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ASYMPTOTIC ANALYSIS OF AN
INTEGRO-DIFFERENTIAL SYSTEM

MODELING THE BLOW UP OF CANCER
CELLS UNDER THE IMMUNE RESPONSE
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Abstract In this paper, we derive and analyze a phenomenological model
at the cellular level of the immune response to cancer evolution based on the
kinetic theory of active particles. The model consists of a system of nonlin-
ear integro-differential equations describing the binary interactions between
epithelial, tumor, naive immune cells, and activated immune cells. It also
takes into account the phenotypic mutations in the epithelial and immune
cells, which are known to result in the uncontrolled growth of tumor cells. We
prove the well-posedness of the related Cauchy problem and the non-negativity
of the solution. We give sufficient conditions for which the solution may ex-
ist globally in time. A detailed asymptotic analysis has been developed with
the aim of predicting the effect of mutation events on the tumor-immune dy-
namics. The analysis shows that under some critical values of the model’s
parameters and initial conditions, we can specify some biological states of the
blow up of tumor cells. Indeed, the analysis gives useful indications to be
properly explored toward the design of therapeutical actions.

Keywords Mathematical modeling, cancer-immune competition, Kinetic the-
ory of active particles, global existence, asymptotic analysis.
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1. Introduction
The significance of the immune system in tumor development, progression and
destruction, as well as the complexity of the tumor-immune interactions have been
extensively studied in recent decades (see reviews and references therein [17, 26,
31, 43, 45]). The evolution of tumor cells in a host is governed by more than just
the activities of cancer cells alone. It is largely due to a plethora of inter- and
intra-cellular interactions within the tumor microenvironment [43,44]. The immune
cells play a key role in the tumor microenvironment, which contains heterogeneous
cell populations such as cancer stem cells, stromal cells, fibroblasts, and epithelial
cells [29].

The immune system is the organization of cells and molecules with specific role
to protect organism against foreign pathogens and internal disorder [1]. Immune
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system needs to evolve and change in time, learning to identify new pathogen agent
not previously encountered, as well as recognition of non-self-substances as non-
offending entities (cellular feeding substance). Distinct populations of the immune
system act to perform this task. The reaction of the immune cells against foreign
pathogens is of two different kinds: innate response and adaptive response (ac-
quired). The innate response is quickly activated every time the infectious agent
is encountered, while the adaptive one is activated repeated exposures to this the
infection. They collaborate together against infection, and the defense starts from
the identification and recognition of the pathogen agent. On the other hand, tumor
cells (e.g cells that are carrier of a particular pathology) may proliferate, rapidly
increasing the number of individuals [1, 42]. From this point of view tumor cells
may be regarded as an aggressive host, at least at an early stage of the competition.
When tumor cells are recognized by immune cells, a competition starts and may end
up, either with the control or depletion of tumor cells, or weakness of the immune
ability to recognize foreign pathogens inducing an indefinite growth. The reader
interested, from a biological standpoint, to the role of the immune system in de-
tecting and depleting cancer cells is addressed to [18,19,21,30,37] and therein cited
bibliography. Understanding such a complex and continuously changing network
of multiple signals that control cancer-immune interactions calls for mathematical
modeling in addition to experimental and clinical research of course. Several math-
ematical models of tumor-immune system interactions have been developed over the
past decades. They have included a broad range of mathematical methods such as
differential equations, spatial and non-spatial multiscale models, fractal-fractional
models and agent based models to name just a few. These models have examined
different characteristics of the cancer-immune complex interactions both in general
and in other specific cases such as immune surveillance, suppression and escape,
and during therapies (see among others, [2, 4, 8, 23–25,34–36,38–40]).

Various problems in the life sciences have been modeled using the general mathe-
matical framework of the Kinetic theory of active particles (KTAP), as documented
in the survey paper [8] and therein bibliography. Interactions, in this specific ap-
proach, are modeled by means of theoretical game theory tools see, among oth-
ers, [3, 27]. Cells of the population are identified by their microscopic state, which
includes a scalar variable, the activity, related to their functional behavior. The
state of the overall system is then described by a set of distribution functions
over the microscopic state of the interacting cells, and the evolution of the sys-
tem is determined by the microscopic interactions, which are ruled by a somehow
organized behavior or strategy. KTAP’s methods have been applied since [9] to
model cancer phenomena and cellular dynamics and the competition between tu-
mor and immune cells as documented in [10] as well as in several papers, among
others, [5, 7, 9, 11,12,14–16,22].

In this paper, we build upon our previous model in [14] where we develop and
present a detailed asymptotic analysis of a nonlinear integro-differential model of
the tumor-immune competition mediated by the cytokines activity. The model
describes the conservative interactions between the tumor and immune cells, that
is, the competition where no cell proliferation/destruction occurred. The main
result is that, under a suitable choice of initial cytokine level and parameters, the
immune system acquired the ability to become more efficient in eliminating tumor
cells. In [20], we extend the same model by introducing both the conservative and
proliferative/destructive interactions of the tumor and immune cells. The numerical
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study shows that, under a suitable choice of the model’s key parameters and the
cytokines initial activation levels, the activated immune system is able to achieve
a total elimination of tumor cells. These two models, however, do not take into
account the phenotypic mutations that occur at the level of epithelial and immune
cells.

