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1. Introduction and Main Result
In this paper, we study the existence and multiplicity of positive solutions for the
following nonhomogeneous Schrödinger-Poisson system with critical exponent{

−∆u+ u+ ηl(x)ϕu = λf(x) + u5, x ∈ R3,

−∆ϕ = l(x)u2, x ∈ R3,
(1.1)

where η ∈ R\{0}, λ > 0. We will make the following assumptions on f and l:
(Hf ) f ∈ L

6
5 (R3), f ≥ 0, and f ̸≡ 0,

(Hl) l ∈ L2(R3) ∩ L∞(R3), l ≥ 0, and l ̸≡ 0.
It is well known that the Schrödinger-Poisson system stems from quantum me-

chanics models and semiconductor theory and it has been studied extensively. From
a physical standpoint, Schrödinger-Poisson systems describe systems of identical
charged particles interacting each other if magnetic effects could be ignored and
their solutions are standing waves. For more details about the mathematical and
physical background of Schrödinger-Poisson system, please refer to the papers [1–3]
and the references therein.

The general form of the Schrödinger-Poisson system with critical exponent is as
follows {

−∆u+ u+ l(x)ϕu = g(x, u) + u5, x ∈ R3,

−∆ϕ = l(x)u2, x ∈ R3.
(1.2)
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The system (1.2) has been extensively studied, for example: [9–15, 19, 20, 24]. Par-
ticularly, when g(x, u) is superlinear, Huang and Rocha [10] studied system (1.2)
in case of g(x, u) = µh(x)|u|q−2u with 2 ≤ q < 6 and established a positive solu-
tion by using variational methods. Recently, Lei et al [12] considered the following
Schrödinger-Poisson system{

−∆u+ u+ ηϕu = λf(x)uq−1 + u5, x ∈ R3,

−∆ϕ = u2, x ∈ R3,

where 1 < q < 2, η ∈ R\{0}, λ > 0 is a real parameter and f ∈ L
6

6−q (R3) is a
nonzero nonnegative function. Using the variational methods, they obtained that
there exists a positive constant λ∗ such that for all λ ∈ (0, λ∗), the system has at
least two positive solutions.

Compared to the homogeneous case, there are a few papers concerning the non-
homogeneous case. The nonhomogeneous system with mass m is acquired by cou-
pling together the standing waves of nonlinear Schrödinger equation coupled with
Maxwell’s equations. The form of nonlinear Schrödinger type equation is as follow

ih
∂u

∂t
= − h2

2m
∆u− |u|p−2u− g(x)eiwt, x ∈ R3,

where u is the wave function, h is the Plancks constant, m is the mass of the
particle, e is the electric charge and ω is the phase of the wave. The interaction
of u with the electromagnetic field is described by the minimal coupling rule. For
more details as regards the relevance physical of the nonhomogeneous Schrödinger-
Poisson system, we can refer to [6, 17]. Recently, Ye [21] studied the following a
class of nonhomogeneous Schrödinger-Poisson system{

−∆u+ u+ λϕu = f(u) + h(x), x ∈ R3,

−∆ϕ = u2, x ∈ R3,
(1.3)

where λ > 0 is a parameter and 0 ≤ h(x) = h(|x|) ∈ L2(R3), f satisfies the following
hypotheses:
(f1) f ∈ C(R,R+), f(0) = 0, f(t) ≡ 0 for t < 0 and there exist a > 0 and p ∈ (2, 6)
such that

f(t) ≤ a(1 + |t|p−1),∀t ∈ R.

(f2) lim
t→0

f(t)/t = 0.
(f3) lim

t→∞
f(t)/t = +∞.

She proved that system (1.3) has at least two positive solutions with the aid of
Ekeland’s variational principle, Jeanjean’s monotone method, Pohožaev’s identity
and the mountain pass theorem. However, the author did not consider the case
of the critical exponent. Indeed, when the nonlinear term contains the critical
exponential term, it is more difficult to study system (1.3).

