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Abstract The current paper is devoted to the dynamics of stochastic chaotic
systems with fractional Brownian motion with H ∈ ( 1

2
, 1). The existence

and uniqueness of the so-called stochastic Rössler-Lorenz system driven by
fractional Brownian motion is established. Moreover, the stochastic synchro-
nization of stochastic Rössler-Lorenz system is proved, and some numerical
simulations are provided to verify the theoretical results.
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1. Introduction
In the present paper, we investigate the so-called Rössler-Lorenz system driven by
fractional Brownian motion (fBm)

dx(t) = [σ(y − x) + α3(t)z(y − z)]dt+ g1(x, y, z)dB
H1
t ,

dy(t) = [rx− y − α1(t)xz + x+ ay]dt+ g2(x, y, z)dB
H2
t ,

dz(t) = [α2(t)xy − βz + b+ α3(t)x(z − c)]dt+ g3(x, y, z)dB
H3
t ,

(1.1)

where BHi
t (i = 1, 2, 3) is fractional Brownian motion in the defined complete prob-

ability space (Ω,Ft,P). In case of Hi = 1
2 , and the noise intensity gi(x, y, z) is

replaced by
∑3

j=1 uij(x, y, z), then the stochastic system (1.1) is simplified to the
following stochastic so-called Rössler-Lorenz system

dx(t) = [σ(y − x) + α3(t)z(y − z)]dt+
3∑

i=1

u1i(x, y, z)dBi(t),

dy(t) = [rx− y − α1(t)xz + x+ ay]dt+
3∑

i=1

u2i(x, y, z)dBi(t),

dz(t) = [α2(t)xy − βz + b+ α3(t)x(z − c)]dt+
3∑

i=1

u3i(x, y, z)dBi(t).

(1.2)
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where Bi(t)(i = 1, 2, 3) is a Brownian motion. The system (1.2) is earliest derived
and developed by Jiang and Yin [9], and they proved the well-posedness as well as
p-moment stability for the system, for further details refer to [9]. In particular, if
we set u1i(x, y, z) = 0, u2i(x, y, z) = 0, , u3i(x, y, z) = 0, i = 1, 2, 3, α3(t) = 0, b =
0, a = −1 and α1(t) = α2(t) = 1, then the system (1.2) reduces to the classical
Lorenz system.

Since fractional Brownian motion is neither Markovian nor semi-martingale, the
classical Itô formula and the ergodicty theory are not applicable to stochastic differ-
ential equations driven by fractional Brownian motion, we refer it to [15] for details.
Previously M. Harier [5, 6] proposed a framework for solving stochastic differential
equations with fBm, and he proved that the solution of stochastic differential equa-
tion with fBm is quasi-Markovian solutions along with the existence of the invariant
measure. Zeng et.al. [21] together with Xu et.al. [19] proved the stationary distri-
bution of stochastic Lorenz equation and Robinovich systems with fBm following
the ideas of Harier [5, 6] and [21], respectively. The aim of this work is to prove
the stationary distribution of the stochastic Rössler-Lorenz system (1.2) driven by
fBm.

First of all, we denote u(t) = (x(t), y(t), z(t)) ∈ R3 and

A =


σ −σ 0

−(r + 1) 1− a 0

cα3(t) 0 β

 , B(u(t), t) =


−α3(t)yz + α3(t)z

2

α1(t)xz

−α2(t)xy − α3(t)xz

 , D =


0

0

b

 ,

and

G(u(t)) =


g1(u(t)) 0 0

0 g2(u(t)) 0

0 0 g3(u(t))

 , BH
t =


BH1

t

BH2
t

BH3
t

 ,

where gi(u(t))(i = 1, 2, 3) is a linear function and g1(u(t)) = k1x(t), g2(u(t)) =
k2y(t), g3(u(t)) = k3z(t), ki(i = 1, 2, 3) are all constants. Denote by |u(t)| = (x2(t)+
y2(t) + z2(t))1/2 the vector norm, and ⟨·, ·⟩ represents the inner product. Then the
stochastic system (1.1) can be rewritten as the stochastic evolution equation{

du(t) = −[Au(t) +B(u(t), t)−D]dt+G(u(t))dBH
t ,

u(0) = u0.
(1.3)

It is necessary to point out that there exists a typos in [9] when the equation (1.2)
is transformed into the abstract evolution equation (1.3), a31 = −cα3(t) should be
a31 = cα3(t), but there is no any impact on their arguments.

In the sequel,we suppose the following assumptions hold

(A1) β > 0, σ > 0, r + a < 0 and 1− a+ σ > 0;
(A2) α1(t), α2(t), α3(t) are uniformly bounded for t ≥ 0, and α1(t) = α2(t)+α3(t).

