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THE EFFECTIVENESS OF HUMAN
INTERVENTIONS AGAINST COVID-19 BASED

ON EVOLUTIONARY GAME THEORY∗

Susu Jia1, Xinzhu Meng1,† and Tonghua Zhang2

Abstract Social distancing strategy (including Six-Foot Rule, wearing masks,
and other easy-to-operate measures) and quarantine measures have played a
critical role in the early stage of the COVID-19 epidemic. In order to explore
the mechanisms of these two human interventions accurately, we develop a
coupling epidemiological-behavioral model based on evolutionary game the-
ory. Individuals decide whether to take strategy measures based on rational
consideration of payoffs. Moreover, authorities also balance the costs and ef-
fectiveness of the interventions at the public level. Our simulation shows that
social distancing strategy can suppress every single outbreak effectively. In
the early stage of an epidemic, the implementation of the quarantine mea-
sures determines the scale of the epidemic. Timely and effective quarantine
measures can control recurrent outbreaks without social lockdown. Support
policy for individual-level intervention or high diagnosis rates are beneficial to
control the epidemic but require long-term social lockdown.

Keywords COVID-19, mathematical epidemiology, imitation dynamics, quar-
antine, social distancing.

MSC(2010) 91A22, 92B05.

1. Introduction
COVID-19, the serious respiratory infectious disease caused by the new type virus
SARS-CoV-2, its rapid spread have done great harm to people’s life and social
stability. As of 31 December 2020, about 103.4 million people worldwide have benn
diagnosed [8]. Even in a developed country with world-class health care, the daily
increase in confirmed cases is up to 200 thousand [8]. COVID-19 pandemic was
not immediately suppressed, and the second wave occurred in October 2020 [5,14].
It is essential to develop a sustainable control methods for the early stages of new
epidemics [20,32].
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Since people infected with SARS-CoV-2 have an incubation period, most of
the research is an extension of the classical SEIR model [18, 21, 22, 34]. Taking
population migration into account, Yang etc [34] used the SEIR model and epi-
demiological data from the first two months of COVID-19 to describe the epidemic,
and used an AI method to predict trends, which was trained on SARS data from
2003. And Liu etc [22] developed two SEIRU models to delve deeper into exposure
or incubation period, one of which had time delay. Lei [17] established a difference
equation model and well predicted the changes in the recent confirmed cases of
infectious diseases such as COVID-19.

There are three modes of transmission of COVID-19, namely direct transmis-
sion, aerosols transmission and contact transmission. There is now compelling ev-
idence that covid-19 is mainly transmitted via airborne respiratory aerosols. Be-
cause pathogen-bearing aerosol droplets are small enough to mix well indoors, only
Six-Foot Rule of social distancing dose not provide effective protection. Wear-
ing face masks is the most effective method to prevent interhuman transmission
[10, 11, 16, 20]. Combined wearing masks with Six-Foot Rule, quarantine and con-
tact tracing, the social distancing strategy will most likely stop the COVID-19
pandemic [36]. Thereby, the so-called ”social distancing strategy” in this inves-
tigation includes those easy-to-operate individual epidemic prevention measures,
such as wearing masks, timely disinfection, and reducing exposure. But reduc-
ing going out and Six-Foot Rule affect people’s normal lives. Especially when the
scope is expanded to the whol pipulation, the Great Lockdown is formed. It will
inevitably bring about additional consumption and obstacles to economic and so-
cial development. In fact, the Great Lockdown has a negative impact on economic
growth [23,26]. In terms of mental health, people having long-term indoor life will
have negative mentality and may rise depressive psychological problems [24,28,30].

In fact, the state of population epidemic prevention behavior will affect epi-
demiological dynamics. Evolutionary game theory (EGT) has been used to study
the impact of individual epidemic prevention behavior epidemiology. Individuals
make behavior decisions by measuring the income difference of different epidemic
prevention strategies. In addition, personal experience and the speed of reaction to
relevant information are also very important to the game [29].