The focus of this study is improving our previous models by including the phe-
notype mutation events in the model and investigating their effects on the immune
response against cancer evolution. To address the question of how phenotypic muta-
tions, affect the immune response against cancer evolution, we present and analyze
a phenomenological model of nonlinear integro-differential equation that includes
phenotypic mutation events. The derivation is based on the description of the bi-
nary interactions between four interacting populations: epithelial, tumor, immune,
and effector cells. We give sufficient conditions that guarantee the global exis-
tence of the solution as well as prove the finite time blow-up of the solution. A
detailed asymptotic analysis is carried out based on some initial conditions and a
suitable choice of the parameters. We establish the well-posedness of the related
Cauchy problem and prove the non-negativity of the solution. We present a detailed
asymptotic analysis with the aim to predict the impact of mutation events on the
tumor-immune dynamics.

This paper is organized as follows. The formulation of the mathematical model
is detailed in section 2. Section 3 summarizes analytical results about the well-
posedness of the Cauchy Problem linked to the model and the asymptotic analysis
of the solution. The proof of these analytical results is presented in 4. A numerical
study is given in section 5. The conclusion and future perspectives are presented in
section 6.

2. The mathematical model

2.1. Model description and assumptions
The biological system considered in this model consists of four interacting popula-
tions in the tumor microenvironment [10, 16]: epithelial cells, tumor cells, innate
immune cells, and activated immune cells labeled by the indices 1, 2, 3 and 4 re-
spectively. These populations are assumed to be structured by a real continuous
variable (u ∈ (0,∞)) which identifies the state of the cells and their biological
meaning and varies from population to another. The following assumptions are
made in setting up the model:

1. Epithelial cells are assumed to be constant considering that the apoptosis
balances the mitosis number. In this case, u may represent the ability to
exchange nutrient and protect to make their number constant.

2. Tumor cells generated from the first population of epithelial cells due to dif-
ferentiation and mutation. In this case, the variable u stands for the capacity
to suppress immune cells.

3. Innate immune cells have the ability to identify progressed tumors cells as
well as to detect their presence. The variable u corresponds to the ability to
identify progressing cells.
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4. Activated immune cells generated from the population of immune cells and
have acquired the ability to contrast progressed tumor cells. The variable u
represents the capacity to contrast the developmental of tumor cells.

The state of populations are characterized by the functions at time t,

fi(t, u) : R+ × R+ → R+, i = 1, ... 4.

At any fixed time, the quantity fi(t, u) du stands for the number of cells in popula-
tion, whose state belongs to the element volume du centered at u, normalized with
respect to the total number of cells inside the cellular system at time t = 0, and the
number density of each populations is computed as follows:

ni(t) =

∫
R+

fi(t, u) du, (2.1)

and the total size of the cellular system at time t results

n(t) =

4∑
i=1

ni(t).

2.2. Model derivation
The evolution equations of fi are based on the Boltzmann type equation as detailed
in [6, 22].

∂fi
∂t

(t, u) = Ji[f ](t, u)

=

4∑
j=1

(∫
R+

∫
R+

δ(u−mij(u∗, u
∗)fi(t, u∗)fj(t, u

∗)du∗du
∗−fi(t, u)

∫
R+

fj(t, u
∗)du∗

)
︸ ︷︷ ︸

Inlet and outlet flux due to conservative interactions

+ fi(t, u)

4∑
j=1

∫
R+

µij(u, u
∗)fj(t, u

∗)du∗

︸ ︷︷ ︸
Net flux due to proliferation/destruction in the same population

(2.2)

+

4∑
h=1

4∑
k=1

∫
R+×R+

µi ̸=h
hk (u∗, u

∗;u)fh(t, u∗)fk(t, u
∗)du∗du

∗

︸ ︷︷ ︸
Net flux due to Proliferation in new population

,

where

• mij(u∗ → u, u∗) is the most probable output of the cellular interaction that
describes the modification in the micro state as transition from u∗ to u.

• µij(u∗, u
∗) is the number of cells produced per unit volume and unit time due

to the encounters of cell pairs of the (i, j)th population with states u∗ and u∗

respectively.
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• µi ̸=h
hk (u∗, u

∗;u) stands for the net proliferation of a cell of the h-th population
with state u∗, with another cell of the k-th population with state u∗, into the
i-th population due to the interaction.

The interaction between the tumor cells and the immune cells as well as the
interaction within the tumor cell and immune cells are described as binary instan-
taneous interactions as follows.

A1- Microscopic conservative interactions
Here, we focus on the nonzero interactions between pairs of cells that only
modify biological states.
• Interaction with epithelial cells i = 1, 2 with j = 1. We assume that only
interaction with epithelial cells implies an increasing of the state both for
cancer and epithelial cells:

mi1 = u∗ + αi. (2.3)
where α1, corresponds to the capacity to differentiate for the epithelial cells,
while α2 stands for capacity to progress and increase the malignity for tumor
cells.
• Interaction of the population i = 1 with j = 2. Epithelial cells are assumed
to feed progression of cancer cell without changing their own state:

m12 = u∗. (2.4)

• Interaction of tumor cells i = 2 - Immune cells j = 3, 4: It is assumed that
this type of interactions does not induce modification of the sates for tumor
cells.
• Interaction of Immune cells from i = 3, 4 - tumor cells j = 2. Immune
cells have the ability to identify tumor cells, if they have acquired this specific
ability. This mechanism occurs progressively. Therefore, the state of immune
cells may increase.

m32 = u∗ + α3, (2.5)
m42 = u∗ + α4, (2.6)

where α3 stands for the capacity to increase the identification of progressing
cells and α4 corresponds to the ability to recognize and attack cancer cells.

