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MULTIPLE SOLUTIONS FOR A CLASS OF
MODIFIED QUASILINEAR FOURTH-ORDER

ELLIPTIC EQUATIONS

Zijian Wu1 and Haibo Chen1,†

Abstract In this paper, we consider the following modified quasilinear fourth-
order elliptic equations:

∆2u− (a+ b

∫
R3

|∇u|2dx)∆u+ V (x)u− κ

2
∆(u2)u = f(x, u), in R3,

where a > 0, b ≥ 0, κ ≥ 0. Under some appropriate assumptions on V (x) and
f(x, u), multiplicity results of two different type of solutions are established
via the Mountain Pass lemma and the local minimization.
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1. Introduction and main results
In this paper, we consider the following modified quasilinear fourth-order elliptic
equation:

∆2u− (a+ b

∫
R3

|∇u|2dx)∆u+ V (x)u− κ

2
∆(u2)u = f(x, u), in R3, (1.1)

where ∆2 = ∆(∆) is the biharmonic operator, a > 0, b ≥ 0, κ ≥ 0. For the potential
V (x) : R3 → R we assume:

(V1) There exist constants m,m0 satisfying 0 < m < m0 < 1
2S2

2
, infx∈R3 V (x) >

m−m0, where S2 is defined in (2.1). Moreover, for any M > 0, meas{x ∈ R3|V (x) ≤
M} < ∞, where meas denotes the Lebesgue measure in R3.

When κ = 0, we get the following fourth-order elliptic equation:

∆2u− (a+ b

∫
R3

|∇u|2dx)∆u+ V (x)u = f(x, u), in R3. (1.2)

Problem (1.2) is often called nonlocal because of the presence of the integral term∫
R3 |∇u|2dx∆u, which implies that the equation (1.2) is no longer a pointwise iden-

tity. Moreover, if we set V (x) = 0 and replace R3 by a bounded domain Ω ⊂ R3 in
(1.2), then we get the following fourth-order elliptic equation of Kirchhoff type:{

∆2u− (a+ b
∫
R3 |∇|2dx)∆u = f(x, u) x ∈ Ω,

u = ∇u = 0, x ∈ ∂Ω,
(1.3)
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which is related to the following stationary analogue of the equation of Kirchhoff
type:

utt +∆2u− (a+ b

∫
R3

|∇|2dx)∆u = f(x, u) in Ω.

In recent years, there have been many works about the existence of nontrivial
solutions to (1.2) or (1.3) by using variational methods, see [2, 5, 9, 13–16, 22–25].
In [24], Wang and An obtained the existence of nontrivial solutions to (1.3) by using
the Mountain Pass lemma when f(x, u) is asymptotically linear at both zero and
infinity and satisfies other conditions.

In [16], Mao and Wang studied (1.2) under the conditions: the potential V (x) is
allowed to be sign-changing and the nonlinearity f(x, u) involves the combination
of convex and concave terms. They proved that (1.2) has two type of nontrivial
solutions, one is obtained via the Mountain Pass lemma, the other is constructed
through the local minimization.

In [22], Wang et al. studied the existence of positive solutions by using varia-
tional methods and the truncation method for the fourth order elliptic equation:

∆2u− (a+ b

∫
R3

|∇u|2dx)∆u+ cu = f(u), in RN ,

where N > 4, f ∈ C(R+,R+) satisfies f(t) ≤ C(1 + tp) for some p ∈ (1, N+4
N−4 ),

limt→0
f(t)
t = 0 and limt→+∞

f(t)
t = +∞.

Compared to the semilinear problem (κ = 0), the quasilinear case (κ ̸= 0)
becomes more complicated since the effects of the quasilinear and non-convex term
∆(u2)u [1, 12]. One of the main difficulties of the quasilinear problem is that there
is no suitable space on which the energy functional is well defined and belongs to
C1-class except for the one-dimensional case [17]. There has been several ideas and
approaches used in recent years to overcome the difficulties such as by minimizations
[10,17], the Nehari or Pohozaev manifold [11,18] and change of variables [26,27].