The investigations of coupling epidemic-behavior are generally based on two dif-
ferent kinds of assumptions: modeling on well mixed homogenous populations, or
networks [6]. The former highlights individual perceptions of benefits, while the lat-
ter focuses on reflecting the impact of demographic structure. Based on the EGT
framework in well-mixed populations, Piero etc [28] modeled behavioral changes
through an imitation process with the consideration of perceived prevalence of in-
fections and effects of misconception of risk. In this study, asymptomatic infected
individuals and recovery individuals also participated in the game. Exposed cases
have the same decision-making process as susceptible individuals, and their behavior
will deeply affect the epidemiological dynamics. Their investigation highlights that
imitation can not change their epidemical status. Li etc [19] applied the network
method to study how the the behavior of weak a mask affect a pandemic. Amaral
etc [1] highlighted the critical role of social strategies on COVID-19. In addition,
Kabir etc [13] had even floated the idea of balancing costs in the economic field.

The quarantine we consider is not individual home quarantine, but the strict
and effective epidemic prevention measures guaranteed by public health institutions.
They quarantine contagious cases to specific sites and investigate their epidemio-
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logical history in detail, looking for sources of infection and potential infections.
Xu etc [33] proved that the quarantine of close contacts has significant effect on
reducing the number of daily new cases. This measure is more effective than home
quarantine and can detect incubation patients as early as possible [12, 20, 33, 35].
Such public interventions to curb COVID-19 have had varying degrees of success
in countries [10,16,25]. Boulfoul etc [4] demonstrated the key role of quarantine in
disease clearance through an epidemic model.

In order to investigate human interventions in the early stage of COVID-19, we
propose a coupling epidemiological-behavioral model in Section 2 and present the
main results of numerical simulation in Section 3. The final section is the discussion
and conclusions.

2. Model and Assumptions
2.1. Epidemiological model
COVID-19 has an incubation period, and the incubation period cases are contagious.
We divide the population into five compartments – susceptible (S), exposed (E),
symptomatic (I), quarantine (Q), recoverd (R). Our investigation focus on the early
stage of the pandemic and therefore do not consider population dynamics such as
natural birth-death and migration over a short period of time. It is assumed that
the total population N(t) satisfies N(t) = S(t) +E(t) + I(t) +Q(t) +R(t) = 1, i.e.
the above variables all represent the proportion of each state in the total population.
Based on the above assumptions, we establish the SEIQR epidemic model:

Ṡ(t) = −(β
I
I + β

E
E)S,

Ė(t) = (β
I
I + β

E
E)S − θE,

İ(t) = αE − ζI,

Q̇(t) = q1E + q2I − γ2Q,

Ṙ(t) = γ0E + γ1I + γ2Q,

(2.1)

where θ = α + γ0 + q1 and ζ = q2 + γ1. The detailed comments and value ranges
all parameters are shown in Table 1.

By the next generation matrix approach [31], the basic reproductive number of
model (2.1) is R̂0 = B

θ , where B = β
E
+ α

ζ βI
.

2.2. Imitation process
We assume that the imitation of epidemic prevention behavior occurs in a well-
mixed population. Some of the exposed individuals may be self-healing, that is,
enter R(t) directly from E(t), and the exposed individuals and recovery individuals
will still make decisions about epidemic prevention behaviors psychologically. So
we have three classes of participants, including susceptible, exposed, and recovering
classes.

According to the individual’s willingness to prevent epidemic, the individual’s
epidemic prevention strategy is devided into positive strategy C and the negative
strategy D. It is a two-strategy game, cooperation and defection, similar to the
prisoner’s dilemma. The positive one can reduce the risk of infection for individuals,
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Table 1. Epidemiology and imitation process parameters

parameters Description Range Baseline Source

γi The removement rates from infected compartments [0.072, 0.238] 0.154 [34]
β

E
Transmission rate for exposed individuals [0.152, 0.163] 0.157 [34]

β
I

Transmission rate for symptomatic individuals [0.760, 0.814] 0.787 [34]
1/α The average duration of incubation [4.1, 7.0] 5.2 [34]
q1 The quarantine rate of E [0, 1] 0.11 -
q2 The quarantine rate of I [0, 1] 0.7 -
σ relative risk of infection [0.13, 0.87] 0.33 [27]
ρ Speed of the behavioral changes

[
10−3, 103

]
925 -

c The investment in social distancing strategy per unit time
[
0, 103

]
0.001 -

µ Rate of the irrational exploration [0, 1] 10−8 [29]

but at an additional cost. When individuals with different strategies meet, they will
rationally compare the expected payoffs of the two to decide whether to imitate the
behavior of the other [2].