Our paper is mainly inspired by [12, 21]. Up to now, there was no information
about system (1.1). Therefore, in this paper, we will study the existence of multiple
solutions of system (1.1) with η ∈ R\{0} by using the Mountain Pass Theorem and
variational method.

Our main result can be described as follows.
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Theorem 1.1. Assume η ∈ R\{0} and conditions (Hf ), (Hl) hold. Then there
exists a positive constant λ∗ such that for all λ ∈ (0, λ∗), system (1.1) has at least
two positive solutions (u, ϕu) in H1(R3)×D1,2(R3).

Remark 1.1. Compared to [21], on the one hand, our paper gets rid of the re-
striction of the coefficient of the nonlocal term. On the other hand, we consider the
critical system.

This paper is organized as follows. In section 2, we present some notations and
prove some useful preliminary lemmas which pave the way for getting two positive
solutions. Then we give the proof of Theorem 1.1.

2. Proof of Theorem 1.1
Throughout this paper, we make use of the following notations:

• |u|s = (
∫
R3 |u|sdx)

1
s is the usual Lebesgue space Ls(R3) norm.

• L∞(R3) is equipped with the norm ∥u∥∞ =esssup|u|.
• The norm of H1(R3) by ∥u∥ = (

∫
R3 |∇u|2 + u2dx)

1
2 . H−1 is the dual space of

H1.

• Br(0) (respectively, ∂Br(0)) the closed ball (respectively, the sphere) of center
zero and radius r i.e Br(0) = {u ∈ H1(R3) : ∥u∥ ≤ r}, ∂Br(0) = {u ∈
H1(R3) : ∥u∥ = r}.

• C,Ci(i = 1, 2, ...) denote various positive constants, which may vary from line
to line.

• For each p ∈ [2, 6), by the Sobolev constants, we denote

S = inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2dx

|u|26
; Sp := inf

u∈H1(R3)\{0}

∥u∥2

|u|2p
.

As we all known that system (1.1) can be reduced to a nonlinear Schrödinger
equation with nonlocal term. Indeed, the Lax-Milgram theorem implies that for
any u ∈ H1(R3), there exists a unique ϕu ∈ D1,2(R3) such that

−∆ϕu = l(x)u2.

We substitute ϕu to the first equation of system (1.1), then system (1.1) can be
transformed into the following equation

−∆u+ u+ ηl(x)ϕuu = λf(x) + u5, x ∈ R3. (2.1)

According to [10] or [23], we have the following conclusions.

Lemma 2.1. For every u ∈ H1(R3), there exists a unique ϕu ∈ D1,2(R3) solution
of

−∆ϕ = l(x)u2

and the following results hold

(1) ∥ϕu∥2 =
∫
R3 l(x)ϕuu

2dx,
(2) ϕu ≥ 0, moreover ϕu > 0 when u ̸= 0,
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(3)
∫
R3 l(x)ϕuu

2dx =
∫
R3 |∇ϕu|2dx ≤ C∥u∥4,

(4) F : H1(R3) → R is well defined with F (u) = η
∫
R3 l(x)ϕuu

2dx, assume that
un ⇀ u in H1(R3), then ϕun

⇀ ϕu and F (un) → F (u) in H1(R3),
(5) F is C1 and

⟨F ′(u), v⟩ = 4η

∫
R3

l(x)ϕuuvdx, ∀v ∈ H1(R3).

The Euler functional of equation (2.1) is defined by Iλ: H1(R3) → R, that is,

Iλ(u) =
1

2
∥u∥2 + 1

4
η

∫
R3

l(x)ϕuu
2dx− λ

∫
R3

f(x)udx− 1

6

∫
R3

|u|6dx.

From Lemma 2.1, we can deduce that the functional Iλ is of class C1 and its critical
points are weak solutions of equation (2.1). Moreover, we can obtain that

⟨I ′λ(u), v⟩=
∫
R3

(∇u · ∇v+uv)dx+η

∫
R3

l(x)ϕuuvdx−λ

∫
R3

f(x)vdx−
∫
R3

|u|5vdx,

for any v ∈ H1(R3).