Motivated by the above works, the main aim of this article is to study the
existence of multiple solutions for (1.1) with sign-changing potential via the Moun-
tain Pass lemma and the local minimization in critical point theory. To the best
of our knowledge, there are few articles dealing with this type of fourth-order el-
liptic equation (1.1). Setting F (x, u) =

∫ u

0
f(x, t)dt and suppose that F (x, u) =

G(x, u) +H(x, u), G(x, u) ∈ C1(R3 ×R,R). Moreover, we suppose that G satisfies
the following assumptions:

(g1) G(x, 0) ≡ 0 for all x ∈ R3 and there exist a real number r1 > 4 and two
continuous bounded functions η, ζ : R3 → R with ζ > 0 on a bounded domain Ω
such that

η(x) ≤ G(x, u)

|u|r1
≤ ζ(x), ∀(x, u) ∈ R3 × R, u ̸= 0,

and lim|u|→∞
G(x,u)
|u|r1 = ζ(x), uniformly in x ∈ R3.

(g2) There exists d0 satisfying 0 ≤ d0 <
1−m0S

2
2

4S2
2

such that

G(x, u)− 1

4
g(x, u)u ≤ d0|u|2, ∀(x, u) ∈ R3 × R,

where g(x, u) = Gu(x, u).
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(g3) There exist 2 < p < ∞ and a2 > 0 such that

|g(x, u)| ≤ a2(1 + |u|p−1), ∀(x, u) ∈ R3 × R.

(g4) lim|u|→0
g(x,u)

u = 0, uniformly in x ∈ R3.
(g5) There exist µ > 4 and r2 > 0 such that

µG(x, u) ≤ ug(x, u), ∀x ∈ R3, |u| ≥ r2.

(g6) infx∈R3,|u|=r2 G(x, u) > 0.
Our main results read as follows.

Theorem 1.1. Assume conditions (V1), (g1) and (g2) hold, H(x, u) = α(x)|u|s,
where 1 < s < 2, α(x) ∈ L

2
2−s (R3) and α(x) ≥ 0. Then

(i) problem (1.1) possesses at least one nontrivial mountain-pass type of solution;
(ii) problem (1.1) possesses at least one nontrivial local minimum type of solution.

Theorem 1.2. Assume conditions (V1), (g3)-(g6) hold, H(x, u) = h(x)u, where
h(x) ∈ L2(R3) and h(x) ≥ 0. Then there exists a constant n0 > 0 such that for
||h||2 < n0,

(i) problem (1.1) possesses at least one nontrivial mountain-pass type of solution;
(ii) problem (1.1) possesses at least one nontrivial local minimum type of solution.

Compared with literature, the novelty of our results lies in two aspects. One
is that problem (1.1) considered here is set in whole space and the quasilinear and
non-convex term ∆(u2)u is allowed to exist, furthermore, the nonlinearity f(x, u)
involves the combination of convex and concave terms which makes it very difficult
to check the Mountain Pass geometry for energy functional. The other is that we
obtain two different types of nontrivial solutions of the problem (1.1) via variational
method. As mentioned earlier, our results extend and generalize the results obtained
in [16,20,22,24].

This paper is organized as follows. In Section 2, we give some notations and
preliminaries. In Section 3, we are concerned with the proof of Theorem 1.1. Section
4 is devoted to dealing with the proof of Theorem 1.2.

2. Notations and Preliminaries
Throughout this paper, Lr(R3) is the usual Lebesgue space whose norms we denote
by ||u||r =

(∫
R3 |u|rdx

)1/r for 1 ≤ r < ∞, and ||u||∞ = ess supx∈R3 |u(x)| for
r = ∞. H2(R3) = {u ∈ L2(R3)||∇u|,∆u ∈ L2(R3)} is the Sobolev space with
standard norm. We shall denote by C, Ci,i = 1, 2, · · · for various positive constants
whose exact value may change from lines to lines but are not essential to the analysis
of problem.

Let

E = {u ∈ H2(R3)|
∫
R3

(|∆u|2 + a|∇u|2 + (V (x) +m0)u
2)dx < +∞}.

Then E is a Hilbert space with the inner product

(u, v) =

∫
R3

(∆u∆v + a∇u∇v + (V (x) +m0)uv)dx,
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and the norm

||u|| = (

∫
R3

(|∆u|2 + a|∇u|2 + (V (x) +m0)|u|2)dx)
1
2 .

Since

||u||2H2 =

∫
R3

(|∆u|2 + |∇u|2 + |u|2)dx

≤ C

∫
R3

(|∆u|2 + a|∇u|2 + (V (x) +m0)|u|2)dx = C||u||2,

where C = max{1, 1
a ,

1
m}, and H2(R3) ↪→ Lr(R3), 2 ≤ r ≤ ∞, then the embedding

E ↪→ Lr(R3) is continuous for 2 ≤ r ≤ ∞, and there exists Sr > 0 such that

||u||r ≤ Sr||u||, for all u ∈ E. (2.1)

Moreover, we have the following compactness lemma from [6].