A2- Proliferation and competition for resources for tumor cells
The proliferation of tumor cells increases due to a deregulated proliferation [28]
which induce a rapid growth of malignant tumor cells, assumed to occur at
constant rate β2 ∈ R+. However, proliferation for tumor cells is hampered by
competition for resources. Therefore, we assume that a tumor cell in state u
can die due to encounter with cell in any state u∗ at constant rate d2 ∈ R+.

A3- Proliferation and activation of immune cells
The cell activation implies a depletion of number of innate immune cells, so
many regulatory mechanisms act in order to restore its number [33]. Thus,
we assume that immune cells in population (i = 3) can proliferate at constant
rate β3 ∈ R+ and die due to their interaction with other cells in the same
population at constant rate d3 ∈ R+. The aim of destructive interactions
innate immune cells in the model is to keep their number under control. ac-
tivated immune cells may proliferate due to encounter with tumor cells and
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thus we assume that immune cells can proliferate at a rate of β4 ∈ R+ and
also because of the limited availability of nutrients, immune cells cannot pro-
liferate in an unbounded way [32]. Hence, we assume that cells can die at
constant rate d4 ∈ R+ due to the encounter with other cells in the same pop-
ulation. Activated immune cells are able to recognize and attack tumor cells.
This phenomenon is described as a binary interaction between cancer cells in
state u and activated immune cells in state u∗. These interactions cause the
destruction of cancer cells at rate µ2.

A4- Mutation events.
Interactions can generate new daughter cells in a population different from of
the mother cells. In particular, we assume that epithelial cells can mutate and
become cancerous. In turn, immune cells mutate and acquire the capability
to identify and attack tumor cells. Moreover, the biological state of mutated
cells do not change during the transition. These interactions occur at constant
rate as follow:
• Mutation of epithelial cells (h = 1) into cancerous state in population of
tumor cells (i = 2), due to encounter with epithelial cells (k = 1)

µi
hk(u∗, u

∗;u) =

 ε1δ(u− u∗) h = 1, k = 1, i = h+ 1,

0 otherwise
(2.7)

where ε1 models the mutation rate for tumor cells.
• Mutation from innate immune population to an activated state related to
the capability of immune cells to recognize tumor cells.

µi
hk(u∗, u

∗;u) =

 ε2δ(u− u∗) h = 3, k = 3, i = h+ 1,

0 otherwise.
(2.8)

Based on the phenomenological assumptions (A1-A4) and using the mathemati-
cal framework given in (2.2), the corresponding evolution equations of the functions
(f1, ..., f4) read as follows:

∂f1
∂t

(t, u) = Θ1[f ]

= n1(t)

(
f1(t, u− α1)χ(α1,+∞)(u)− f1(t, u)

)
︸ ︷︷ ︸

Differentiation and renewal of epithelial cells

, (2.9)

∂f2
∂t

(t, u) =Θ2[f ]

= n1(t)

(
f2(t, u− α2)χ(α2,+∞)(u)− f2(t, u)

)
︸ ︷︷ ︸

Self progression toward advanced states of malignancy

+ β2f2(t, u)n1(t)︸ ︷︷ ︸
Proliferation of tumor cells

+ ε1f1(t, u)n1(t)︸ ︷︷ ︸
Mutation in tumor cells

−d2 f2(t, u)n2(t)︸ ︷︷ ︸
Competition for resources

− µ2f2(t, u)n4(t)︸ ︷︷ ︸
Destruction by actiated immune cells

,

(2.10)



Modeling the immune-tumor evolution 1769

∂f3
∂t

(t, u) =Θ3[f ]

=n2(t)

(
f3(t, u− α3)χ(α3,+∞)(u)− f2(t, u)

)
︸ ︷︷ ︸

Recognition of tumor cells

+ β3f3(t, u)n3(t)︸ ︷︷ ︸
Proliferation

− d3 f3(t, u)n3(t)︸ ︷︷ ︸
Destruction

,

(2.11)

and
∂f4
∂t

(t, u) =Θ4[f ]

=n2(t)

(
f4(t, u− α4)χ(α4,+∞)(u)− f4(t, u)

)
︸ ︷︷ ︸

Identification and Activation

(2.12)

+ β4f4(t, u)n2(t)︸ ︷︷ ︸
Proliferation du to encounter with tumor cells

− d4f4(t, u)n4(t)︸ ︷︷ ︸
Homeostatic regulation

+ ε2f3(t, u)n3(t)︸ ︷︷ ︸
Mutation term

,

where
f = (f1, f2, f3, f4).

The system (2.9)-(2.12) characterizes a nonlinear integro-differential model with
a quadratic type nonlinearity. All the biological parameters involved in the model
take nonnegative values. Practical value of these parameters are small with respect
to unity. The model parameters and their meaning are summarized in Table 1.

Integrating (2.9)-(2.12) with respect to u in R+ and using (2.1) yields the fol-
lowing equations for the densities ni, i = 1, .., 4:

∂n1(t)

∂t
= 0, (2.13)

∂n2(t)

∂t
= β2n1n2 − d2n

2
2 − µ2n2n4 + ε1n

2
1, (2.14)

∂n3(t)

∂t
= (β3 − d3)n

2
3, (2.15)

∂n4(t)

∂t
= β4n4n2 − d4n

2
4 + ε2n

2
3. (2.16)

This system is in a closed form.