Lemma 2.2. There exist Λ0, ρ > 0 such that for each λ ∈ (0,Λ0), then it holds

d := inf
u∈Bρ(0)

Iλ(u) < 0 and Iλ|∂Bρ(0) > 0. (2.2)

Proof. When η > 0, by the Sobolev and Hölder inequalities, we obtain

Iλ(u) =
1

2
∥u∥2 + 1

4
η

∫
R3

l(x)ϕuu
2dx− λ

∫
R3

f(x)udx− 1

6

∫
R3

|u|6dx

≥ 1

2
∥u∥2 − λ

∫
R3

f(x)udx− 1

6

∫
R3

|u|6dx

≥ 1

2
∥u∥2 − λS

− 1
2

6 |f | 6
5
∥u∥ − 1

6S3
6

∥u∥6

= ∥u∥(1
2
∥u∥ − λS

− 1
2

6 |f | 6
5
− 1

6S3
6

∥u∥5).

(2.3)

Set g(t) = 1
2 t −

1
6S3

6
t5, we can easily calculate that there exists a positive constant

ρ1 = ( 35S
3
6)

1
4 such that max

t>0
g(t) = g(ρ1) > 0. Let λ∗ =

S
1
2
6

2|f | 6
5

g(ρ1), we have

Iλ|∥u∥=ρ1
≥ g(ρ1)

2 ρ1 for any λ ∈ (0, λ∗).
When η < 0, by the Sobolev and Hölder inequalities, we have

Iλ(u) =
1

2
∥u∥2 + 1

4
η

∫
R3

l(x)ϕuu
2dx− λ

∫
R3

f(x)udx− 1

6

∫
R3

|u|6dx

=
1

2
∥u∥2 − −η

4

∫
R3

l(x)ϕuu
2dx− λ

∫
R3

f(x)udx− 1

6

∫
R3

|u|6dx

≥ 1

2
∥u∥2 − −η

4
∥l∥∞

∫
R3

ϕuu
2dx− λ

∫
R3

f(x)udx− 1

6

∫
R3

|u|6dx

≥ 1

2
∥u∥2 − C∥u∥4 − λS

− 1
2

6 |f | 6
5
∥u∥ − 1

6S3
6

∥u∥6

= ∥u∥(1
2
∥u∥ − C∥u∥3 − λS

− 1
2

6 |f | 6
5
− 1

6S3
6

∥u∥5).

(2.4)
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Set g(t) = 1
2 t − Ct3 − 1

6S3
6
t5, we see that there exists a constant ρ2 > 0 such that

max
t>0

g(t) = g(ρ2) > 0. Let λ∗∗ =
S

1
2
6

2|f | 6
5

g(ρ2), we have Iλ|∥u∥=ρ2
≥ g(ρ2)

2 ρ2 for
any λ ∈ (0, λ∗∗). Thus, set Λ0 = min{λ∗, λ∗∗}, ρ = min{ρ1, ρ2}, then it follows
that there exists a positive constant α = min{ g(ρ1)

2 ρ1,
g(ρ2)

2 ρ2} such that Iλ ≥ α
for all ∥u∥ = ρ. Moreover, by (2.3) and (2.4), d = inf

u∈Bρ(0)
Iλ(u) is well defined.

Furthermore, for any u ∈ H1(R3), it holds

lim
t→0+

Iλ(tu)

t
= −λ

∫
R3

f(x)udx.

Thus, there exists u0 > 0 such that ∥u0∥ < ρ and Iλ(u0) < 0. Consequently,
d = inf

u∈Bρ(0)
Iλ(u) < 0. The proof is complete.

Theorem 2.1. Suppose 0 < λ < Λ0 (Λ0 defined in Lemma 2.2). Then system (1.1)
has a positive solution (u∗, ϕu∗) ∈ H1(R3)×D1,2(R3) satisfying Iλ(u∗) < 0.

