural observation, we provide the following problem:

Problem. Determine the smallest constant C such that every toroidal graph G has $la_2(G) \leq \left\lceil \frac{\Delta(G)+1}{2} \right\rceil + C.$

Based on Theorem 2.2 and the linear 2-arboricity of K_7 , we can conclude that $2 \le C \le 6$.

References

- M. Basavaraju, A. Bishnu, M. Francis and D. Pattanayak, *The Linear Arboric*ity Conjecture for 3-Degenerate Graphs, In: I. Adler, H. Mš¹ller (eds) Graph-Theoretic Concepts in Computer Science. WG 2020. Lecture Notes in Computer Science, vol 12301. Springer, Cham. DOI: 10.1007/978-3-030-604400_30.
- [2] J. C. Bermond, J. L. Fouquet, M. Habib and B. Péroche, On linear k-arboricity, Discrete Math., 1984, 52(2–3), 123–132.
- [3] B. Chen, H. Fu and K. Huang, Decomposing graphs into forests of paths with size less than three, Australas. J. Combin., 1991, 3, 55–73.
- [4] A. Ferber, J. Fox and V. Jain, Towards the linear arboricity conjecture, J. Combin. Theory Ser. B, 2020, 142, 56–79.
- [5] M. Habib and B. Péroche, Some problems about linear arboricity, Discrete Math., 1982, 41(2), 219–220.
- [6] R. Kim and L. Postle, The list linear arboricity of graphs, J. Graph Theory, 2021, 98(1), 125–140.
- [7] K. W. Lih, L. Tong and W. Wang, *The linear 2-arboricity of planar graphs*, Graphs Combin., 2003, 19(2), 241–248.
- [8] J. Liu, X. Hu, W. Wang and Y. Wang, Light structures in 1-planar graphs with an application to linear 2-arboricity, Discrete Appl. Math., 2019, 267, 120–130.
- [9] J. Liu, Y. Wang, P. Wang, L. Zhang and W. Wang, An improved upper Bound on the linear 2-arboricity of 1-planar graphs, Acta Math. Sin. (Engl. Ser.), 2021, 37(2), 262–278.
- [10] Q. Ma, J. Wu and X. Yu, Planar graphs without 5-cycles or without 6-cycles, Discrete Math., 2009, 309(10), 2998–3005.
- [11] W. Wang, Y. Li, X. Hu and Y. Wang, *Linear 2-arboricity of toroidal graphs*, Bull. Malays. Math. Sci. Soc., 2018, 41(4), 1907–1921.
- [12] Y. Wang, An improved upper bound on the linear 2-arboricity of planar graphs, Discrete Math., 2016, 339(1), 39–45.
- [13] Y. Wang, X. Hu and W. Wang, A note on the linear 2-arboricity of planar graphs, Discrete Math., 2017, 340(7), 1449–1455.