Lemma 2.1. Under the assumption (V1), the embedding E ↪→ Lr(R3) is compact
for 2 ≤ r < ∞.

Define energy functional I on E by

I(u) =
1

2
||u||2+ b

4
(

∫
R3

|∇u|2dx)2+ κ

2

∫
R3

u2|∇u|2dx−
∫
R3

F (x, u)dx−m0

2

∫
R3

u2dx.

(2.2)
Obviously, I is a well-defined C1 functional and satisfies

⟨I ′(u), v⟩ =
∫
R3

(∆u∆v + a∇u∇v + (V (x) +m0)uv)dx+ b

∫
R3

|∇u|2dx
∫
R3

∇u∇vdx

+ κ

∫
R3

(uv|∇u|2 + u2∇u∇v)dx−
∫
R3

f(x, u)vdx−m0

∫
R3

uvdx.

(2.3)
u ∈ E is a solution of problem (1.1) if and only if u ∈ E is a critical point of I.

The following lemma allows us to find Cerami and Palais-Smale type sequence.
Recall that a sequence {un} ⊂ E is said to be a Cerami sequence at the level c ∈ R
((C)c sequence for short) if I(un) → c and (1+||un||)I ′(un) → 0 as n → ∞. I is said
to satisfy the (C)c condition if any (C)c sequence has a convergent subsequence.
Moreover, a sequence {un} ⊂ E is said to be a Palais-Smale sequence at the level
c ∈ R ((PS)c sequence for short) if I(un) → c and I ′(un) → 0 as n → ∞. I is said
to satisfy the (PS)c condition if any (PS)c sequence has a convergent subsequence.

Lemma 2.2 ( [8]). Suppose E is a real Banach space, I ∈ C1(E,R) satisfies

I(0) = 0, inf
||u||=ρ

I(u) ≥ ν > 0 ≥ I(e),

for some ν, ρ > 0 and e ∈ E with ||e|| > ρ. Let c be characterized by

c = inf
γ∈Γ

max
0≤τ≤1

I(γ(τ)),

where Γ = {γ ∈ C([0, 1], E)|γ(0) = 0, γ(1) = e}, then c ≥ ν is finite and I possesses
a (C)c sequence at level c.

Lemma 2.3 ( [4]). Given a weakly lower semicontinuous functional I : E → R on
a Banach space E and a closed convex subset X ⊂ E on which I is bounded from
below, then we can find u0 ∈ X such that I(u0) = infu∈X I(u).
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3. Proof of Theorem 1.1
Throughout this section, H(x, u) = α(x)|u|s, where 1 < s < 2, α(x) ∈ L

2
2−s (R3)

and α(x) ≥ 0. We begin with some lemmas.

Lemma 3.1. Assume (g1) holds. Set

ℵ(u) =
∫
R3

F (x, u)dx,

then ℵ is weakly continuous.

Proof. The proof is similar to lemma 2.2 in [4], we omit it.

Lemma 3.2 ( [16]). Let 1 < s < 2 < r,A,B > 0, and consider the function

ΦA,B = t2 −Ats −Btr

for t ≥ 0. Then maxt≥0 ΦA,B(t) > 0 if and only if Ar−2B2−s < d(r, s) :=
(r−2)r−2(2−s)2−s

(r−s)r−s . Furthermore, for t = tB = [ 2−s
B(r−s) ]

1
r−2 , one has

max
t≥0

ΦA,B(t) = ΦA,B(tB) = t2B [
r − 2

r − s
−AB

2−s
r−2 (

r − s

2− s
)

2−s
r−2 ] > 0.

Lemma 3.3. Assume (V1) and (g1) hold, then there exists ρ > 0 such that

inf
||u||=ρ

I(u) > 0.