Proof. By Lemma 2.2, there exist α > 0, ρ > 0 such that when λ ∈ (0,Λ0), for
any ∥u∥ = ρ, we have Iλ(u) ≥ α > 0 and d = inf

u∈Bρ(0)
Iλ(u) < 0. There exists a

minimization sequence {un} ⊂ Bρ(0). Thanks to Iλ(|u|) ≤ Iλ(u), we can assume
from the beginning that un ≥ 0 in R3. Since {un} ⊂ Bρ(0), it’s easy to see that
{un} is bounded in H1(R3). So there exist a subsequence (still denoted by itself)
and u∗ ∈ H1(R3) with u∗ ≥ 0 such that

un ⇀ u∗ in H1(R3)

un(x) → u∗(x) a.e in R3

un ⇀ u∗ in Lq
loc(R

3) 2 ≤ q ≤ 6.

(2.5)

Set wn = un − u∗, so wn ⇀ 0 in H1(R3). The Brézis-Lieb Lemma ( [7] or [18])
implies that 

∥un∥2 = ∥wn∥2 + ∥u∗∥2 + on(1),∫
R3

|un|6dx =

∫
R3

|wn|6dx+

∫
R3

|u∗|6dx+ on(1).
(2.6)

Since un ⇀ u∗ in L6(R3) and f ∈ L
6
5 (R3), we have

λ

∫
R3

f(x)undx = λ

∫
R3

f(x)u∗dx+ on(1). (2.7)

By (2.2), for an appropriate constant ρ, we can deduce that

1

2
∥un∥2 −

1

6

∫
R3

|un|6dx ≥ 0, for un ∈ Bρ(0). (2.8)

If u∗ = 0, then wn = un, which follows that wn ∈ Bρ(0). If u∗ ̸= 0, we also get
wn ∈ Bρ(0) for n large sufficiently. From (2.8), one has

1

2
∥wn∥2 −

1

6

∫
R3

|wn|6dx ≥ 0. (2.9)
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Therefore, by Lemma 2.1, it follows from (2.5)-(2.7) and (2.9) that

d = Iλ(un) + on(1)

= Iλ(u∗) +
1

2
∥wn∥2 −

1

6

∫
R3

|wn|6dx+ on(1)

≥ Iλ(u∗) + on(1)

as n → ∞, it holds that d ≥ Iλ(u∗). Since Bρ(0) is closed and convex, thus
u∗ ∈ Bρ(0), we obtain d ≤ Iλ(u∗). Hence, one has Iλ(u∗) = d < 0 and u∗ ̸= 0. It
follows that u∗ is a local minimizer of Iλ. By using the strong maximum principle, we
get u∗ > 0. So u∗ is positive solution of equation (1.2) with Iλ(u∗) < 0. Therefore,
we can conclude that (u∗, ϕu∗) is a positive solution of system (1.1). This completes
the proof of Theorem 2.1.

Lemma 2.3. The functional Iλ satisfies the (PS)c condition provided c < 1
3S

3
2 −

Dλ2, where D = 9
8 (|f | 65S

− 1
2

6 )2.

Proof. Let {un} ⊂ H1(R3) be a (PS)c sequence of Iλ, that is,

Iλ(un) → c, I ′λ(un) → 0, as n → ∞. (2.10)

We claim that {un} is bounded in H1(R3). For n large enough and combining with
(2.10), one gets that

c+ 1 + o(∥un∥) ≥ Iλ(un)−
1

4
⟨I ′λ(un), un⟩

=
1

4
∥un∥2 −

3

4
λ

∫
R3

f(x)undx+
1

12

∫
R3

|un|6dx

≥ 1

4
∥un∥2 −

3

4
λS

− 1
2

6 |f | 6
5
∥un∥

which implies that {un} is bounded in H1(R3). Going if necessary to a subsequence,
still denoted by {un} and there exists v ∈ H1(R3) such that un ⇀ v weakly in
H1(R3) as n → ∞ and satisfies (2.5). Set wn = un − v, if ∥wn∥2 → 0, then the
conclusion holds. Otherwise, there exists a subsequence (still denoted by itself) such
that lim

n→∞
∥wn∥2 = κ > 0. From (2.10), for any φ ∈ H1(R3), we have ⟨I ′λ(un), φ⟩ →

0. By Lemma 2.1 and (2.6), as n → ∞ , it follows that∫
R3

(∇v · ∇φ+ vφ)dx+ η

∫
R3

l(x)ϕv(x)vφdx

− λ

∫
R3

f(x)φdx−
∫
R3

|v|5φdx = 0.