In fact, the assumption (A1) guarantees that ⟨Au, u⟩ ≥ λ|u|2, where λ > 0 is a
constant.
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We also investigate the synchronization phenomenon of stochastic Rössler-Lorenz
systems with fBm, and consider the drive system

du(t) = −[Au(t) +B(u(t), t)−D]dt, (1.4)

as well as its response system

dv(t) = [−Av(t)−B(v(t), t) +D + Γ(u(t), v(t))]dt+G(u(t), v(t))dBH
t , (1.5)

where Γ(u(t), v(t)), G(u(t), v(t)) are both control input vectors, which operate as
feedback controllers, and the error system can be obtained by the following equation

de(t) =[−Ae(t)−B(v(t), t) +B(u(t), t) + Γ(u(t), v(t))]dt

+G(u(t), v(t))dBH
t ,

(1.6)

where e(t) = v(t)− u(t).
This thesis documents several key contributions and novelty. The first novelty

of the present paper is to establish the stationary distribution of stochastic Rössler-
Lorenz system driven by fBm with H (1/2 < H < 1). Then different kinds of
controllers are introduced to realize finite-time synchronization between the drive
system and its corresponding response system. Besides, we analyze the efficiency
and convenience of the two different controllers, and realize the synchronization at
exponential speed. Moreover, we also present the phenomenon that the finite-time
synchronization can be achieved with appropriate controller.

The rest of the paper is arranged as follows. In section 2, the existence of
invariant measure of stochastic systems with fBm (1.3) is established by applying
the framework of Harier [5, 6] and combining Itô formula for fractional Brownian
motion and Lyapunov functions as well. Some examples and numerical simulations
are provided at the end of this section. In section 3, we introduce two kinds of
different controllers to realize finite-time synchronization between the drive system
and the response system, then analyze the efficiency and convenience of the two
different controllers, respectively. A series of numerical simulations are provided to
illustrate the theoretical results.

2. Stationary distribution of stochastic Rössler-Lorenz
system with fBm

In this section, we firstly introduce the Itô formula [14] for fractional Brownian
motion, which is the critical tool to prove the stationary distribution of stochastic
Rössler-Lorenz system with fBm.

Lemma 2.1 ( [14], Itô formula for fBm when H ∈ [1/2, 1)). Assume that
Xt =

∑m
i=1 σiB

Hi
t , where σi are constants, H1 = 1

2 and Hi ∈ ( 12 , 1) for i ≥ 2, then
BH is fBm with Hurst parameter H. Let F ∈ C2(R), then for any t > 0,

F (Xt) = F (0) + σ1

∫ t

0

F ′(Xs)dWs +

m∑
i=2

σi

∫ t

0

F ′(Xs)dB
Hi
s +

σ2
1

2

∫ t

0

F ′′(Xs)ds,

where Wt is a Brownian motion.
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2.1. Well-Posedness of stochastic Rössler-Lorenz system with
fBm

Since

G(u(t)) =


k1x(t) 0 0

0 k2y(t) 0

0 0 k3z(t)

 ,

and k1, k2, k3 are constants.

Theorem 2.1. Stochastic Rössler-Lorenz system (1.3) admits a unique global so-
lution with the form

u(t) = u0 −
∫ t

0

[Au(s) +B(u(s), s)−D]ds+

∫ t

0

G(u(s))dBH
s .

Proof. Denote F (u(t)) = Au(t) +B(u(t), t)−D, and define

FN (u(t)) =


F (u(t)), |u(t)| ≤ N,

F
( u(t)

|u(t)|
N
)
, |u(t)| > N.

Then FN (u(t)) is Lipschitz continuous, and we have

|G(u(t))−G(v(t))| =

∣∣∣∣∣∣∣∣∣
k1(x1(t)− x2(t)) 0

0 k2(y1(t)− y2(t)) 0

0 0 k3(z1(t)− z2(t))

∣∣∣∣∣∣∣∣∣
≤ max

i=1,2,3
{|ki|}|u(t)− v(t)|.

Therefore, we can obtain the truncated system{
duN (t) = −FN (uN (t))dt+G(uN (t))dBH

t ,

uN (0) = u0,
(2.1)

and it has a unique solution in the form of

uN (t) = u0 −
∫ t

0

FN (uN (s))ds+

∫ t

0

G(uN (s))dBH
s .

Define the stopping time {τN} by τN := inf{t > 0 : |u(t)| ≥ N}, then refer
to [19], Borel-Cantelli lemma guarantees that uN (t) converges to u(t) as N → ∞
and Theorem 2.1 holds.