Proof. (g1) yields

G(x, u) ≤ ζ+|u|r1 for all x ∈ R3 and u ∈ R,

which implies∫
R3

F (x, u)dx ≤ ||ζ+||∞
∫
R3

|u|r1dx+

∫
R3

α(x)|u|sdx

≤ ||ζ+||∞Sr1
r1 ||u||

r1 + (

∫
R3

|α(x)|
2

2−s dx)
2−s
2 (

∫
R3

|u|2dx) s
2

= C1||u||r1 + ||α|| 2
2−s

||u||s2
≤ C1||u||r1 + ||α|| 2

2−s
Ss
2 ||u||s

= C1||u||r1 + C2||u||s,

where C1 = ||ζ+||∞Sr1
r1 , C2 = ||α|| 2

2−s
Ss
2 . Since

I(u) =
1

2
||u||2+ b

4
(

∫
R3

|∇u|2dx)2+ κ

2

∫
R3

u2|∇u|2dx−
∫
R3

F (x, u)dx−m0

2

∫
R3

u2dx

≥ 1

2
||u||2 + b

4
(

∫
R3

|∇u|2dx)2 − C1||u||r1 − C2||u||s −
m0

2
S2
2 ||u||2

≥ 1−m0S
2
2

2
||u||2 − C2||u||s − C1||u||r1 ,
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Lemma 3.2 together with (V1) gives that for ρ = tB and ||u|| = ρ,

I(u) ≥ 1−m0S
2
2

2
ΦA,B(tB) > 0,

where A = 2C2

1−m0S2
2
, B = 2C1

1−m0S2
2
, it comes to the conclusion.

Note that for any u ∈ E, since E ↪→ H2(R3) ↪→ W 1,r(R3) for 2 ≤ r < ∞,∫
R3

|∇u|3dx ≤
∫
R3

(|u|2 +
3∑

i=1

| ∂u
∂xi

|2) 3
2 dx

≤
∫
R3

(|u|+
3∑

i=1

| ∂u
∂xi

|)3dx

≤
∫
R3

[4max{|u|, | ∂u
∂x1

|, | ∂u
∂x2

|, | ∂u
∂x3

|}]3dx

≤ 43
∫
R3

(|u|3 +
3∑

i=1

| ∂u
∂xi

|3)dx

= 43||u||3W 1,3(R3) ≤ 43ι33||u||3,

(3.1)

where ιr = supu∈E,||u||=1 ||u||W 1,r(R3).

Lemma 3.4. Assume that (V1) and (g1) hold. Let ρ > 0 be as in Lemma 3.3, then
there exists e ∈ E with ||e|| > ρ such that I(e) < 0.

Proof. Since ζ > 0 on a bounded domain Ω, we can choose a function u ∈ E such
that ∫

R3

ζ(x)|u|r1dx > 0.

From (2.1), (3.1) and the Hölder inequality, one has

I(u) =
1

2
||u||2 + b

4
(

∫
R3

|∇u|2dx)2 + κ

2

∫
R3

u2|∇u|2dx

−
∫
R3

G(x, u)dx−
∫
R3

α(x)|u|sdx− m0

2

∫
R3

u2dx

≤1

2
||u||2 + b

4
(

∫
R3

|∇u|2dx)2 + κ

2
(

∫
R3

u6dx)
1
3 (

∫
R3

|∇u|3dx) 2
3

−
∫
R3

G(x, u)dx−
∫
R3

α(x)|u|sdx− m0

2

∫
R3

u2dx

≤1

2
||u||2 + b

4
(

∫
R3

|∇u|2dx)2 + κ

2
S2
64

2ι23||u||4

−
∫
R3

G(x, u)dx−
∫
R3

α(x)|u|sdx− m0

2

∫
R3

u2dx.

Then, it follows from (g1) and Fatou lemma that

lim
l→+∞

I(lu)

lr1
≤ lim

l→+∞
sup(−

∫
R3

G(x, lu)

lr1 |u|r1
|u|r1dx)

≤ −
∫
R3

ζ(x)|u|r1dx < 0.
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So I(lu) → −∞ as l → +∞, then there exists e ∈ E with ||e|| > ρ such that
I(e) < 0. This completes the proof.

From Lemma 2.2, 3.3 and 3.4, there exists a Cerami sequence {un} ∈ E such
that

I(un) → c > 0 and (1 + ||un||)I ′(un) → 0 as n → ∞. (3.2)
Lemma 3.5. Assume that (V1), (g1) and (g2) hold, then {un} defined by (3.2) has
a convergent subsequence.