The modeling approach of imitation dynamics of a 2-strategy game has been
widely recognized. It can be described as

ẋ(t) = x(1− x)∆π + µ(1− x)− µx, (2.2)

where x is the fractions of one strategy, 1−x is anothor one’s, and µ is the irrational
decisions which avoids the undesirable effect of strict imitation [29].

According to the hypothesis, the players are divided into six substates: S
D

, E
D

,
R

D
, S

C
, E

C
, R

C
. Let P (t) = P (t) as the total players, and P

C
(t) = S

C
(t)+E

C
(t)+

R
C
(t) as the strategy C players, P

D
(t) = S

D
(t) +E

D
(t) +R

D
(t) as the strategy D

players. According to (2.2), the imitation dynamics model is established:
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Ė
D
(τ) = ∆π[E

C
P

D
H(∆π) + E

D
P

C
H(−∆π)] + µ(E

C
− E

D
),

Ė
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Ṙ
D
(τ) = ∆π[R

C
P

D
H(∆π) +R

D
P

C
H(−∆π)] + µ(R

C
−R

D
),

Ṙ
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(2.3)

where H(·) is the Heaviside function:

H(x) =

{
1, x ⩾ 0,

0, x < 0.
(2.4)

The information available to players is confirmed cases. In model (2.1), we as-
sume that Q(t) is the confirmed case in quarantine, so the infection risk is expressed
as the proportion of confirmed cases Q(t). Assuming that the cost of strategy C is
c, the reduction coefficient of infection risk is σ(0 < σ < 1). strategy D has no cost,
and is at full risk of infection. Therefore, the payoff functions of two strategies are
:πD = −Q(t), πC = −c−σQ(t). When encountering players with different strategy,
the individual changes behavior with a proportional to the difference in the payoff
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function

∆π = πD − πC

= c− (1− σ)Q.
(2.5)

Let ∆π = 0, there is a threshold m = c
1−σ of the infection risk. If it reaches the

threshold, players will tend to imitate strategy C since πD < πC ; On the contrary,
players will prefer strategy D when the infection risk gets lower than the threshold.

2.3. Coupled system

Figure 1. The epidemic flow between epidemiological classes (represented by solid black lines) and
imitation flow between strategy classes (represented by gray dotted lines).

In order to the proportion of prevention strategies, we defined x as the proportion
of susceptible strategy D in total players, y as the proportion of exposed players
using strategy D in total players, and z as the proportion of strategy C in total
players. :

x =
S

D
(t)

P (t)
, y =

E
D
(t)

P (t)
, z =

P
C
(t)

P (t)
,

then we have

S
D
= xP, S

C
= S − xP, E

D
= yP, E

C
= E − yP.

In particular, the imitation process is under different time scale against epidemic
transmission (τ instead of t). In this investigation, we assume τ = ρt. Here, ρ is
the difference between the speed of information dissemination required for decision-
making and virus dissemination. In the imitation process, rational decision-making
occurs when two strategies encounter while the irrational part may occur at any
time. Under the time scale of epidemical transmission, the rational part of imitation
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dynamics requires multiplying by ρ. Then we have the coupling model:

Ṡ(t) = −λ [σS + xP (1− σ)] ,

Ė(t) = λ [σS + xP (1− σ)]− θE,

İ(t) = αE − ζI,

Q̇(t) = q1E + q2I − γ2Q,

Ṙ(t) = γ0E + γ1I + γ2Q,

ẋ(t) = −xλ− x
P ′

P
+ ρµ(

S

P
− 2x) + ρ∆π [xzP + [S(1− z)− xP ]H(∆π)] ,

ẏ(t) = xλ− θy − y
P ′

P
+ ρµ(

E

P
− 2y) + ρ∆π [yzP + [E(1− z)− yP ]H(∆π)] ,

ż(t) = (1− z)
P ′

P
+ y(α+ q1)− ρ [z(1− z)P∆π − µ(1− 2z)] ,

(2.6)

where P ′ = −(α + q2)E + γ1I + γ2Q and λ = β
I
I + σβ

E
E + (1 − σ)β

E
yP .

All variables and parameters are positive for all t ⩾ 0. Its feasible region is
D =

{
(S,E, I,Q,R, x, y, z) ∈ R8

+|S + E + I +Q+R = 1, x+ y + z ⩽ 1
}

. Figure
1 is the flow chart of the coupling model.