In order to visualize theoretical results, we use truncated EM method proposed
by Mao [13] in all numerical simulations in this paper, and u0 = (1, 0.1, 1)T as well
as all coefficients in the system are chosen to satisfy the demand for the assumptions
(A1) and (A2).
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Figure 1. Trajectory of fBm

Example 2.1. Set the Hurst parameter H = 0.7, the step length dt = 10−4, then
we have the trajectory of fractional Brownian motion as Fig.1.

Set the coefficients σ = 2, b = 1, r = 0, c = 0, a = −18, β = 8(cos t+ 1), and

α1(t)=
2

2t+2
−2 sin t+3+

1

cos 3t+2
, α2(t)=−2 sin t+3+

1

cos 3t+2
, α3(t)=

2

2t+2
,

the numerical solutions with ki = 1, i = 1, 2, 3 and ki = 0.1, i = 1, 2, 3 are presented
in Fig.2 and Fig.3, respectively.

Figure 2. Sample path of Example 2.1 with ki = 1, i = 1, 2, 3

Example 2.2. Let B(u(t), t) be the same as in Example 2.1, and take σ = 2, a =
−7, r = 0, b = 1, c = 0, β = 2, the numerical solution is shown in Fig.4. Moreover,
we set the coefficient matrix A has the same parameters as in Example 2.1, and

α1(t) =
1

sin t+ 2
+

5

sin t2 + 2
, α2(t) =

5

sin t2 + 2
, α3(t) =

1

sin t+ 2
.
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Figure 3. Sample path of Example 2.1 with ki = 0.1, i = 1, 2, 3

The corresponding numerical simulation is presented in Fig.5.

Figure 4. Sample path of Example 2.2 with ki = 1, i = 1, 2, 3

2.2. Invariant measure when H ∈ (1
2
, 1)

In this section, we introduce the stationary distribution of stochastic Rössler-Lorenz
system (1.3) on the basis of the idea [21]. Define the two-side fBm with the Hurst
parameter H ∈ (0, 1) as

BH
t = αH

∫ 0

−∞
(−r)H−1/2(dBt+r − dBr).

Denote H0 = min{H1,H2,H3}, R− = (−∞, 0], C∞
0 (R−;R3) be the set of

smooth compactly supported functions f and f(0) = 0, and Wλ,γ be the completion
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Figure 5. Sample path of Example 2.2 with ki = 0.1, i = 1, 2, 3

of C∞
0 (R−;R3) with the norm:

||ω||λ,γ = sup
s,t∈R−,s̸=t

|ω(t)− ω(s)|
|t− s|γ(1 + |t|+ |s|)λ

,

where 0 < λ, γ < 1. Obviously, the norm || · ||λ,γ is equivalent to the Hölder norm
|| · ||γ on [0, T ].

Let W̃λ,γ be the function space on R+ = [0,+∞). Furthermore, if γ ∈ ( 12 ,H0)
and γ + λ ∈ (H0, 1), it can be found that there is a Borel probability measure PH0

on Wλ,γ × W̃λ,γ such that the cannonical process associated with PH0
is a two-side

fractional Brownian motion. Let Π : Wλ,γ → W̃λ,γ be linear and bounded,

Πω(t) = βH0

∫ ∞

0

1

r
h(

t

r
)ω(−r)dr,

where βH0 = (H0 − 1
2 )αH0α1−H0 and

h(r) = rH0− 1
2 + (H0 −

3

2
)r

∫ 1

0

(r + u)H0− 5
2

(1− u0)H0− 1
2

du.

Let Kh : ω → ω + h be a shift map in W̃λ,γ , and the transition kernel K(ω, ·) =
(KΠω ◦ IH0− 1

2 ) ∗W , where IH0− 1
2 can be defined as [16]:

IH0− 1
2 f(t) =

1

Γ(H0 − 1
2 )

∫ t

0

(t− s)H0− 2
3 f(s)ds.

Define the one-side Wiener shift θt : Wλ,γ → Wλ,γ by

θtω(s) = ω(s− t)− ω(−t), s ∈ R−, t ∈ R+,

and βt : Wλ,γ × W̃λ,γ → Wλ,γ , that is

βt(ω, ω̃) =

 ω̃(s+ t)− ω̃(t), t > −s,

ω(s+ t)− ω̃(t), t ≤ −s,
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where ω ∈ Wλ,γ , t ∈ R+, and the transition operator Pt is defined by Pt(ω, ·) =
β∗
t (ω, ·)Kt(ω, ·). Hence, the quadruple (Wλ,γ , {Pt}t≥0,PH0

, {θt}t≥0) is a stationary
process.

For u0 = (x0, y0, z0)
T and ξ ∈ C0([0, T ],R3), denote that

ϕT (u(t), ξ)(t)=u0−
∫ t

0

(AϕT (u, ξ)(s)+B(ϕT (u, ξ)(s))−D)ds+

∫ t

0

G(ϕT (u, ξ)(s))dB
H
s .