Proof. For n large enough, by (g1) and (g2) we have

c+ 1 + ||un|| ≥ I(un)−
1

4
⟨I ′(un), un⟩

=
1

4
||un||2 −

∫
R3

F (x, un)dx+
1

4

∫
R3

f(x, un)undx− m0

4

∫
R3

u2
ndx

=
1

4
||un||2+

∫
R3

(
1

4
g(x, un)un−G(x, un))dx+ v(

s

4
− 1)

∫
R3

α(x)|un|sdx−
m0

4

∫
R3

u2
ndx

≥1

4
||un||2 − d0

∫
R3

u2
ndx+ (

s

4
− 1)||α|| 2

2−s
Ss
2 ||un||s −

m0

4

∫
R3

u2
ndx

≥(
1

4
− d0S

2
2 − m0S

2
2

4
)||un||2 + (

s

4
− 1)||α|| 2

2−s
Ss
2 ||un||s,

which gives a boundedness for {un}.
Next, we prove that the sequence {un} has a convergent subsequence. Going if

necessary to a subsequence, there exists u ∈ E such that
un ⇀ u in E;

un → u in Lr(R3) (2 ≤ r < ∞);

un(x) → u(x) a.e. in R3.

(3.3)

Since (1 + ||un||)I ′(un) → 0, we have

⟨I ′(un), un⟩ =||un||2 + b(

∫
R3

|∇un|2dx)2 + 2κ

∫
R3

u2
n|∇un|2dx

−
∫
R3

f(x, un)undx−m0

∫
R3

u2
ndx = o(1),

⟨I ′(un), v⟩ =(un, u) + b

∫
R3

|∇un|2dx
∫
R3

∇un∇udx

+ κ

∫
R3

(unu|∇un|2+u2
n∇un∇u)dx−

∫
R3

f(x, un)udx−m0

∫
R3

unudx

=o(1),

so in order to prove that ||un|| → ||u||, we just need to check∫
R3

f(x, un)undx−
∫
R3

f(x, un)udx = o(1), (3.4)∫
R3

|∇un|2dx−
∫
R3

∇un∇udx = o(1), (3.5)∫
R3

u2
n|∇un|2dx−

∫
R3

unu|∇un|2dx = o(1), (3.6)
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R3

u2
n|∇un|2dx−

∫
R3

u2
n∇un∇udx = o(1), (3.7)

and ∫
R3

u2
ndx−

∫
R3

unudx = o(1). (3.8)

In fact, by (3.3) and the Hölder inequality, it is easy to check (3.4)-(3.8) hold. This
completes the proof.
Proof of Theorem 1.1. (i) As a consequence of Lemma 3.3-3.5, using Lemma
2.2, we get the desired result.

(ii) Since α(x) ≥ 0, it is easy to take a ϕ ∈ E such that
∫
R3 α(x)|ϕ|sdx > 0, it

follows from (g1) that for t > 0 sufficiently small,

I(tϕ) =
t2

2
||ϕ||2 + bt4

4
(

∫
R3

|∇ϕ|2dx)2 + κt4

2

∫
R3

ϕ2|∇ϕ|2dx

−
∫
R3

G(x, tϕ)dx− ts
∫
R3

α(x)|ϕ|sdx− m0t
2

2

∫
R3

ϕ2dx

≤ t2

2
||ϕ||2 + bt4

4
(

∫
R3

|∇ϕ|2dx)2 + κt4

2

∫
R3

ϕ2|∇ϕ|2dx

− tr1
∫
R3

η(x)|ϕ|r1dx− ts
∫
R3

α(x)|ϕ|sdx− m0t
2

2

∫
R3

ϕ2dx

<0.

It follows from Lemma 2.3 that the minimum of the functional I on any closed ball
in E with center 0 and radius r̂ < ρ satisfying

I(u) ≥ 0 for all u ∈ E with ||u|| = r̂

is achieved in the corresponding open ball and thus yields a nontrivial solution u0

of (1.1) satisfying I(u0) < 0 and ||u0|| < r̂ < ρ. This completes the proof.

4. Proof of Theorem 1.2
Throughout this section, H(x, u) = h(x)u, where h(x) ∈ L2(R3) and h(x) ≥ 0. In
order to deduce our result, we need the following lemmas.

Lemma 4.1. Assume (V1), (g3) and (g4) hold, then there exist some constants
ρ, ν, n0 > 0 such that I(u) ≥ ν > 0 with ||u|| = ρ for all u ∈ E and h satisfying
||h||2 < n0.

Proof. By (g3) and (g4), there exists Cϵ > 0 such that |g(x, u)| ≤ ε|u|+Cϵ|u|p−1,
and for all (x, u) ∈ R3 × R, one has

|G(x, u)| ≤ ε

2
|u|2 + Cϵ

p
|u|p. (4.1)

It follows from (2.1), (2.2), (4.1) and the Hölder inequality that

I(u) ≥ 1

2
||u||2 −

∫
R3

ε

2
|u|2 + Cϵ

p
|u|pdx− ||h||2||u||2 −

m0

2
||u||22
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≥ 1

2
||u||2 − ε

2
S2
2 ||u||2 −

Cϵ

p
Sp
p ||u||p − S2||h||2||u|| −

m0

2
S2
2 ||u||2 (4.2)

= ||u||[(1
2
− ε

2
S2
2 − m0

2
S2
2)||u|| −

Cϵ

p
Sp
p ||u||p−1 − S2||h||2].