3. Analytical results
This section is meant to provide some qualitative proprieties of the Cauchy Problem
derived by endowing Eqs. (2.9)-(2.12) with suitable initial conditions. In more
details:

In subsection (3.1) the well posedness of the initial value problem under consid-
eration is analyzed.
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Table 1. The model parameters and their description

Parameters Meaning
α1 The inner tendency of epithelial cells to

degenerate and progress towards a pathological state
α2 The ability of the progressing cells to

increase their of progression
α3 The inner tendency of naive immune cells to

degenerate toward an activated state
α4 The ability of activated immune cells

to increase their malignancy
β2 The proliferation rate of tumor cells
β3 The proliferation rate immune cells
β4 The proliferation rate of activated immune cells
d2, d2, d3 destruction rate for tumor cells, immune cells,

and activated immune cells respectively
µ2 The immune destruction of tumor cells
ε1 mutation rate for tumor cells
ε2 mutation rate for activated immune cells.

3.1. A well-posedness result
The expression of functions fi are delivered by the solution of the following Cauchy
Problem, derived by endowing Eqs. (2.9)-(2.12) with suitable initial conditions:

∂f

∂t
(t, u) = Θ[f ](t, u), (t, u) ∈ (0,∞)× (0,∞),

f(0, u) = f0(u) ∈ X+.
(3.1)

In the above expression, X+ is the positive cone of the Banach space

X := {f = (f1, f2, f3, f4) : f1, f2, f3, f4 ∈ L1
u(0,∞)},

endowed with the norm

∥ f ∥=
4∑

i=0

∥ fi ∥1,

while Θ[f ] is the componentwise defined by Eqs. (2.9)-(2.12).
Let Y be the Banach space C([0, T ],X+) endowed with the norm.
Let Y = C([0, T ],X+) the space of the functions continuous on [0, T ] with values

in a Banach space X+, endowed with the uniform norm

∥ f ∥Y= sup
t∈[0,T ]

∥ f(t) ∥ .

Making use of standard fixed point arguments, it can be shown that our Cauchy
Problem (3.1) is well-posed in the sense of Hadamard (i.e. the solution exists, it is
unique and depends continuously on the initial condition), as stated by the following
theorems:
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Theorem 3.1 (Well-posedness of the problem and non-negativity of the solution).
For any initial data f0 ∈ X+, there exist two positive constants T and a0 such
that Problem (3.1) has a unique local temporal solution f ∈ Y which satisfies the
following estimate:

∥ f(t) ∥≤ a0 ∥ f0 ∥, ∀t ∈ [0, T ], (3.2)

and
f ∈ X+ ∀t ∈ [0, T ], (3.3)

where both a0 and T depend on the initial data as well as on the model parameters.

The solutions of Eq. (3.1) may not exist globally in time due to possibility of
uncontrolled growth. We can show the blow up of solutions for (3.1) under the
following assumptions (3.4) where solutions cease to exist globally in time because
of infinite evolution of the cancer cells:

β3 − d3 > 0, (3.4)

where β3 and d3 are the proliferation rate and the destruction rate of naive immune
cells respectively.

Condition (3.4) describes the case where the proliferation rate of naive immune
cells is considerable compared to their destruction rate due to the interaction with
others naive immune cells.

Theorem 3.2 (blow-up of solutions). If assumption (3.4) holds, then the unique
nonnegative solution of (3.1) blows up in finite time, that is, there exists a blow up
time, T∗ such that

lim
t→T∗

∥ f(t, .) ∥= ∞.

Whereas, under the condition

β3 − d3 ≤ 0, (3.5)

where the destruction rate of naive immune cells is higher that their proliferation
rate, due to interaction with other cells in the same population. Destructive inter-
actions are introduced in the model to keep the proliferation of naive immune cells
under control. The existence of solution f of Problem (3.1) can be extended over
the whole real positive axis R+, by the following theorem 3.3:

Theorem 3.3 (global existence of solutions). Given the assumption (3.5), then for
any T > 0, there exists a unique time global solution f(t) ∈ C([0, T ], X+) of (3.1)
with initial data f0 ∈ X+. Moreover, the solution f satisfies

sup
t∈[0,T ]

∥ f(t) ∥≤ CT , (3.6)

where CT is a constant that depends on T and on the initial data.

3.2. Asymptotic analysis
In this subsection, we investigate the asymptotic behavior of the solution f(t)
of (3.1). Specifically, we are interested in the evolution of the number densities
of tumor cells, n2 and of the active immune cells, n4. Throughout the remain-
der of this paper, n10, n20, n30, and n40 denote the initial number densities
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n1(0), n2(0), n3(0), n4(0) for epithelial cells, tumor cells, naive immune cells and
active immune cells respectively.

The asymptotic behavior in time of the system (3.1) is developed in Theorems
(3.4) and (3.5), whose proof relies on Lemmas (4.1) and (4.2). The action of pro-
liferation of activated immune cells is virtually turned off, that is β4 = 0, in order
to prevent a controlled number of activated immune cells and to predict the effect
of mutation events both for cancer cells (ε1) and for active immune cells (ε2). Re-
ferring to Eqs. (2.9)-(2.12), and to simplify notation, we introduce the following
quantities:

K := β2n10 − µ2n40 −
ε2n30

β3 − d3
. (3.7)

The first main result is developed in theorem (3.4). We neglect the effect of
mutation in cancer progression (ε1 = 0).

Theorem 3.4. Let f be the unique solutions of Eqs. (3.1). If ε1 = 0 then the
following results ensue:

lim
t→+∞

n1(t) = n10, lim
t→+∞

n3(t) = 0, (3.8)

lim
t→+∞

n2(t) ≤
β2n10

d2
, β2 ̸= 0, (3.9)

lim
t→+∞

n2(t) = 0, β2 = 0, (3.10)

lim
t→+∞

n4(t) ≤ n40 +
ε2n30

d3 − β3
. (3.11)

Theorem 3.4 reproduces the case of the immune tumor interaction. Thus under
the absence of mutation event in tumor cells, the immune response could achieve,
or at least control the progression of the tumor cells. The proliferation rate of the
tumor cells plays a relevant role in this competition.