Theorem 2.1 yields that there has an exact ϕT (u(t), ξ), which implies that there
exists a stationary process (Wλ,γ , {Pt}t≥0,PH0

, {θt}t≥0). Thus we can define Ξ :
R+ × R3 ×Wλ,γ → R3 by

Ξt(u(t), ω) = ϕT (u(t), Gtω)(t),

where GT is a continuous shift operator expressed as

(GTh)(t) = h(t− T )− h(−T ), GT : Wλ,γ → W̃λ,γ .

It follows from Lemma 2.12 in [6] that for given t ≥ 0, the Feller semigroup
Qt(u(t), ω; ·) can be defined on R3 ×Wλ,γ by

Qt(u(t), ω;Q1 ×Q2) =

∫
Q2

δΞt(u(t),ω′)(Q1)Pt(ω, dω
′),

where δx located at x represents the delta measure.

Theorem 2.2. Assume that (A1) and (A2) hold. Then the stochastic dynamical
system generated by the solution of stochastic Rössler-Lorenz system (1.3) admits a
unique invariant measure.

Proof. Since ϕT is the pathwise integral, it follows from [6] {Ξt}t≥0 generates a
continuous stochastic dynamical system. For the sake of proving the existence of the
invariant measure, we consider the following deterministic Rössler-Lorenz system{

dû(t) = −[Aû(t) +B(û(t), t)−D]dt,

û(0) = u0,
(2.2)

where û(t) = (x̂(t), ŷ(t), ẑ(t)) ∈ R3. Let V1 = x̂2(t) + ŷ2(t) + ẑ2(t), then direct
calculation implies that

d|û(t)|2

dt
≤ dV1

dt
= 2⟨û(t), dû(t)⟩ ≤ −λ|û(t)|2 + ⟨D, û(t)⟩ ≤ −λ

2
|û(t)|2 + d2

2λ
.

Multiply the above equation by e
λ
2 t can be derived

e
λ
2 td|û(t)|2 + λ

2
|û(t)|2eλ

2 tdt ≤ d2

2λ
e

λ
2 tdt, de

λ
2 t|û(t)|2 ≤ d2

2λ
e

λ
2 tdt.

Integrating the above equation from 0 to t, we can obtain

e
λ
2 t|û(t)|2 ≤ |û(0)|2 +

∫ t

0

d2

2λ
e

λ
2 sds, |û(t)|2 ≤ |û(0)|2e−λ

2 t +
d2

λ2
.
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Hence, there exists a positive constant C such that for p ≥ 1

|û(t)|p ≤ C|û(0)|pe−
pλ
2 t + C.

Let ũ(t) = u(t)− û(t), then it follows that

ũ(t) =

∫ t

0

[−Aũ(s)−B(ũ(s) + û(s), s) +B(û(s), s)]ds+

∫ t

0

G(û(s) + ũ(s))dBH
s

=: I1 + I2.

For any α ∈ (1−H0, 1/2), direct calculation shows that

|I1(t)| ≤
∫ t

0

|Aũ(s)|ds+
∫ t

0

|B(û(s) + ũ(s), s)−B(û(s), s)|ds ≤ C

∫ t

0

ũ(s)

|t− s|α
ds,

and ∫ t

0

|I1(t)− I1(s)|
|t− s|1+α

ds

=

∫ t

0

|
∫ t

s
[−A(û(τ) + ũ(τ))−B(û(τ) + ũ(τ), τ) +Aû(τ) +B(û(τ), τ)]dτ |

|t− s|1+α
ds

≤C

∫ t

0

ũ(s)

|t− s|α
ds.

Similarly, it follows that

|I2(t)| ≤ C||BH0 ||α
∫ t

0

|G(û(s) + ũ(s))|ds

≤ C||BH0 ||α
(
1 + |u0|+

∫ t

0

∫ s

0

|ũ(s)− ũ(τ)|
|s− τ |1+α

dτds
)
,

and∫ t

0

|I2(t)− I2(s)|
|t− s|1+α

ds ≤ C||BH0 ||α(1 + |u0|+
∫ t

0

∫ s

0
|ũ(s)−ũ(τ)|
|s−τ |1+α dτ

|t− s|α
ds)

≤ C||BH0 ||α
(
1 + |u0|+

∫ t

0

∫ s

0

|ũ(s)− ũ(τ)|
|s− τ |1+α|t− s|α

dτds
)
.