The disease-free equilibrium of system (2.6) is

(1, 0, 0, 0, 0,
c+

√
c2 + 4µ2

c+ 2µ+
√

c2 + 4µ2
, 0,

c+ 2µ−
√
c2 + 4µ2

2c
),

and the basic reproductive number is R0 = [σ + (1 − σ)x]R̂0 = κR̂0. Coupled to
model (2.3), a decay coefficient κ is multiplied by the basic reproductive number
of model (2.1). And the coefficient is determined by the protection efficiency σ of
strategy C and x0, where

x0 =
c+

√
c2 + 4µ2

c+ 2µ+
√

c2 + 4µ2
.

Letting qi = 0, i = 1, 2 will get the basic representative number in the scenario
without quarantine.

3. Simulations and Result
Initial conditions
The epidemiological parameters in the numerical simulation in this investigation
are taken from the literature [34]. At the start of the outbreak, most people adopt
strategy D. And we assume that the irrational factor is a small constant. Other
initial conditions are listed in Table 2.

Baseline scenario
To measure the effect and cost of epidemic prevention deployment in a certain area,
it is necessary to set relevant indicators in the simulation: the final size of infection
(FIS), the peak of confirmed cases (C-peak), the peak of actual infection (A-peak),
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Table 2. Model variables and initial conditions

Variabs S E I Q R x y z

Initial values 1− 10−4 8× 10−5 2× 10−5 0 0 (1−10−6)×(1−10−4)
1−2×10−5

(1−10−6)×8×10−5

1−2×10−5 10−6

the percentage of the big lockdown (more than half people adopt strategy C, i.e.
the duration of z > 0.5) in 400 days (Lockdown), the cost of infection (Infection)
and the relative cost of human interventions (Interventions).
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Figure 2. Imitation speed ρ sequence plots of each index. (a) The value of FIS with imitation speed
axis ρ. (b) The value of A-peak and C-peak with imitation speed axis ρ. (c). The value of Lockdown
with imitation speed axis ρ. (d). The scatter of delay with imitation speed axis ρ.

Consider different relative imitation speeds ρ to conduct the first simulation.
The simulation results of the four indicators are summarized in Fig. 2. It shows
that peak values and behavior delay both decrease monotonically with the increase
ρ, while FIS and Lockdown show non-monotonic change. For the generality of
results, exclude the value of ρ that makes FIS and Lockdown extreme.

When the proportion of existing confirmed cases Q(t) reaches the threshold m,
the individual responds. However, due to the difference in the speed of imitation,
individuals are delayed in their response. According to the scatter plot of confirmed
cases in Beijing and Liaoning province at the beginning of the epidemic (see Fig. 3),
the duration of a single outbreak is about 15 to 25 days, and it takes about 14 days
for more than half of the population to respond to the epidemic. According to the
Fig. 2(d), Delay=14 corresponds to ρ = 925, and the FIS and Lockdown at this
time are not extreme values.

Therefore, the parameters of the baseline scenario are determined, and its time
series diagrams of confirmed cases and strategies are shown in Fig. 4(a). The trend of
confirmed cases in numerical simulation is consistent with that of actual confirmed
cases in Fig. 3, so the parameter setting of baseline scenario is of practical signifi-
cance. And the time series plots of the no-quarantine baseline scenario are plotted
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Figure 3. The time series plots of COVID-19 confirmed cases in Beijing and Liaoning province.

as a control group in Fig. 4(b). The comparison of the time series plots shows that
under the baseline scenario, the duration of the first wave in no-quarantine scenario
is longer, with a larger proportion of confirmed cases Q(t) and a longer duration of
big Lockdown. A further comparison of the indicators of the quarantine, as well as
the scenario with a higher diagnosis rate, are plotted in Fig. 4(c) and Fig. 4(d).

(c)

Lockdown FIS Interventions Infection
-0.4

0

0.5

1
(d)

Lockdown FIS Interventions Infection
-0.4

0

0.5

1

Figure 4. Comparative simulation of quarantine measures. (a) The baseline scenario with quarantine.
(b) The baseline scenario without quarantine. (c) Bar comparison chart of baseline scenario indicators
on quarantine measures. (d). Bar comparison of indicators on quarantine measures at a higher diagnosis
rate.