The second main result is presented in theorem (3.5). We give some scenarios
when tumor cells escape the immune recognition and blow up, that is when n2(t)
goes to infinity. The analysis takes into account the effect of mutation events on
cancer. The incorporation of mutation ( ε1 ≠ 0) on activated immune cells play a
relevant role in the competition. We assume that the proliferation rate of activated
cells is almost zero. In other words, we virtually turn off their value, that is β4 = 0,
in order to show how mutation events can change the progression of cancer cells.

Theorem 3.5. Let f be the unique solutions of Eqs. (3.1). If ε1 ≥ 0 then the
following results hold for the density n2:
• If µ2 ̸= 0, then ∃ n∗

40, ε∗2 such that if n40 < n∗
40 and ε2 < ε∗2, ∃K > 0 such that:

lim
t→+∞

n2(t) = +∞ if d2 = 0, (3.12)

lim
t→+∞

n2(t) ≥
K

d2
ifd2 ̸= 0, (3.13)

and for d2 = 0, n40 < n∗
40 and ε2 > ε∗2 or, only if d2 = 0, and n40 > n∗

40, ∃ K1 > 0
such that:

lim
t→+∞

n2(t) ≥
ε1n

2
10

K1
. (3.14)

• If µ2 = 0 then

lim
t→+∞

n2(t) = +∞, d2 = 0, (3.15)



Modeling the immune-tumor evolution 1773

lim
t→+∞

n2(t) ≥
β2n10

d2
, d2 ̸= 0, (3.16)

where K1 = −K and K is given by (3.7).

Where d2 is the destruction rate of tumor cells, and µ2 is the immune destruction
of tumor cells.

It is worth noting that the assumptions introduced here are consistent from
a biological perspective. If immune response starts at t > 0, it seem natural to
consider the effect of proliferation of tumor cells in connection with mutation effects.
Finally, we point out that the above theorems apply to those cases where the focus
is on the interplay between mutation and initial number of tumor and immune
cells. Therefore the proliferation of activated immune cells is virtually turned off
(β4 = 0) [19, 41] in order to give critical value of ε2 and n40 that separate a blow-
up situation from a controlled one (see remark bellow (3.17)). Finally, we point
out that theorem 3.5 reproduces some relevant cases where tumor cells escape the
immune surveillance.

Remark 3.1. Using the above theorems, one can easily prove the following asser-
tions:
1. Let ε1 = 0, β4 = 0, and µ2, d2 ̸= 0, which means that in the absence of the
mutation events in tumor cells, and the proliferation events are almost zero, the
destruction rate of tumor cells and the immune destruction of tumor cells play
relevant role in the outcome of the immune-tumor competition such that then by
using (3.9), and (3.13), ∃ n∗

40, ε∗2 such that if n40 < n∗
40 and ε2 < ε∗2, ∃K > 0 such

that:
K

d2
≤ lim

t→+∞
n2(t) ≤

β2n10

d2
. (3.17)

2. Let ε1 = 0 and µ2 = 0, and d2 ̸= 0, which means that the immune destruction
of tumor cells is also absent then, from (3.9), and (3.16), yields

lim
t→+∞

n2(t) =
β2n10

d2
. (3.18)

4. Proof of Theorems
4.1. Proof of Theorems 3.1, 3.2, and 3.3
Proof of theorem 3.1.
Problem (3.1) can be reduced to an integral equation Λ[f ] := f , where Λ is a map
defined by:

Λ[f ] := f0(u) +

∫ t

0

Θ[f ](s)ds. (4.1)

To establish the local existence and uniqueness of solutions, we show that the map
Λ is a contraction in a ball of Y. This requires uniform estimates of Θ. Technical
calculations from (2.9)-(2.12) give that Θ[f ] ∈ X for all f, g ∈ X , and the following
estimates hold true:

∥ Θ[f ] ∥≤ C ∥ f ∥2, (4.2)
∥ Θ[f ]−Θ[g] ∥≤ C(∥ f ∥ + ∥ g ∥) ∥ f − g ∥, (4.3)
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for some constant C > 0 depending on the parameters and initial conditions. There-
fore, for all f , g ∈ Y, the following estimations hold for Λ:

∥ Λ[f ] ∥Y≤∥ f0 ∥ +CT ∥ f ∥2Y , (4.4)

and
∥ Λ[f ]− Λ[g] ∥Y≤ CT (∥ f ∥Y + ∥ g ∥Y) ∥ f − g ∥Y . (4.5)

This implies there exist two constants a0 and T , determined only by C and ∥ f0 ∥
such that Λ maps the ball in Y of radius a0 into itself; on that ball Λ is Lipschitz
continuous with Lipschitz constant less than 1. Thus, there exists a unique local
solution f(t) of (3.1) on [0, T ].