Thus, combining the above arguments, we arrive at

|ũ(t)|+
∫ t

0

|ũ(t)− ũ(s)|
|t− s|1+α

ds

≤|I1(t)|+ |I2(t)|+
∫ t

0

|I1(t)− I1(s)|
|t− s|1+α

ds+

∫ t

0

|I2(t)− I2(s)|
|t− s|1+α

ds

≤2C

∫ t

0

ũ(s)

|t− s|α
ds+ 2C||BH0 ||α

(
1 + |u0|+

∫ t

0

∫ s

0

|ũ(s)− ũ(τ)|
|s− τ |1+α|t− s|α

dτds
)

≤2C||BH0 ||α
(
1 + |u0|+ tα

∫ t

0

|ũ(s)|+
∫ s

0
|ũ(s)−ũ(τ)|
|s−τ |1+α dτ

|t− s|αsα
ds
)
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≤2C||BH0 ||α(1 + |u0|) exp(2C||BH0 ||1/(1−α)
α t).

Therefore, we have

|u(t)|p ≤ C|u0|e−
pλ
2 t + Ce2C||BH0 ||1/(1−α)

α t. (2.3)

It follows from Fernique¡¯s theorem [4], (2.3) and ||BH0 ||α < ∞ that∫
|u(t)|p(Qtµ)(dx, dω) ≤ Ce−

pλ
2 t

∫
|u(t)|pµ(dx, dω) + C, ∀µ.

Since V (u(t)) = |u(t)|p is a Lyapunov function, it follows from [6] that there exists
an invariant measure.

Next, we will prove the uniqueness of invariant measure. Assume that φ :
C([1,+∞), R3) → R is a measurable function, the derivative of function Dφ is
given by

Dφ(u(t), ω) =

∫
C([1,+∞),R3)

φ(z)R∗
1Dδu,ω(dz) = EωφT (ϕT (u(t), ω̃)),

where Eω is the expectation over ω̃ with respect to the probability measure K(ω, ·).
it derives that

DφT (u(t), ω) = EωφT (ϕT (u(t), ω̃)).

Taking the transformations ϕs = su(t) + (t− s)z and ζ = u(t)− v(t), one obtain

DφT (v(t), ω)−DφT (u(t), ω) = Eω

∫ 1

0

⟨DφT (ϕT (ϕs, ω̃)), DxϕT (ϕs, ω̃)ζ⟩.

Due to the boundedness of DφT and DxϕT [8], we can find a jointly continuous
function f satisfying

||DϕT (v(t), ω)−DϕT (u(t), ω)||TV ≤ f(u(t), v(t), ω).

Thus, it follows from [6] that

||R∗
1Dδ(v(t),ω) −R∗

1Dδ(u(t),ω)||TV ≤ f(u(t), v(t), ω).

Applying the Bismut-Elworthy-Li formula [3] and Theorem 3.10 in [6], we deduce
that the stochastic dynamical systems Ξ is strong Feller and topological irreducible
at t = 1. Moreover, the stochastic system (1.3) is quasi-Markovian. Synthesizing
above all outcomes, we finish the proof of Theorem 2.2.

2.3. Numerical simulation
For convenience, we take the same coefficients as Example 2.1 in section 2, and
let ki = 0.1, i = 1, 2, 3. Denote the invariant measure by η, and since the solution
to equation (1.3) is 3-dimensional, we intend to visualize the invariant measure by
projection and the approximation of empirical density. The statistical distribution
is given under 100 samples. For visualization, we give the distribution maps of
the empirical density in XY , XZ and Y Z spaces as following, which are shown as
Fig.7-Fig.9.
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Figure 6. Trajectory of fBm

Figure 7. η in XY space

Figure 8. η in XZ space
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Figure 9. η in YZ space

3. Synchronization of stochastic Rössler-Lorenz sys-
tem with fBm

In this section, we will consider the synchronization of stochastic Rössler-Lorenz
system with fBm. To the end, we introduce the definition of stochastic synchro-
nization from [22].

Definition 3.1 ( [22]). The drive system (1.4) and response system (1.5) driven
by fractional Brownian motion are said to be synchronous in the mean square if
the error system (1.6) with fractional Brownian motion is asymptotic stable in the
mean square, that is, for any initial condition, the mild solution e(t, ·) of the error
system (1.6) satisfies the following estimate

lim sup
t→∞

1

t
log(E∥e(t, ·)∥2) < 0, (3.1)

or there exists the two constants K and γ > 0 such that

E∥e(t, ·)∥2 ≤ Ke−γt. (3.2)

3.1. Exponential asymptotic stability of error system
Consider the following drive system (1.4)

du(t) = [−Au(t)−B(u(t), t) +D]dt,

and its corresponding response system (1.5)

dv(t) = [−Av(t)−B(v(t), t) +D + Γ(u(t), v(t))]dt+G(u(t), v(t))dBH
t .