Taking ε = 1
2S2

2
− m0 and setting y(t) = 1

4 t −
Cϵ

p Sp
pt

p−1 for t ≥ 0. By direct
calculations, we see that maxt≥0 y(t) = y(ρ) > 0, where ρ = ( p

4(p−1)CϵS
p
p
)

1
p−2 > 0.

Then it follows from (4.2) that, if ||h||2 < n0 = y(ρ)
2S2

, there exists ν > 0 such that
inf ||u||=ρ I(u) ≥ ν > 0. This completes the proof.

Lemma 4.2. Assume that (V1) and (g3)-(g6) hold. Let ρ > 0 be as in Lemma 4.1,
then there exists e ∈ E with ||e|| > ρ such that I(e) < 0.

Proof. For any x ∈ R3, |z| ≥ r2, set ξ(t) = G(x, z
t )t

µ,∀t ∈ [1, |z|
r2
]. By (g5), one

has
ξ′(t) = tµ−1[µG(x, t−1z)− t−1zg(x, t−1z)] ≤ 0.

Hence, ξ(1) ≥ ξ( |z|r2
), that is

G(x, u) ≥ G(x,
r2
|z|

z)
|z|µ

rµ2
≥ inf

x∈R3,||u||=r2
G(x, u)

|z|µ

rµ2
≥ C3|z|µ (4.3)

for any x ∈ R3, |z| ≥ r2. By (g4), there exists δ ≤ r2 such that

|g(x, z)z
z2

| = |g(x, z)
z

| ≤ 1,

for all x ∈ R3, 0 < |z| < δ. It follows from (g3) that there exists a positive constant
M1 such that

|g(x, z)z
z2

| ≤ a2(1 + |z|p−1)|z|
z2

≤ M1,

and so
g(x, z)z ≥ −(M1 + 1)|z|2

for all x ∈ R3, 0 < |z| < δ. Using the definition of G(x, u), we have

G(x, z) ≥ −1

2
(M1 + 1)|z|2 (4.4)

for all x ∈ R3, 0 < |z| < δ. Setting C4 = 1
2 (M1 + 1) +C3, we obtain from (4.3) and

(4.4) that
G(x, z) ≥ C3|z|µ − C4|z|2 (4.5)

for a.e. x ∈ R3, z ∈ R. Since E ↪→ L2(R3) and L2(R3) is a separable Hilbert space,
E has a countable orthogonal basis {ej}. Set Ek = span{e1, e2, · · · , ek}. Then E =
Ek ⊕ E⊥

k and Ek is finite-dimensional space. Moreover, for any finite dimensional
subspace Ẽ ⊂ E, there is a positive integral number n such that Ẽ ⊂ En. Hence,
by (3.1), (4.5) and the assumptions on h(x), one has

I(u) =
1

2
||u||2 + b

4
(

∫
R3

|∇u|2dx)2 + κ

2

∫
R3

u2|∇u|2dx

−
∫
R3

G(x, u)dx−
∫
R3

h(x)udx− m0

2

∫
R3

u2dx



1954 Z. Wu & H. Chen

≤1

2
||u||2 + bC5

4
||u||4 + κ

2
S2
64

2ι23||u||4

− C3||u||µµ + C4||u||22 +
∫
R3

h(x)|u|dx+
m0

2
||u||22

≤C6||u||2 + C7||u||4 − C8||u||µ +

∫
R3

h(x)|u|dx

for all u ∈ En, where in the last inequality we use the equivalence of all norms on
the finite dimensional subspace En. Consequently, by µ > 4, there exists a point
e ∈ E with ||e|| > ρ such that I(e) < 0. This completes the proof.

Lemma 4.3. Assume (V1) and (g3)-(g6) hold. Then any (PS) sequence of I is
bounded if ||h|| < n0.