Next we check the nonnegativity of solution. We first re-write problem (3.1) in
the following equivalent form:

∂fi
∂t

(t, u) + fi(t, u)Ψi[f ](t, u) = Φi[f ](t, u), (t, u) ∈ (0,∞)× (0,∞),

fi0 = fi(t = 0, u) ∈ X+, i = 1, .., 4,

where the operators Ψi[f ] and Φi[f ] are given by:

Ψ1[f ](t, u) = n1(t),

Ψ2[f ](t, u) = n2(t)− β2n1(t) + d2n2(t) + µ2n4(t),

Ψ3[f ](t, u) = n3(t)− β3n3(t)− d3n3(t),

Ψ4[f ](t, u) = n4(t)− β4n2(t) + d4n4(t),

Φ1[f ](t, u) = f1(t, u− α1)χ[α1,+∞)(u)n1(t),

Φ2[f ](t, u) = f2(t, u− α2)χ[α2,+∞)(u)n1(t) + ε1f1(t, u)n1(t),

Φ3[f ](t, u) = f3(t, u− α3)χ[α3,+∞)(u)n2(t),

and
Φ4[f ](t, u) = f4(t, u− α4)χ[α4,+∞)(u)n2(t) + ε2f3(t, u)n3(t).

One can check that the map Λ satisfy the following integral relation:

Λ[f ] = exp

(
−
∫ t

0

Ψ(f)(s)ds

)
f0(u) +

∫ t

0

exp

(∫ τ

t

Ψ(f)(s)ds

)
Φ(f)(τ)dτ, (4.6)

where
Ψ = (Ψ1,Ψ2,Ψ3,Ψ4), Φ = (Φ1,Φ2,Φ3,Φ4).

Proof of theorem 3.2.
Let f the non-negative maximal solution of (3.1). Integrating the third equation of
(3.1) over t in R+, we get for all t, with 0 < t < Tmax:

∂n3(t)

∂t
= (β3 − d3)n

2
3.

Hence, n3 is given by, n3(t) =
1

1
n30

− (β3 − d3)t
, which blows up in finite time if

β3 − d3 > 0. This completes the proof of Theorem (3.2).
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Proof of theorem 3.3.
Bearing in mind the result of Theorem (3.1), it remains to find a priori estimates
for the solution. Integrating Eq. (2.9) with respect to u in R+ yields n1(t) = n10,
then after integrating Eq. (2.10), one check that

∂n2(t)

∂t
≤ β2n10n2 + ε1n

2
10,

which gives by Gronwall’s Lemma the following:

n2(t) ≤ (n20 +
ε1n10

β2
) exp(β2n10t). (4.7)

Hence the total number of cancer cells is bounded in each finite interval [0 T ].
Integrating Eq. (2.11) with respect to u, it follows under condition (3.5) that

n3 is bounded n3(t) ≤ n30. Now, integrating (2.12) with respect to u in R+, yields

∂n4

∂t
≤ F (t)n4 + ε2n

2
30,

where
F (t) = β4(n20 +

ε1n10

β2
) exp(β2n10t),

therefore, using Gronwall’s Lemma yields

n4(t) ≤ n40 exp(N (t)) + ε2n
2
30 exp(N (t))

∫ t

0

exp(−N (s))ds := G(t), (4.8)

where N (t) =

∫ t

0

F (s)ds.

From (4.8) one check that, n4 is bounded on each finite time interval [0 T ], and
CT in (3.6) is given by

CT = n10 + (n20 +
ε1n10

β2
) exp(β2n10T ) + n30 + G(T ).

This completes the proof of Theorem 3.3.

4.2. Proof of Theorems 3.4 and 3.5
The proof of Theorems 3.4 and 3.5 relies on the following Lemmas:

Lemma 4.1. Assume that ε1 = 0 and d2 ̸= 0, then the number density of cancer
cell n2 satisfy

1. If β2 ̸= 0, one has the following estimate:

n2(t) ≤
1

( 1
n20

− d2

β2n10
) e−β2n10t + d2

β2n10

, lim
t→+∞

n2(t) ≤
β2n10

d2
. (4.9)

2. If β2 = 0 then,
n2(t) ≤

1
1

n20
+ d2t

, lim
t→+∞

n2(t) = 0. (4.10)
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Proof. From Eq. (2.14), one has

∂n2(t)

∂t
≤ β2n10n2 − d2n

2
2, (4.11)

then using z = 1
n2

, (4.11) is reduced to the following form:

−∂tz

z2
≤ β2n10

z
− d2

z2
,

and hence,
∂tz ≥ −β2n10z + d2.

Let now β2 ̸= 0, then using Gronwall’s Lemma yields the following estimate:

z(t) ≥ z0e
−β2n10t +

d2
β2n10

[1− e−β2n10t].

This completes the proof of (4.9). The proof of (4.10) can be easily derived from
(2.14). This completes the proof of 4.1.

To prove theorem 3.5, one need the following lemma 4.2:

Lemma 4.2. Assume that ε1 ̸= 0 and β4 = 0, then the number density of activated
cells satisfy

n4(t) ≤ n40 +
ε2

β3 − d3
(

n30

1− n30 (β3 − d3) t
− n30), ∀t ≥ 0. (4.12)

Moreover the number density of cancer cell n2 verify
• If d2 = 0, then there exists K ∈ R∗ such that

n2(t) ≥ n20e
Kt +

ε1n
2
10

K

(
eKt − 1

)
, ∀t ≥ 0. (4.13)

• If d2 ≥ 0, then there exists K ∈ R∗ such that

n2(t) ≥
1

1
n20

exp(−Kt) + d2

K (1− exp(−Kt))
, ∀t ≥ 0. (4.14)

Proof. First, remark that from (2.15), one has n3(t) =
1

1
n30

− αt
, then by inte-

grating (2.16) over (0, t) yields (4.12). Let K given by (3.7), then, from (2.14), and
(4.12), yields the following estimate:

∂tn2 ≥ Kn2 + ε1n
2
10,

and then Gronwall’s Lemma gives (4.13). Let now d2 ≥ 0, then from (36.b), one
has:

∂tn2 ≥ Kn2 − d2n
2
2

which can be written by using z = 1
n2

in the following form:

∂tz(t) ≤ −Kz + d2,

therefore
z ≤ z0exp(−Kt) +

d2
K

(1− exp(−Kt)),
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This completes the proof of Lemma (4.2)

Proof of Theorems 3.4 and 3.5. The proof of Theorem 3.4 comes directly from
Lemma 4.1. The proof of Theorem 3.5 comes from Lemma 4.2. Indeed, the result
in (3.11) comes from (4.12). To prove the results in (3.12)-(3.14), we assume that
µ2 ̸= 0, that is, the immune destruction rate of tumor cells take nonzero value ,
then if d2 = 0, that is the destruction rate of tumor cells equals to zero, one has
(4.13). Let n40, ε2 are such that

n40 <
β2n10

µ2
:= n∗

40, ε2 <
β3 − d3
µ2n30

(
µ2n40 − β2n10

)
:= ε∗2,

then K given by (3.7) is strictly positive, and (3.12), (3.13) come respectively from
(4.13), and (4.14).

Now let d2 = 0 , then if n40 < n∗
40, and ε2 > ε∗2, or if only n40 > n∗

40, one has
K < 0. Let K1 = −K > 0, and then (3.14) comes from (4.13).

Let µ2 = 0, then if d2 = 0, one has from (2.14):

∂tn2 ≥ β2n10n2 + ε1n
2
10,

and Gronwall’s Lemma gives (3.15).
Now let d2 ̸= 0, then again using (2.14), yields

∂tn2 ≥ β2n10n2 − d2n
2
2,

and hence

n2(t) ≥
1

1
n20

exp(−β2n10t) +
d2

β2n10
(1− exp(−β2n10t))

, ∀t ≥ 0, (4.15)

and then (3.16) comes from (4.15). This completes the proof of Theorems 3.4 and
3.5.

5. Numerical study
The system (2.9)-(2.10) is first solved numerically by discretizing the equations
with respect to the variable u [13] and then using a quadrature rule to approximate
integral terms.

5.1. The approximation methods
Here, we consider a partition of the set [a, b] of the variable u with N collocation
points

h =
b− a

N − 1
, uj =

j − 1

h
, j = 1, ..., N.

The distribution functions are interpolated as follows:

fN
i (t, u) =

j=N∑
j=1

Sj(u, h)fij(t), ∀i ∈ 1, .., 4,
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where
Sj(u, h) =

h

π (u− (j − 1)h)
sin(

π

h
(u− (j − 1)h)),

Sj(uk, h) = δjk, where δjk is the Kronecker delta.
The number density is approximated by the following quadrature rule:∫ b

0

fi(t, u)du ≃
M∑
j=1

fij(t), (5.1)

Accordingly, we obtain a system of ordinary differential equations which define
the evolution of the distribution functions fj in the node uj , where

fij(t) = fi(t, uj).

5.2. Simulation results
Numerical simulations are addressed to show the onset of tumor cells and activated
immune cells. In particular, as objectives of simulations, we focus on the following
two aspects among conceivable ones:

The aim of the numerical study is to show some dynamics of the tumor-immune
cell competition in the presence of the mutation events. We are also interested in
determining the conditions under which the activated immune system can win the
competition by achieving a total regression of the tumor activity. Herein, we address
the following two main aspects of the tumor-immune dynamics: (1) the sensitivity
of the proliferation rate (β2) of tumor cells and phenotypic mutation of activated
immune cells (ε2), and (2) the sensitivity of phenotypic mutations of tumor cells
(ε1) and activated immune cells (ε2). In view of this, we assume that nine of the
twelve parameters are fixed. While the others span from zero to higher values; for
the first objective, we vary β2 and ε2, and for the second objective, we vary ε1 and
ε2.

Simulations are performed by assuming small amount of epithelial, tumor and
immune cells. That is, we take fi(0), i = 1, 2, 3, 4 to be of the order 10−2 cells.
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Figure 1. Numerical simulation of the model showing the evolution of the number density of cancer
cells versus time for different value of their proliferation rate. The mutation events are absent, that is,
ε1 = 0 and ε2 = 0



Modeling the immune-tumor evolution 1779

The parameters values used in this simulation are: α1=0.2, α2=0.3, α3=0.3,
α4 = 0.3, µ2 = 0.5, β4 = 0, d4 = 0.05, β3 = 0.2, d3 = 0.5 corresponding to a non-
negligible effect to the progression (α1 and α2), a low ability to degenerate (α3),
low ability to increase the malignancy (α4), low proliferation rate of naive immune
cells (β3), absence of proliferation events (β4), an low destruction of immune cells
(d3 and d4), and not to aggressive immune response of the activated immune cells
(µ2).