In order to prove the synchronization by constructing the input vector Γ(t) as a
controller, we consider the error system

de(t) = [−Ae(t)−B(v(t), t) +B(u(t), t) + Γ(u(t), v(t))]dt+G(u(t), v(t))dBH
t ,
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where e(t) = (e1(t), e2(t), e3(t))
T , Γ(u(t), v(t)) = C(t) = (c1(t), c2(t), c3(t))

T is an
input vector, and

G(u(t), v(t)) =


x2(t)− x1(t) 0 0

0 y2(t)− y1(t) 0

0 0 z2(t)− z1(t)

 .

To measure the effects caused by the error and noise, we take

V (t) ≜ V (e1(t), e2(t), e3(t)) =
1

2
(|e1(t)|2 + |e2(t)|2 + |e3(t)|2),

and δ2(t) = (x2(t)− x1(t))
2 + (y2(t)− y1(t))

2 + (z2(t)− z1(t))
2.

Theorem 3.1. Let

Γ(u(t), v(t)) =(α2(t)(y2(t)z1(t)− y1(t)z2(t)),−
δ2(t)sgn(y2(t)− y1(t))

|y2(t)− y1(t)|
,

α3(t)(x1(t)y2(t)− x2(t)y1(t)) + α3(t)(x2(t)z1(t)− x1(t)z2(t)))
T ,

the zero solution to (1.6) is exponential asymptotic stable if both (A1) and (A2)
hold, in other words, it can be said that the error dynamics converges to zero at
exponential rate.

Proof. The assumption (A1) implies that there is a positive constant λ > 0 such
that

⟨Au, u⟩ ≥ λ|u|2.

According to Lemma 2.1 and Itô formula, there holds

E[V (t)]

=
1

2
E|e0|2 − E

∫ t

0

⟨Ae(s), e(s)⟩ds− E
∫ t

0

⟨B(v(s), s)−B(u(s), s), e(s)⟩ds

+
1

2
E
∫ t

0

δ2(s)ds+
1

2
E
[ 3∑

i=1

∫ t

0

|ei(s)|2dBHi
s

]
+ E

∫ t

0

⟨Γ(u(s), v(s)), e(s)⟩ds

≤E
∫ t

0

[
− λ|e(s)|2 + α3(s)

(
x2(s)y2(s)z2(s)− x1(s)y2(s)z2(s)− x2(s)z

2
2(s)

− x1(s)z
2
2(s)− x2(s)y1(s)z1(s) + x2(s)z

2
1(s) + x1(s)y1(s)z1(s)− x1(s)z

2
1(s)

)
− α1(s)

(
x2(s)y2(s)z2(s)− x2(s)y1(s)z2(s)− x1(s)y2(s)z1(s) + x1(s)y1(s)z1(s)

)
+ α2(s)

(
x2(s)y2(s)z2(s)− x2(s)y2(s)z1(s)− x1(s)y1(s)z2(s) + x1(s)y1(s)z1(s)

)
+ α3(s)

(
x2(s)z

2
2(s)− x2(s)z1(s)z2(s)− x1(s)z1(s)z2(s) + x1(s)z

2
1(s)

)
+ ⟨Γ(u(s), v(s)), e(s)⟩+ 1

2
δ2(s)

]
ds+

1

2
E|e0|2

=
1

2
E|e0|2 + E

∫ t

0

[
− λ|e(s)|2 − α3(s)

(
x1(s)y2(s)z2(s) + x2(s)y1(s)z1(s)

)
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+ α3(s)
(
x1(s)z

2
2(s) + x2(s)z

2
1(s)

)
+ α1(s)

(
x2(s)y1(s)z2(s) + x1(s)y2(s)z1(s)

)
− α2(s)

(
x2(s)y2(s)z1(s) + x1(s)y1(s)z2(s)

)
− α3(s)

(
x2(s)z

2
2(s) + x1(s)z

2
1(s)

)
+ α2(s)

(
x2(s)y2(s)z1(s)− x2(s)y1(s)z2(s)− x1(s)y2(s)z1(s) + x1(s)y1(s)z2(s)

)
+ α3(s)

(
x1(s)y2(s)z2(s)− x2(s)y1(s)z2(s)− x1(s)y2(s)z1(s) + x2(s)y1(s)z1(s)

)
+ α3(s)

(
x2(s)z1(s)z2(s)−x1(s)z

2
2(s)−x2(s)z

2
1(s)+x1(s)z1(s)z2(s)

)
− 1

2
δ2(s)

]
ds

≤1

2
E|e0|2 − λE

∫ t

0

[|e(s)|2]ds.