About 78 days after the first wave ended, the outbreak resurfaces. And the
values of the subsequent outbreaks are lower than those of the first wave. In the first
wave, the proportion of confirmed cases Q(t) > m for 25 days and the population
response is delayed by 14 days. We call the situation where z > 0.5 social lockdown.
And confirmed cases alse peaks after half a day of it occures. As can be seen from
Fig. 4(a), the proportion of cooperative players of susceptibles S

C

S is almost equal to
the proportion of cooperative players of all players. The proportion of cooperative
players of exposed cases is slightly lower, which has little effct on the proportion of
total cooperative players.
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Under the same conditions, the value of the index Lockdown of the scenario
without quarantine is much larger, which has more outbreaks. In addition, the
value of index C-peak is 3.7 times higher than the scenario with quarantine, and
the curve drops slowly after reaching the peak. That is, each outbreak lasts longer.
But the reaction of population is faster. Without public-level measures, individuals
are more susceptible to epidemic prevention.

Under baseline scenario, the ratio of A-peak to C-peak is 2.07 with quarantine
and 1.93 without quarantine. The value of A-peak without quarantine is 2.88 times
higher than with quarantine, and the value of C-peak is 3.15 times higher. Under the
same circumstances, the baseline scenario with quarantine has fewer outbreaks, and
the accompanying social distancing strategy lasts for a shorter period. Meanwhile,
the values of index FIS and costs are lower.

Set higher diagnosises, the ratio of A-peak to C-peak in the scenario with quar-
antine decreases to 1.84, and the same value in the scenario without quarantine
decreases to 1.82. The diagnosis rates q1 and q2 determines the gap between the
two peaks. In the scenario without quarantine measures, epidemic control relies on
prolonged social lockdown, and the effct is not as effective as that in the case of
quarantine measures.

(a)

c
E I

q
1 0

q
2 1

-0.6

-0.3

0

0.3

0.6

0.9
(b)

c
E I 0 1

-0.6

-0.3

0

0.3

0.6

0.9

Figure 5. The sensitivity analysis of R0 in baseline scenarios. (a) The sensitivity analysis of the scenario
with quarantine measures. (b) The sensitivity analysis of the scenario without quarantine measures.

Calculate the normalized forward sensitivity indices of R0 with resoect to each
parameters, and the reluts are shown in Fig. 5(a). And the same sensitivity index
analysis is done for the model without quarantine, and the results are shown in
Fig. 5(b). The value of every bar indicates the change of R0 caused by 1% increase
of each parameter. For example, 1% increase of α will cause the 40% increase
of R0, meanwhile 1% increase of q2 will decrease R0 by 40%. And the increase
of imitation parameters will not significantly affect R0 in the baseline scenario.
Thereby, for curbing the pandemic, increasing the recovery rate and the diagnosis
rate is the directions of efforts. That is, the quarantine is the key of controlling the
infection scale.

Simulations of ξ

We assume the relative risk of infection is proportional to the investment (σ ∝ 1
c ).

With the increase of investment c, the prevention effect of strategy C is better,
i.e. the smaller σ. It is reasonable to assume the reduction factor is the hyperbolic
function of the additional cost c: σ(c) = 1

1+ξc [3]. There are only two cases of
investment in our investigation: 0 or fixed constant c, corresponding to strategy D
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and strategy C, respectively. Furthermore, ξ indicates the impact of local author-
ities on individual-level intervention. Higher ξ indicates the support policy of the
authority to individuals. Therefore, individuals can get better results with the same
investment. In simulation III, we first compare the baseline scenario with the nega-
tive policy ξ1 = 0.5ξ0 and the support policy ξ2 = 1.5ξ0 respectively. In the former
case, players still invest in the same cost as the baseline but bear the higher risk
σ = 0.5; Meanwhile, in the latter case, bear the lower risk σ = 0.25 under the same
cost. The result is shown in Fig. 6. Considering the the scenario with quarantine
measures, the percentage changes of the epidemic prevention indices of ξ1 and ξ2

compared with ξ0 are shown in Fig. 6(a). Support policy and quarantine measures
are both public-level intervention. To compare their epidemic prevention effects,
scenario one has quarantine measures but with ξ2, and scenario two is ξ1 with-
out quarantine measures. The percentage changes of epidemic prevention indices
compared with the no-quarantine baseline scenario are summarized in Fig. 6(b).