(i) Effect of the proliferation rate β2 and the immune mutation rate ε2.
As a first step of simulations and in consistency with Theorem 3.4, we consider
the onset of tumor cells and their competition with activated immune cells for
different value of the proliferation rate β2. Specifically, fixing the parameters
of the model as indicated above. We set ε1 = 0 which corresponds to the
absence of mutation effect in tumor progression and let β2 vary. It is expected
that increasing values of β2 generate increasing manifestation of cancer cells
progression.
For low proliferation rate (β2 = 0.01), see Fig. 1, the number density of
tumor cells decreases until a total depletion. This trend toward zero becomes
low with the increase of β2 to an intermediate value. However, higher value
of β2 = 0.8 tumor cells express a tendency to progress. Indeed, the role of
conservative interactions that shift population of tumor cells toward increasing
value of malignancy is evident (by parameter α2 in Eq. 2.10).
Now, as second step, we chose an intermediate value of β2 = 0.5 and vary
the mutation rate of activated immune cells ε2 from lower value ε2 = 0 to
higher one ε2 = 0.7. Fig. 2 illustrates the impact of small mutation in
activated immune cells on the immune competition. Comparing panels of
Fig. 2, it is clear that increasing ε2 the activated immune cells are able to
contrast and achieve the regression of tumor cells. Increasing ε2, simulations
show an initial growth of activated immune cells up to a maximum value,
corresponding to an initial phase characterized by a strong ability to destroy
cancer cells. In the meantime, activated immune system start to decrease
down to an asymptotic value, where the number of tumor cells are kept under
control. Fig. 3 highlights how increasing ε2 from 0 to 0.6 affect the behavior
of the distribution functions of activated immune cells.

(ii) Effect of the phenotypic mutation rates of the tumor and immune cells ε1 and
ε2 respectively.
In this second part of simulation, we analyze the sensitivity of the model with
respect to the parameters ε1 and ε2 To do so, we perform another simulation
by changing the values of mutation rates of tumor cells ε1 accordingly. Fix-
ing the parameters of the model as indicated above and in consistency with
theorem (3.5) we set

n∗
40 = 0.1, ε∗2 = 0.03, d2 = 0.1.

The results are shown in Fig. 4 where the number density of tumor cells n2

versus time for fixed ε2 = 0. Increasing the mutation rate of tumor cells ε1 from
ε1 = 0.01 on, simulations show an initial growth of tumor cells up to a maximum
value, corresponding to an initial phase characterized by a rapid clonal expansion,
able to suppress the immune reaction. In the main time, mutated tumor cells start
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(b) ε1 = 0 β2 = 0.6 and ε2 = 0.3
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Figure 2. Numerical simulation of the model (2.9)-(2.10) showing the evolution the evolution of tumor
cells (n2) and activated immune cells (n4) versus time t.

0

100

0.05

0.1

1

0.15f 4

0.2

0.8

 t

50

0.25

0.6

u

0.3

0.4

0.2
0 0

0

100

0.1

0.2

1

0.3f 4

0.4

0.8

t

50

0.5

0.6

u

0.6

0.4

0.2
0 0

Figure 3. Numerical simulation of the model (2.9)-(2.10) showing the evolution of the distribution
functions f2(t, u) for ε2 = 0 (left panel) and ε2 = 0.6 (right panel). These two figures are performed
with an intermediate value of β2 = 0.2 and ε1 = 0

to decreases down to an asymptotic value. This behavior is consistent with results
in remark (3.17) and (3.18).

Letting an intermediate mutation rate of tumor cells ε1 = 0.2, we choose n40 =
0.015 and ε2 = 0.01. The graphs in Fig. 5 illustrates the results established in
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Figure 4. Numerical simulation of the model (2.9)-(2.10) showing the evolution of n2 versus time, for
different values of ε1. The mutation events in activated immune cells are absents ε2 = 0

theorem (3.5) depending on the value of the destruction rate of tumor cells d2.
Indeed, activated immune cells acquire the ability to contrast and control a rapid
progression of tumor cells.

6. Conclusion
In this work, we have derived a phenomenological model base on the kinetic theory
of active particles describing the tumor-immune interactions under some phenotypic
mutations. In doing so, we considered four interacting cell populations, that are the
main players in the immune competition process, which are, epithelial cells, tumor
cells, naive, and activated immune cells. For all participating cells populations, we
have defined an activity variable based on their biological functions. By describing
the binary cell interactions, we were able to derive the kinetic equations, namely
the evolution equations of the distribution functions related to each interacting
population. We proved the well-posedness of the related Cauchy problem and the
non-negativity of the solution. We gave sufficient condition for which the solution
may not exist globally in time. In particular, we proved the blow up result for
the initial value problem. A detailed asymptotic analysis is developed in Theorems
3.4 and 3.5, with the aim to predict the effect of mutation events both on tumor
cells and activated immune cells. We showed that under some critical value of the
mutation rate and initial number densities of activated immune cells, we can specify
some biological states of the blow up of tumor cells. Indeed, the analysis gives useful
indications to be properly explored toward the design of therapeutical actions.

Additionally, the numerical simulations show some cases where the tumors cell
are completely eliminated. An initial time growth up to maximum value corre-
sponding to a faster activation of activated immune cells is also noted. In the main
time, the tumor is suppressed or controlled, and activated immune cells is still being
activated. Identifying the phenomenological parameters of the model is a challenge
due to the lack of the experimental data at the microscopic level.

Nonetheless, developing such single-cell mathematical models of the tumor-
immune competition may lead to the characterization of these parameters by the-
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Figure 5. Numerical simulation of the model (2.9)-(2.10) showing the evolution the evolution of tumor
cells (n2) versus time t in the case ε2 < ε∗2 = 0.03 et n40 < n∗

40 = 0.1

oretical approaches based on methods of immunology. In this paper, we modeled
activated immune system as one whole population. Our model can be easily ex-
tended to include other subpopulations of the immune system with the aim of
specializing the biological functions within each population. For example we can
distinguish multiple stages of activation based on the idea of post-Darwinian evo-
lution developed in [16, 22]. We plan to develop an asymptotic analysis with the
challenge to include an artificial inlet which represents an external drug therapy.
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