Applying the Gronwall inequality, we deduce that there exists a positive constant
C1 > 0 such that

E|e(t)|2 ≤ C1E|e0|2e−λt, (3.3)

which implies lim
t→∞

sup 1
t log(E|e(t)|

2) ≤ −λ < 0. Therefore, both the drive system
and response system are synchronous in the mean square, and the error system (1.6)
is exponential asymptotic stable.

Theorem 3.2. Assume that (A1) and (A2) hold, and in addition β > 1
2 , 1−a+σ >

1 +
√
(1− a+ σ)2 + 4σ(a+ r). Let

Γ̃(u(t), v(t))=
(
α2(t)(y2(t)z1(t)− y1(t)z2(t)), 0,

α3(t)(x1(t)y2(t)− x2(t)y1(t)) + α3(t)(x2(t)z1(t)− x1(t)z2(t))
)T

.

Then, both the drive system (1.4) and response system (1.5) achieve synchronous
in the mean square.

Proof. The proof is similar to one of Theorem 3.1. Indeed, under the assumptions
in Theorem 3.2, we can obtain that ⟨Au, u⟩ ≥ ( 12 + ϵ)|u|2, where ϵ > 0 is a positive
constant. In detail

det |λI −A| = (λ− β)[λ2 − (1− a+ σ)λ− σ(r + α)]. (3.4)

Let det |λI−A| = 0, with given β > 1
2 and 1−a+σ > 1+

√
(1− a+ σ)2 + 4σ(a+ r),

we obtain that λmin > 1
2 , which implies that there exists a positive constant ϵ > 0

such that
⟨Au, u⟩ ≥ (

1

2
+ ϵ)|u|2. (3.5)

By straightforward calculations we get the following estimates:

E⟨−B(v(t), t) +B(u(t), t), e(t)⟩+ E⟨Γ̃(u(t), v(t)), e(t)⟩

=E
[
− λ|e(t)|2 + α3(t)

(
x2(t)y2(t)z2(t)− x1(t)y2(t)z2(t)− x2(t)z

2
2(t)

− x1(t)z
2
2(t)− x2(t)y1(t)z1(t) + x2(t)z

2
1(t) + x1(t)y1(t)z1(t)− x1(t)z

2
1(t)

)
− α1(t)

(
x2(t)y2(t)z2(t)− x2(t)y1(t)z2(t)− x1(t)y2(t)z1(t) + x1(t)y1(t)z1(t)

)
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+ α2(t)
(
x2(t)y2(t)z2(t)− x2(t)y2(t)z1(t)− x1(t)y1(t)z2(t) + x1(t)y1(t)z1(t)

)
+ α3(t)

(
x2(t)z

2
2(t)− x2(t)z1(t)z2(t)− x1(t)z1(t)z2(t) + x1(t)z

2
1(t)

)
+ α2(t)

(
x2(t)y2(t)z1(t)− x2(t)y1(t)z2(t)− x1(t)y2(t)z1(t) + x1(t)y1(t)z2(t)

)
+ α3(t)

(
x1(t)y2(t)z2(t)− x2(t)y1(t)z2(t)− x1(t)y2(t)z1(t) + x2(t)y1(t)z1(t)

)
+ α3(t)

(
x2(t)z1(t)z2(t)− x1(t)z

2
2(t)− x2(t)z

2
1(t) + x1(t)z1(t)z2(t)

)]
=0, (3.6)

and
− E⟨Ae(t), e(t)⟩+ 1

2
Eδ2(t) ≤ −ϵE|e(t)|2. (3.7)

Applying the Gronwall inequality and (3.6), (3.7), we drive that there exists a
constant C2 > 0 such that

E|e(t)|2 ≤ C2E|e0|2e−ϵt, (3.8)

thus, the proof of Theorem 3.2 is complete.
Furthermore, we can prove the error dynamical system will converge to zero in

finite time and the finite-time synchronization can be achieved with appropriate
controller Γ̄(u(t), v(t)).

Theorem 3.3. Let

Γ̄(u(t), v(t)) =(α2(t)(y2(t)z1(t)− y1(t)z2(t))− |x2(t)− x1(t)|γsgn(x2(t)− x1(t)),

− δ2(t)sgn(y2(t)− y1(t))

|y2(t)− y1(t)|
− |y2(t)− y1(t)|γsgn(y2(t)− y1(t)),

α3(t)(x1(t)y2(t)− x2(t)y1(t)) + α3(t)(x2(t)z1(t)− x1(t)z2(t))

− |z2(t)− z1(t)|γsgn(z2(t)− z1(t)))
T ,

γ ∈ (0, 1), if (A1) and (A2) hold, then both the drive system and response system
achieve synchronization in finite time.