Proof. Consider a sequence {un} which satisfies I(un) → c and ⟨I ′(un), un⟩ → 0
as n → ∞. If {un} is unbounded in E, we can assume ||un|| → ∞ as n → ∞. Set
ωn = un

||un|| , then ||ωn|| = 1 and ||ωn||s ≤ Ss for s ∈ [2,∞). Going if necessary to a
subsequence, there exists ω ∈ E such that

ωn ⇀ ω in E;

ωn → ω in Lr(R3) (2 ≤ r < ∞);

ωn(x) → ω(x) a.e. in R3.

(4.6)

Set Π = {x ∈ R3|ω(x) ̸= 0}. If meas(Π) > 0, then |un| → +∞ a.e. x ∈ Π as
n → ∞. It follows from (4.5) that

g(x, un)un ≥ C9|un|µ − C10|un|2

for a.e. x ∈ R3 and all un ∈ R. Hence∫
R3

g(x, un)un

||un||µ
dx ≥ C9||ωn||µµ − C10

||ωn||22
||un||µ−2

. (4.7)

Since µ > 4 and

⟨I ′(un), un⟩
||un||µ

=
1

||un||µ−2
+

b(
∫
R3 |∇un|2dx)2

||un||µ
+

2κ
∫
R3 u

2
n|∇un|2dx

||un||µ

−
∫
R3

g(x, un)un

||un||µ
dx−

∫
R3

h(x)
un

||un||µ
dx−

m0

∫
R3 u

2
ndx

||un||µ
,

one has
∫
R3

g(x,un)un

||un||µ dx → 0 as n → ∞. Passing the limit n → ∞ in (4.7), we have

0 = lim
n→∞

∫
R3

g(x, un)un

||un||µ
dx ≥ C9||ω||µµ > 0,

which is a contradiction. Hence, meas(Π) = 0, that is, ω(x) = 0 a.e. x ∈ R3. It
follows from (g3)-(g5) that

|ug(x, u)− µG(x, u)| ≤ C11u
2, ∀(x, u) ∈ R3 × R.
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Thus, for ||h||2 < n0,

1

||un||2
[I(un)−

1

µ
⟨I ′(un), un⟩]

≥(
1

2
− 1

µ
) +

1

||un||2

∫
R3

[
1

µ
g(x, un)un −G(x, un)]dx

+ (
1

µ
− 1)

1

||un||2

∫
R3

h(x)undx+ (
1

µ
− 1

2
)m0

1

||un||2

∫
R3

u2
ndx

≥(
1

2
− 1

µ
)− C11

µ

∫
R3

ω2
ndx+ (

1

µ
− 1)

n0S2

||un||
+ (

1

µ
− 1

2
)m0S

2
2 .

(4.8)

Passing the limit n → ∞ in (4.8), there holds 0 ≥ ( 12 − 1
µ ) + ( 1µ − 1

2 )m0S
2
2 > 0,

which yields to a contradiction. Hence, {un} is bounded in E.

Lemma 4.4. Let (V1) and (g3)-(g4) hold and {un} is a bounded (PS) sequence of
I, then {un} has a strongly convergent subsequence in E.

Proof. Since {un} is a bounded sequence in E, going if necessary to a subsequence,
there exists u ∈ E such that

un ⇀ u in E;

un → u in Lr(R3) (2 ≤ r < ∞);

un(x) → u(x) a.e. in R3.

(4.9)

By an elementary computation,

⟨I ′(un)− I ′(u), un − u⟩

=||un − u||2 −
∫
R3

(g(x, un)− g(x, u))(un − u)dx−m0

∫
R3

(un − u)2dx

+ b

∫
R3

|∇un|2dx
∫
R3

|∇(un − u)|2dx

+ b(

∫
R3

|∇un|2dx−
∫
R3

|∇u|2dx)
∫
R3

∇u∇(un − u)dx

+ κ

∫
R3

(|un|2∇un−|u|2∇u)∇(un−u)dx+κ

∫
R3

(|∇un|2un−|∇u|2u)(un−u)dx

≥||un − u||2 −
∫
R3

(g(x, un)− g(x, u))(un − u)dx−m0

∫
R3

(un − u)2dx

+ b(

∫
R3

|∇un|2dx−
∫
R3

|∇u|2dx)
∫
R3

∇u∇(un − u)dx

+ κ

∫
R3

(|un|2 − |u|2)∇un∇(un − u)dx+ κ

∫
R3

|u|2|∇(un − u)|2dx

+ κ

∫
R3

(|∇un|2 − |∇u|2)u(un − u)dx+ κ

∫
R3

|∇un|2(un − u)2dx

≥||un − u||2 −
∫
R3

(g(x, un)− g(x, u))(un − u)dx−m0

∫
R3

(un − u)2dx

+ b(

∫
R3

|∇un|2dx−
∫
R3

|∇u|2dx)
∫
R3

∇u∇(un − u)dx
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+ κ

∫
R3

(|un|2 − |u|2)∇un∇(un − u)dx+ κ

∫
R3

(|∇un|2 − |∇u|2)u(un − u)dx.