(2.11)

Taking the test function φ = v in (2.11), then it holds that

∥v∥2 + η

∫
R3

l(x)ϕvv
2dx− λ

∫
R3

f(x)vdx−
∫
R3

|v|6dx = 0. (2.12)

From (2.10), we have ⟨I ′λ(un), un⟩ → 0. By Lemma 2.1, (2.6) and (2.7), we obtain

on(1) =∥v∥2 + η

∫
R3

l(x)ϕvv
2dx− λ

∫
R3

f(x)vdx

−
∫
R3

|v|6dx+ ∥wn∥2 −
∫
R3

|wn|6dx.
(2.13)
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It follows from (2.12) and (2.13) that

∥wn∥2 −
∫
R3

|wn|6dx = on(1). (2.14)

By the Sobolev inequality, we have

|wn|26 ≤ S−1

∫
R3

|∇wn|2dx ≤ S−1∥wn∥2.

Consequently, we can obtain κ ≥ S
3
2 .

On the one hand, by (2.12), Hölder inequality, Young inequality and Sobolev
inequality, it holds that

Iλ(v) =
1

2
∥v∥2 + 1

4
η

∫
R3

l(x)ϕvv
2dx− λ

∫
R3

f(x)vdx− 1

6

∫
R3

|v|6dx

=
1

4
∥v∥2 − 3

4
λ

∫
R3

f(x)vdx+
1

12

∫
R3

|v|6dx

≥ 1

4
∥v∥2 − 3

4
λS

− 1
2

6 |f | 6
5
∥v∥

≥ 1

4
∥v∥2 −

[
1

4
∥v∥2 + 9

8

(
λ|f | 6

5
S
− 1

2
6

)2
]

≥ 1

4
∥v∥2 − 1

4
∥v∥2 − 9

8

(
λ|f | 6

5
S
− 1

2
6

)2

≥ −Dλ2

(2.15)

where D = 9
8 |f |

2
6
5

S−1
6 .

On the other hand, it follows from (2.7), (2.10) and (2.14) that

Iλ(v) = Iλ(un)−
1

2
∥wn∥2 +

1

6

∫
R3

|wn|6dx+ on(1)

= Iλ(un)−
1

3
∥wn∥2 + on(1)

= c− 1

3
κ+ on(1)

< c− 1

3
S

3
2

< −Dλ2

which contradicts (2.15). Therefore κ = 0. The proof is complete.
We know that the extremal function

U(x) =
(3ε2)

1
4

(ε2 + |x|2) 1
2

, x ∈ R3

solves
−∆u = u5 in R3\{0}

and |∇U |22 = |U |66 = S
3
2 . We choose a function ζ ∈ C∞

0 (R3) such that 0 ≤ ζ ≤ 1 in
R3. ζ(x) = 1 near x = 0 and it is radially symmetric. We define

uε(x) = ζ(x)U(x).
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Besides, since (u∗, ϕu∗) is a positive solution of system (1.1), by a standard method,
we can obtain that there exist m,M > 0 such that m ≤ u∗ ≤ M for each x ∈ suppζ.

Lemma 2.4. Under the conditions of Theorem 1.1, then there exist Λ1 > 0, uε ∈
H1(R3) such that

sup
t≥0

Iλ(u∗ + tuε) <
1

3
S

3
2 −Dλ2, for all λ ∈ (0,Λ1).

Proof. From [8], one has
|uε|66 = |U |66 +O(ε3) = S

3
2 +O(ε3),

∥uε∥2 = |∇U |22 +O(ε) = S
3
2 +O(ε),

|uε|pp = O(ε
p
2 ), 1 ≤ p < 3.