Proof. Analogously, via Itô formula we obtain

E[V̇ (t)]

=− E⟨Ae(t), e(t)⟩ − E⟨B(v(t), t)−B(u(t), t), e(t)⟩+ E⟨Γ̄(u(t), v(t)), e(t)⟩

+
1

2
Eδ2(t) +

1

2
E
[ 3∑

i=1

|ei(s)|2ḂHi
t

]
≤E

[
− λ|e(t)|2 − α3(t)

(
x1(t)y2(t)z2(t) + x2(t)y1(t)z1(t)

)
+ α3(t)

(
x1(t)z

2
2(t) + x2(t)z

2
1(t)

)
+ α1(t)

(
x2(t)y1(t)z2(t) + x1(t)y2(t)z1(t)

)
− α2(t)

(
x2(t)y2(t)z1(t) + x1(t)y1(t)z2(t)

)
− α3(t)

(
x2(t)z

2
2(t) + x1(t)z

2
1(t)

)
+ α2(t)

(
x2(t)y2(t)z1(t)− x2(t)y1(t)z2(t)− x1(t)y2(t)z1(t) + x1(t)y1(t)z2(t)

)
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+ α3(t)
(
x1(t)y2(t)z2(t)− x2(t)y1(t)z2(t)− x1(t)y2(t)z1(t) + x2(t)y1(t)z1(t)

)
+ α3(t)

(
x2(t)z1(t)z2(t)− x1(t)z

2
2(t)− x2(t)z

2
1(t) + x1(t)z1(t)z2(t)

)
− 1

2
δ2(t)

− |x2(t)− x1(t)|γ+1 − |y2(t)− y1(t)|γ+1 − |z2(t)− z1(t)|γ+1

]
≤− E

[
|x2(t)− x1(t)|γ+1 + |y2(t)− y1(t)|γ+1 + |z2(t)− z1(t)|γ+1

]
.

Frequently we obtain that

E[V̇ (t)] ≤− E
[
|x2(t)− x1(t)|γ+1 + |y2(t)− y1(t)|γ+1 + |z2(t)− z1(t)|γ+1

]
≤− E

[(
(x2(t)− x1(t))

2 + (y2(t)− y1(t))
2 + (z2(t)− z1(t))

2
) 1+γ

2

]
=− 2

1+γ
2 E[V

1+γ
2 (t)], (3.9)

obviously 1+γ
2 ∈ (0, 1). Thus according to Theorem 1 in [7], we complete the proof.

3.2. Numerical simulation
In this subsection, some numerical simulations are provided to illustrate the theo-
retical results.

Example 3.1. Let the drive system is deterministic, take σ = 2, b = 1, r = 0, a =
−18, c = 0, β = 8(cos t+ 1),

α1(t)=
2

2t+2
−2 sin t+3+

1

cos 3t+2
, α2(t)=−2 sin t+3+

1

cos 3t+2
, α3(t)=

2

2t+2
,

and the controller of its response system is

Γ(u(t), v(t)) =

(
α2(t)(y1(t)z2(t)− y2(t)z1(t)),−

δ2(t)sgn(y2(t)− y1(t))

|y2(t)− y1(t)|
,

− α3(t)(x1(t)y2(t)− x2(t)y1(t))− α3(t)(x2(t)z1(t)− x1(t)z2(t))

)T

.

Let the Hurst parameter H = 0.7, then Fig.10-Fig.13 of error system explain that
how the two systems achieve synchronization.

Example 3.2. The only difference between this example and Example 3.1 is that
the controller is replaced by Γ̃(u, v, t)=(α2(t)(y1(t)z2(t)−y2(t)z1(t)), 0, −α3(t)(x1(t)
y2(t) − x2(t)y1(t)) − α3(t)(x2(t)z1(t) − x1(t)z2(t))

T , thus we have such following
Fig.14-Fig.17.

Comparing with the above two examples, we can find that both the two response
systems can achieve synchronization with the drive system, however there are also
some differences between them. First, as in Fig.10, there exists obvious oscillations
in the sample path of the response system with controller in Example 3.1, but the
other controller shows a smooth sample path in Fig.14. In addition, the convergence
rate of the later controller is much faster. In conclusion, whether it is for simplicity
or efficiency, the second controller is a better choice.
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Figure 10. Trajectory of fBm

Figure 11. Sample path of response system

Figure 12. Time responses of the synchronization error
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Figure 13. Time responses of mean values
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Figure 14. Trajectory of fBm

Figure 15. Sample path of response system
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Figure 16. Time responses of the synchronization error

Figure 17. Time responses of mean values

Remark 3.1. In fact, if H = 1
2 , which implies that the error system (1.5) is driven

by standard Brownian motion, synchronization will also be realised like following
two pictures.

Figure 18. Times responses with controller Γ
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Figure 19. Times responses with controller Γ̃
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