(4.10)

Clearly, from (4.9), there hold

⟨I ′(un)− I ′(u), un − u⟩ → 0, (4.11)

(

∫
R3

|∇un|2dx−
∫
R3

|∇u|2dx)
∫
R3

∇u∇(un − u)dx → 0 (4.12)

and ∫
R3

(un − u)2dx → 0 (4.13)

as n → ∞. Applying (3.1), (4.9) and the Hölder inequality, we obtain

|
∫
R3

(|un|2 − |u|2)∇un∇(un − u)dx|

≤
∫
R3

|un − u||un + u||∇un||∇(un − u)|dx

≤(

∫
R3

|un − u|6dx) 1
6 (

∫
R3

|un + u|6dx) 1
6 (

∫
R3

|∇un|3dx)
1
3 (

∫
R3

|∇(un − u)|3dx) 1
3

≤C12||un − u||6 → 0
(4.14)

and
|
∫
R3

(|∇un|2 − |∇u|2)u(un − u)dx|

≤
∫
R3

|∇un|2|u||un − u|dx+

∫
R3

|∇u|2|u||un − u|dx

≤(

∫
R3

|∇un|3dx)
2
3 (

∫
R3

|u|6dx) 1
6 (

∫
R3

|un − u|6dx) 1
6

+ (

∫
R3

|∇u|3dx) 2
3 (

∫
R3

|u|6dx) 1
6 (

∫
R3

|un − u|6dx) 1
6

≤C13||un − u||6 → 0,

(4.15)

as n → ∞. In addition, it follows from (4.9) and the Hölder inequality that∫
R3

(g(x, un)− g(x, u))(un − u)dx

≤
∫
R3

(|g(x, un)|+ |g(x, u)|)|un − u|dx

≤ε

∫
R3

(|un|+ |u|)|un − u|dx+ Cϵ

∫
R3

(|un|p−1 + |u|p−1)|un − u|dx

≤ε(||un||2 + ||u||2)||un − u||2 + Cϵ(||un||p−1
p + ||u||p−1

p )||un − u||p
≤C14||un − u||2 + C15||un − u||p → 0,

(4.16)

as n → ∞. Thus, it follows from (4.10)-(4.16) that ||un − u|| → 0. This completes
the proof.
Proof of Theorem 1.2. (i) As a consequence of Lemma 4.1-4.4, using Mountain
Pass lemma, we get the desired result.
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(ii) Since h(x) ≥ 0, it is easy to take a ϕ ∈ E such that
∫
R3 h(x)ϕdx > 0, it

follows from (4.5) that for t > 0 sufficiently small,

I(tϕ) =
t2

2
||ϕ||2 + bt4

4
(

∫
R3

|∇ϕ|2dx)2 + κt4

2

∫
R3

ϕ2|∇ϕ|2dx

−
∫
R3

G(x, tϕ)dx− t

∫
R3

h(x)ϕdx− m0t
2

2

∫
R3

ϕ2dx

≤ t2

2
||ϕ||2 + bt4

4
(

∫
R3

|∇ϕ|2dx)2 + κt4

2

∫
R3

ϕ2|∇ϕ|2dx

− C3t
µ

∫
R3

|ϕ|µdx+ C4t
2

∫
R3

|ϕ|2dx− t

∫
R3

h(x)ϕdx− m0t
2

2

∫
R3

ϕ2dx

<0.

Then, we get c0 = infu∈B̄ρ
I(u) < 0, where ρ is given by Lemma 4.1, Bρ = {u ∈

E|||u|| < ρ}. It follows from Ekeland variational principle that there exists a se-
quence {un} ⊂ B̄ρ such that c0 ≤ I(un) ≤ c0 +

1
n and I(u) ≥ I(un) − 1

n ||u − un||
for all u ∈ B̄ρ. Then by a standard procedure, we can show that {un} is a bounded
(PS) sequence of I. In view of Lemma 4.4, we obtain that there exists a function
u0 ∈ E such that I ′(u0) = 0, I(u0) = c0 < 0. This completes the proof.
Acknowledgements. The authors are grateful to the anonymous referees for their
useful comments and suggestions.
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