(a)

FIS A-peak
Lockdown

Interventions
Infection

-60%

-40%

-20%

0

20%

40%

60%

80%  quarentine, 
1

 no-quarantine, 
2

(b)

FIS A-peak
Lockdown

Interventions
Infection

-60%

-40%

-20%

0

20%

40%

60%

80%
 quarantine, 

1

 no-quarantine, 
2

Figure 6. Percentage of changes of epidemic prevention indicators of support policy. (a) The effec-
tiveness of support policy. (b) The comparison between quarantine and support policies quarantine.
Percentage of changes in epidemic prevention indies of support policy.

Compared to the baseline scenario, the support policy can reduce the FIS and
peak values. With the support policy, individual protection is more effective, and
the epidemic is well controlled based on 15% longer social lockdown duration. The
relative cost of human interventions falls by 14.6% from the baseline. In scenario
with quarantine measures, whether the authorities support individuals or not, the
duration of social lockdown will increase. However, supporting individuals can
effectively reduce the consumption of total cost of interventions.

In scenario without quarantine measures, which one is a more worthwhile public-
level intervention? The figure 6(b) indicates that quarantine is more worthwhile.
Support policy for individuals without quarantine measures will greatly increase
the duration of social lockdown, which is not an ideal situation.

The interaction between two levels of human interventions
To further explore the interaction between the two levels of human interventions,
we design the following simulation, and the result is given in Fig. 7:

1. The interaction of diagnosis rates q1 and q2 and the interaction between imi-
tation speed ρ and diagnosis rate q2 in the system (2.6) (Fig. 7(a));

2. The interaction of diagnosis rates q1 and q2 and the interaction between imi-
tation speed ρ and diagnosis rate q2 in the Non-Isolation system (Fig. 7(b)).
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(a)

(b)

Figure 7. Simulation of interaction between two levels of human interventions. (a) The FIS and
two peaks in the scenario with quarantine measures. (b) The FIS and the two peak values in the
scenario without quarantine measures. q1 ∈ (0.13, 0.27), q2 ∈ (0.13, 0.27) and ρ ∈ (50, 1500), and other
parameters of the baseline scenario are reported in Table 1.
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When individual decision-making is slow, the infection scale is highly sensitive
to the quarantine rate. Increasing quarantine rate can effectively control the size of
a single outbreak, but the influence on the final infection scale is not monotonous.
When the individual responds quickly, the scale of infection is determined by the
relationship between the diagnosis rate qi. When qi satisfies q1 > 0.4−q2, both FIS
and peak value can be well controlled.

The plot of peak indicates that the intensity of the quarantine directly affects
the size of every single outbreak. If enhance the intensity of quarantine measures,
the confirmed patient data will be closer to the actual disease data. In scenario
without quarantine measures, increasing the diagnosis rates directly increases the
individual’s perceived risk of infection, so the control effect depends on higher Lock-
down.

Fixed the value of q1, we focus on the relationship between q2 and imitation
speed ρ. In scenario with quarantine measures (Fig. 7(a)), faster imitation can
reduce the number of outbreaks when q2 is small. However, in the areas with high
q2, the increase of ρ has no significant effect on the peak value. In the scenario
without quarantine measures, the diagnosis rate is the dominant factor (Fig. 7(b)).
In this case, the interventions at the individual level can only play a weak role.

4. Discussion and Conclusions
Early prevention measures are essential for the outbreak of new infectious diseases.
In this paper, we extend the model already introduced in [27] and establish the
coupled epidemiological-behavioral model, to investigate the human interventions
of epidemic prevention at individual and public levels. Those cooperative exposed
cases can help curbing disease transmission by reducing the spread of the virus.
Our investigation emphasizes that spontaneous behavioral change can buy enough
time for further medical research. Nevertheless, the faster individual imitation
reaction speed will lead to more small-scale outbreaks. Furthermore, appropriate
speed of imitation can reduce the daily prevalence of infection [15] and the eventual
epidemic [7, 9].

Relying on the Big Lockdown is not reliable, because of its unavoidable negative
effects. Therefore, the public-level interventions are necessary. Our result shows
that the intensity of separate quarantine determines the scale of the epidemic. In
the areas without quarantine interventions, high diagnosis rates or support policies
for individual measures can help epidemic control, but the impact is modest and
limited.

In addition, our investigation has noticed that if the irrational factors of indi-
vidual decision-making are high, the proportion of each strategy tends to be equal.
In this case, disease control will be more difficult. It is crucial to conduct scientific
education in time to guide the public to view the epidemic scientifically and make
rational decisions.
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