(2.16)

It is obvious that the following inequality

(a+ b)6 ≥ a6 + b6 + 6a5b+ 6ab5

holds for each a, b ≥ 0. Since u∗ is a positive solution of equation (2.1) with Iλ(u∗) <
0, by the above inequality, for all t ≥ 0 we have

Iλ(u∗ + tuε)

=Iλ(u∗)+
1

2
t2∥uε∥2+t

∫
R3

[
∇u∗ · ∇uε+u∗uε+ηl(x)ϕu∗u∗uε−u5

∗uε−λf(x)uε

]
dx

+
1

4
η

∫
R3

l(x)
[
ϕu∗+tuε

(u∗ + tuε)
2 − ϕu∗u

2
∗ − 4tϕu∗u∗uε

]
dx

− 1

6

∫
R3

(|u∗ + tuε|6 − |u|6∗ − 6tu5
∗uε)dx

≤1

2
t2∥uε∥2 −

1

6
t6
∫
R3

|uε|6dx− t5
∫
R3

u∗|uε|5dx+ gε(t)

≤1

2
t2∥uε∥2 −

1

6
t6
∫
R3

|uε|6dx− t5m

∫
R3

|uε|5dx+ gε(t),

where

gε(t) =
1

4
η

∫
R3

l(x)
[
ϕu∗+tuε

(u∗ + tuε)
2 − ϕu∗u

2
∗ − 4tϕu∗u∗uε

]
dx.

According to [12], we can get that

gε(t) ≤ Ct2ε+ Ct3ε
3
2 + Ct4ε2.

Set

hε(t) =
1

2
t2∥uε∥2 −

1

6
t6
∫
R3

|uε|6dx− t5m

∫
R3

|uε|5dx+ Ct2ε+ Ct3ε
3
2 + Ct4ε2.

Since lim
t→+∞

hε(t) = −∞ and hε(0) = 0, there exist t1, t2 > 0 such that

0 < t1 ≤ tε ≤ t2 < ∞ (2.17)
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and
hε(tε) = sup

t≥0
hε(t), h′

ε(t)|t=tε = 0.

Note that ∫
R3

|uε|5dx = Cε
1
2 +O(ε

5
2 ),

it follows from (2.16) and (2.17) that

sup
t≥0

hε(t) ≤ sup
t≥0

{
1

2
t2S

3
2 − 1

6
t6S

3
2

}
+ C1ε− C2ε

1
2

≤ 1

3
S

3
2 + C1ε− C2ε

1
2

where C1, C2 > 0 (independent of ε, λ). Let ε = λ2, 0 < λ < Λ1 = C2

C1+D , then we
have that

C1ε− C2ε
1
2 = C1λ

2 − C2λ

= λ2(C1 − C2λ
−1)

< −Dλ2

which implies that sup
t≥0

hε(t) <
1
3S

3
2 −Dλ2 for all λ ∈ (0,Λ1). The proof is complete.

Theorem 2.2. Under the conditions of Theorem 1.1, system (1.1) has another
positive solution (u∗, ϕu∗) with Iλ(u

∗) > 0.

Proof. Let λ∗ = min{Λ0,Λ1, (
S

2
3

3D )
1
2 }. By Lemma 2.4, we can choose a sufficiently

large T0 > 0 such that Iλ(u∗ + T0uε) < 0, with the fact that Iλ(u∗) < 0. Then
we apply the mountain-pass Lemma (see [4]) to obtain that there exists a sequence
{un} ⊂ H1(R3) such that

Iλ(un) → c > 0 and I ′λ(un) → 0,

where
c = inf

γ∈Γ
max
t∈[0,1]

Iλ(γ(t))

and
Γ = {γ ∈ C([0, 1],H1(R3)) | γ(0) = u∗, γ(1) = u∗ + T0uε}.

By Lemma 2.3, there exists a convergent subsequence {un} (still denoted by {un})
and u∗ ∈ H1(R3) such that un → u∗ in H1(R3), thus u∗ is a solution of equation
(2.1). Since Iλ(|u|) ≤ Iλ(u), by Theorem 10 in [5], we can get u∗ ≥ 0 and u∗ ̸≡ 0.
By using the strong maximum principle, we have u∗ > 0 in R3. Thus, (u∗, ϕu∗) is
a positive solution of system (1.1). The proof is complete.
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